Avocado Water Footprint for Two Municipalities in Michoacán, Mexico: A Research of the Blue and Green WF
Abstract
:1. Introduction
1.1. Area of Study
Climatic Conditions of the Study Area
2. Materials and Methods
2.1. Information Sources
2.2. Water Footprint Method for Estimating Water Consumption
2.2.1. Crop Water Requirement (CWR)
2.2.2. Calculation of Green and Blue Water Requirement
2.2.3. Green and Blue Water Footprint Calculation
2.2.4. Calculation of Annual Green and Blue Water Consumption
2.2.5. Calculating the WATER stress of Irrigation Water Use
3. Results
3.1. Crop Water Requirement (CWR)
3.2. Green and Blue Water Footprint of Avocado Cultivation
3.3. Annual Green and Blue Water Consumption of Avocado Cultivation
3.4. Analysis of the Water Stress of Irrigation Water Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Meteorological Variables for WF
Appendix A.2. Characterization of Avocado Production
Municipality | Year | Rainfed Production | Irrigated Production | ||||
---|---|---|---|---|---|---|---|
Planted Surface (ha) | Production Volume (ton/year) | Crop Yield (ton/ha) | Planted Surface (ha) | Production Volume (ton/year) | Crop Yield (ton/ha) | ||
Acuitzio | 2012 | 178.85 | 981.75 | 5.50 | 1250.00 | 2821.50 | 5.50 |
2013 | 209.00 | 154.00 | 7.00 | 1257.00 | 7800.00 | 10.00 | |
2014 | 218.85 | 494.25 | 5.00 | 1420.00 | 8748.00 | 9.00 | |
2015 | 233.85 | 1503.72 | 7.20 | 1430.00 | 7776.00 | 8.00 | |
2016 | 238.85 | 1904.00 | 8.70 | 1499.00 | 9108.00 | 9.20 | |
2017 | 294.00 | 1800.00 | 7.50 | 1562.00 | 11,528.20 | 10.33 | |
Mean | 228.90 (±38.37) | 1139.62 (±716.35) | 6.82 (±1.35) | 1403.00 (±126.68) | 7963.62 (±2 868.25) | 8.67 (±1.75) | |
Morelia | 2016 | 330.00 | 1092.00 | 9.10 | 590.00 | 6500.00 | 12.50 |
2017 | 398.00 | 2480.00 | 8.00 | 887.00 | 9313.80 | 12.90 | |
2018 | 418.00 | 3265.60 | 10.40 | 967.00 | 9708.00 | 12.77 | |
2019 | 426.00 | 3444.00 | 10.50 | 909.00 | 8502.00 | 10.90 | |
2020 | 451.00 | 3496.00 | 9.50 | 918.00 | 8715.00 | 10.50 | |
Mean | 404.60 (±45.82) | 2755.52 (±1 015.59) | 9.50 (±1.02) | 854.20 (±150.56) | 8547.76 (±1 240.60) | 11.91 (±1.12) |
References
- Ren, C.; Zhang, P.; Deng, X.; Zhang, J.; Wang, Y.; Wang, S.; Yu, J.; Lai, X.; Long, A. Unveiling the Dynamics and Influence of Water Footprints in Arid Areas: A Case Study of Xinjiang, China. Water 2024, 16, 1164. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hejazi, M.; Tang, Q.; Vernon, C.R.; Liu, Y.; Chen, M.; Calvin, K. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 2019, 574, 242–256. [Google Scholar] [CrossRef]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Wang, X.; Tan, Q. Spatial analysis of dual-scale water stresses based on water footprint accounting in the Haihe River Basin, China. Ecol. Indic. 2018, 92, 254–267. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Huppes, G.; Zhao, X.; Ren, N. Using site-specific life cycle assessment methodology to evaluate Chinese wastewater treatment scenarios: A comparative study of site-generic and site-specific methods. J. Clean. Prod. 2017, 144, 1–7. [Google Scholar] [CrossRef]
- Deepa, R.; Anandhi, A.; Alhashim, R. Volumetric and impact-oriented water footprint of agricultural crops: A review. Ecol. Indic. 2021, 130, 108093. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK; Earthscan: London, UK, 2011; ISBN 978-1-84971.279-8. [Google Scholar]
- le Roux, B.; van der Laan, M.; Vahrmeijer, T.; Bristow, K.L.; Annandale, J.G. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress. Sci. Total Environ. 2017, 599, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Munizaga, J.; Sáez, K.; Arumí, J.L. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecol. Indic. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, S.; Li, Z.; Li, Q.; Lu, Y.; Li, C.; Wu, P. Vulnerability of crop water footprint in rain-fed and irrigation agricultural production system under future climate scenarios. Agric. For. Meteorol. 2022, 326, 109164. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M. The scarcity-weighted water footprint provides unreliable water sustainability scoring. Sci. Total Environ. 2021, 756, 143992. [Google Scholar] [CrossRef] [PubMed]
- Lala-Ayo, H.D.; Fernández-Quintana, M.D.C. Analysis of the sustainability through water footprint of the Pita River micro-basin, Ecuador. Water Sci. Technol. 2020, 11, 169–234. [Google Scholar]
- Mialyk, O.; Schyns, J.F.; Booij, M.J.; Su, H.; Hogeboom, R.J.; Berger, M. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data 2024, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Bao, Y.; Li, Y.; Li, J.; Wu, M. Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity. Agric. Water Manag. 2023, 278, 108165. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, M. Calculation of seasonal agricultural grey water footprint in monsoon region based on river reference conditions. Ecol. Indic. 2022, 145, 109638. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The water footprint of coffee and tea consumption in the Netherlands. Ecol. Econ. 2007, 64, 109–118. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Dumont, A.; Salmoral, G.; Llamas, M.R. The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain). Water Resour. Ind. 2013, 1–2, 60–76. [Google Scholar] [CrossRef]
- De Miguel, Á.; Kallache, M.; García-Calvo, E. The water footprint of agriculture in Duero River Basin. Sustainability 2015, 7, 6759–6780. [Google Scholar]
- Manzardo, A.; Loss, A.; Fialkiewicz, W.; Rauch, W.; Scipioni, A. Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecol. Indic. 2016, 69, 165–175. [Google Scholar] [CrossRef]
- Arrien, M.M.; Aldaya, M.M.; Rodriguez, C.I. Water footprint and virtual water trade of maize in the province of Buenos Aires, Argentina. Water 2021, 13, 1769. [Google Scholar] [CrossRef]
- Cao, X.; Zeng, W.; Wu, M.; Guo, X.; Wang, W. Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation. Agric. Water Manag. 2020, 231, 106027. [Google Scholar] [CrossRef]
- Rao, J.H.; Hardaha, M.K.; Vora, H.M. The water footprint assessment of agriculture in Banjar River watershed. Curr. World Environ. 2019, 14, 476–488. [Google Scholar] [CrossRef]
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Y.; Wu, P.; Zhao, X. Water productivity evaluation for grain crops in irrigated regions of China. Ecol. Indic. 2015, 55, 107–117. [Google Scholar] [CrossRef]
- The World Bank. Available online: https://ppp.worldbank.org/public-private-partnership/sector/water-sanitation/concessions-and-bots (accessed on 28 May 2023).
- Stanford, L. Social Dimensions of Agricultural “Organization”: Avocado Production in Michoacán; De Grammont, H.C., Pablos, J., Eds.; Export Agriculture in Times of Globalization, 1999; pp. 211–252. [Google Scholar]
- Herrera, E. Green Gold in the Shadow of the Volcano: Transnational Avocado Agribusiness and Land Tenure Transformations in the P’urhépecha Mountains. Ph.D. Thesis, Colegio de Michoacan A.C., Michoacán, Mexico, 2017. [Google Scholar]
- De la Tejera Hernández, B.; Santos, Á.; Santamaría, H.; Gómez, T.; Olivares, C. Green Gold in Michoacán: Growth without Borders? Approach to the problems and challenges of the avocado sector for the State and society. Econ. Soc. 2013, 17, 15–40. [Google Scholar]
- FAOSTATS (Food and Agriculture Organization of the United Nations). Agricultural Production Value Data. Available online: https://www.fao.org/faostat/es/#data/QV (accessed on 22 November 2021).
- Agri-Food and Fisheries Information Service (SIAP). Available online: https://nube.siap.gob.mx/avance_agricola/ (accessed on 9 October 2021).
- Bravo, E.M.; Sánchez, P.J.d.l.L.; Vidales, J.; Sáenz, J.; Chávez, J.; Madrigal, S.; Muñoz, H.; Tapia, L.; Orozco, G.; Alcántar, J.; et al. Environmental and Socioeconomic Impacts of Forest Land Use Change to Avocado Orchards in Michoacán, 1st ed.; National Institute of Forestry, Agriculture and Livestock Research; Central Pacific Regional Research Center: Uruapan, Mexico, 2009. [Google Scholar]
- Borrego, A.; Allende, T.C. Main triggers and socio-environmental effects of the avocado boom in Mexico. J. Lat. Am. Geogr. 2021, 20, 154–184. [Google Scholar] [CrossRef]
- Molina Sánchez, A.; Delgado, P.; González-Rodríguez, A.; González, C.; Gómez-Tagle Rojas, A.; López-Toledo, L. Spatio-temporal approach for identification of critical conservation areas: A case study with two pine species from a threatened temperate forest in Mexico. Biodivers. Conserv. 2019, 28, 1863–1883. [Google Scholar] [CrossRef]
- Bocco, G.; Mendoza, M.; Masera, O.R. The Dynamics of Land Use Change in Michoacán: A Methodological Proposal for the Study of Deforestation Processes. Investig. Geogr. 2011, 44, 18–36. [Google Scholar]
- Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Godínez-Gómez, O.; Arima, E.Y.; Young, K.R.; Denvir, A.; Ghilardi, A. Estimating Fragmentation and Connectivity Patterns of the Temperate Forest in an Avocado-Dominated Landscape to Propose Conservation Strategies. Land 2023, 12, 631. [Google Scholar] [CrossRef]
- De la Vega-Rivera, A.; Merino-Pérez, L. Socio-Environmental Impacts of the Avocado Boom in the Purépecha Plateau, Michoacán, Mexico. Sustainability 2021, 13, 7247. [Google Scholar] [CrossRef]
- Sommaruga, R.; Eldridge, H.M. Avocado production: Water footprint and socio-economic implications. EuroChoices 2021, 20, 48–53. [Google Scholar] [CrossRef]
- Merlo-Reyes, A.; Baduel, C.; Duwig, C.; Ramírez, M.I. Risk assessment of pesticides used in the eastern Avocado Belt of Michoacan, Mexico: A survey and water monitoring approach. Sci. Total Environ. 2024, 916, 170288. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tagle, A.F.; Gómez-Tagle, A.; Fuerte-Velázquez, D.J.; Barajas-Alcalá, A.G.; Quiroz-Rivera, F.; Alarcón-Chaires, P.E.; Guerrero-García-Rojas, H. Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico. Sustainability 2022, 14, 9664. [Google Scholar] [CrossRef]
- Barajas, A. Capacidad de Sostenibilidad Ambiental, Social y Económica del Cultivo de Aguacate en Uruapan, Michoacán, México. Suelos Ecuat. 2021, 51, 1–13. [Google Scholar]
- National Institute of Statistics and Geography (INEGI). Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825293048 (accessed on 4 November 2021).
- Morales-Manilla, L.M.; Reyes Gonázalez, A.; Cuevas García, G.; Ramuco, M.O. Inventario del Cultivo de agaucate y Evaluación del Impacto Ambiental Forestal en el Estado de Michoacán; Centro de Investigaciones en Geografía Ambiental: Morelia, México, 2011. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía, UNAM: CDMX, Mexico, 2004. [Google Scholar]
- Servicio Meteorológico Nacional (SMN). 2022. Available online: https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL16081.TXT (accessed on 7 November 2021).
- Servicio Meteorológico Nacional (SMN). 2022. Available online: https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL16001.TXT (accessed on 7 November 2021).
- University Network of Atmospheric Observations (RUOA-UNAM). Available online: https://www.ruoa.unam.mx/ (accessed on 28 November 2021).
- Asociación de Productores y Empacadores Exportadores de Aguacate en México. Weather Records Date. Available online: http://www.apeamclima.org/index.html?fbclid=IwAR3POX_hvYXrh3FuVdG0UEoDg7-CkUXA2kwhB0FFfWhbsk6quDhOgnR279E (accessed on 10 November 2021).
- National Institute of Statistics and Geography (INEGI). Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707 (accessed on 10 December 2021).
- Public Registry of Water Rights (REPDA). Title Data and Permits of National Waters and Their Public Goods Inherent to Water. Available online: https://app.conagua.gob.mx/consultarepda.aspx (accessed on 20 December 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. D05109. [Google Scholar]
- Smith, M.; Munoz, G.; Van, H.G. CROPWAT: A Computer Program for Irrigation Planning Management (No. 46); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1992. [Google Scholar]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water footprint of wheat in Iraq. Water 2019, 11, 535. [Google Scholar] [CrossRef]
- Higazy, N.; Merabet, S.; Khalifa, R.; Saleh, A.; Al-Sayegh, S.; Hosseini, H.; Wahib, S.; Alabsi, R.; Zarif, L.; Mohamed, M.S.; et al. Water Footprint Assessment and Virtual Water Trade in the Globally Most Water-Stressed Country, Qatar. Water 2024, 16, 1185. [Google Scholar] [CrossRef]
- Novoa, V.; Rojas, C.; Rojas, O.; Ahumada-Rudolph, R.; Moreno-Santoyo, R. Consequences of drought regimes on the water footprint of agricultural production. Temporal analysis of the Guadalupe Valley, Mexico. Res. Sq. 2023. Preprints. [Google Scholar] [CrossRef]
- Naranjo, J.F.; Reyes, H. Huella hídrica del cultivo de aguacate cv. Hass (Persea americana Mill.), en el Distrito de Conservación de Suelos Barbas-Bremen, Quindío, Colombia. Entre Cienc. Ing. 2021, 15, 63–70. [Google Scholar] [CrossRef]
- Cruz-Pérez, N.; Santamarta, J.C.; Álvarez-Acosta, C. Water footprint of representative agricultural crops on volcanic islands: The case of the Canary Islands. Renew. Agric. Food Syst. 2023, 38, e36. [Google Scholar] [CrossRef]
- Burgos, A.; Anaya, C.; Solorio, I. Ecological Impact of Avocado Cultivation at Regional and Plot Level in the State of Michoacán: Definition of a Typology of Producers; Final Report to the Produce Michoacán Foundation (FPM) and AALPAUM; Center for Research in Environmental Geography (CIGA/UNAM Morelia Campus): Morelia, Mexico, 2011; 90p. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef]
- Esteve-Llorens, X.; Ita-Nagy, D.; Parodi, E.; González-García, S.; Moreira, M.T.; Feijoo, G.; Vázquez-Rowe, I. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Sci. Total Environ. 2022, 818, 151686. [Google Scholar] [CrossRef]
- Wedaa, Z.W.; Abed, S.A.; Ewaid, S.H. The Agricultural Water Footprint of Al-Qadisiyah Governorate, Southern Iraq. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Qadisiyah, Iraq, 2022; Volume 1029, p. 012025. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, P.; Deng, X.; Lai, X.; Ren, C.; Zhang, J.; Liu, J.; Zhang, Y.; Long, A. Assessment of Crop Water Footprint and Actual Agricultural Water Consumption in Arid Inland Regions: A Case Study of Aksu Region. Sustainability 2024, 16, 2911. [Google Scholar] [CrossRef]
- Velazquez, F.; Diana, J. Evaluación de la huella hídrica en la producción de aguacate y fresa en municipios de la Subcuenca de Cointzio. Un Análisis de Vulnerabilidad Hídrica. Ph.D. Thesis, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico, 2022. [Google Scholar]
Avocado Croap Characteristics | |
---|---|
Kc-Initial Kc/Development Kc/Final | 0.6–0.85–0.75 |
Root depth (m) | 0.60–0.80 |
Critical Exhaustion (Fraction) | 0.50 |
Performance Response | 1.10–1.30 |
Height (m) | 6.5 |
Onset of flowering | March |
Soil Data | |
Available soil moisture (CC–PMP) (mm/meter) | 290 |
Maximum infiltration rate (mm/day) | 40 |
Municipality | Year | Total Rainfall (mm/year) | ETc (mm/year) | Effective Rainfall (Green Water) (mm/year) | Irrigation Requirement (Blue Water) (mm/year) |
---|---|---|---|---|---|
Acuitzio | 2012 | 964.00 | 1295.9 | 765.1 | 595.6 |
2013 | 1395.00 | 1261.3 | 892.5 | 517.2 | |
2014 | 1059.00 | 1292.6 | 797.7 | 579 | |
2015 | 1083.00 | 1273.7 | 790.5 | 598 | |
2016 | 2426.00 | 1322.5 | 1011.1 | 548.8 | |
2017 | 2122.00 | 1353.9 | 925 | 566 | |
Mean | 1508.17 618.16) | 1299.98 33.68) | 863.65 95.65) | 567.43 30.77) | |
Morelia | 2016 | 560.80 | 1400.50 | 483.20 | 917.30 |
2017 | 594.31 | 1446.60 | 457.20 | 996.20 | |
2018 | 1081.30 | 1322.90 | 773.90 | 606.10 | |
2019 | 559.60 | 1354.40 | 470.80 | 883.60 | |
2020 | 775.90 | 1387.90 | 588.90 | 805.70 | |
Mean | 714.38 223.81 | 1382.46 46.91) | 554.80 133.11) | 841.78 148.44) |
Municipality | Year | Rainfed Plantations | Irrigation Production | Mean WF for Rainfed and Irrigated Plantations (m3/ton) | ||
---|---|---|---|---|---|---|
Green WF (m3/ton) | Green WF (m3/ton) | Blue WF (m3/ton) | G+B WF (m3/ton) | |||
Acuitzio | 2012 | 1391.09 | 1391.09 | 1082.91 | 2474.00 | 1932.55 |
2013 | 1275.00 | 892.50 | 517.20 | 1409.70 | 1342.35 | |
2014 | 1595.40 | 886.33 | 643.33 | 1529.67 | 1562.53 | |
2015 | 1097.92 | 988.13 | 747.50 | 1735.63 | 1416.77 | |
2016 | 1162.18 | 1099.02 | 596.52 | 1695.54 | 1428.86 | |
2017 | 1233.33 | 895.45 | 547.92 | 1443.37 | 1338.35 | |
Mean | 1292.49 178.97) | 1025.42 197.19) | 689.23 209.11) | 1714.65 394.51) | 1503.57 225.34) | |
Morelia | 2016 | 530.99 | 386.56 | 733.84 | 1120.40 | 825.69 |
2017 | 571.50 | 354.42 | 772.25 | 1126.67 | 849.08 | |
2018 | 744.13 | 606.03 | 474.63 | 1080.66 | 912.40 | |
2019 | 448.38 | 431.93 | 810.64 | 1242.57 | 845.47 | |
2020 | 619.89 | 560.86 | 767.33 | 1328.19 | 974.04 | |
Mean | 582.97 109.86) | 467.96 110.12) | 711.74 135.31) | 1179.70 102.63) | 881.34 61.20) |
Municipality | Year | Rainfed Production | Irrigated Production | Total Water Consumption for Rainfed and Irrigated Production (m3) | ||
---|---|---|---|---|---|---|
Rainfall (m3) | Rainfall (m3) | Irrigation (m3) | Total (m3) | |||
Acuitzio | 2012 | 1,365,703.50 | 3,924,963.00 | 3,055,428.00 | 6,980,391.00 | 8,346,094.50 |
2013 | 196,350.00 | 9,945,000.00 | 4,034,160.00 | 13,979,160.00 | 14,175,510.00 | |
2014 | 788,526.45 | 13,956,559.20 | 5,627,880.00 | 19,584,439.20 | 20,372,965.65 | |
2015 | 1,650,959.25 | 8,537,400.00 | 5,812,560.00 | 14,349,960.00 | 16,000,919.25 | |
2016 | 2,212,798.16 | 10,585,171.03 | 5,433,120.00 | 16,018,291.03 | 18,231,089.19 | |
2017 | 2,220,000.00 | 14,218,113.33 | 6,316,516.17 | 20,534,629.50 | 22,754,629.50 | |
Mean | 1,405,722.89 (±802,455.50) | 10,194,534.43 (±3,810,787.00) | 5,046,610.69 (±1,239,070.00) | 15,241,145.00 (±4,860,371.00) | 16,646,868.02 (±5,081,850.00) | |
Morelia | 2016 | 579,840.00 | 3,451,428.57 | 4,769,960.00 | 8,221,388.57 | 8,801,228.57 |
2017 | 1,417,320.00 | 5,322,836.70 | 7,192,564.00 | 12,515,400.70 | 13,932,720.70 | |
2018 | 2,430,046.00 | 7,224,058.85 | 4,607,688.96 | 11,831,747.80 | 14,261,793.80 | |
2019 | 1,544,224.00 | 3,812,134.86 | 6,892,080.00 | 10,704,214.90 | 12,248,438.86 | |
2020 | 2,167,152.00 | 5,402,382.63 | 6,687,310.00 | 12,089,692.60 | 14,256,844.63 | |
Mean | 1,627,716.40 (±721,804.40) | 5,042,568.32 (±1,501,050.00) | 6,029,920.59 (±1,238,695.00) | 11,072,488.91 (±1,728,986.00) | 12,700,205.31 (±2,333,822.00) |
Year | Annual Irrigation Water Consumption (m3) | Surface Water Concession (m3) | Groundwater Concession (m3) | Total Concession (m3) | Consumption of Granted Water % |
---|---|---|---|---|---|
2012 | 3,055,428.00 | 1,681,715.60 | 1,474,974.00 | 3,156,689.60 | 96.79 |
2013 | 4,034,160.00 | 1,681,715.60 | 1,568,286.00 | 3,250,001.60 | 124.12 |
2014 | 5,627,880.00 | 1,681,715.60 | 1,708,286.00 | 3,390,001.60 | 166.01 |
2015 | 5,812,560.00 | 1,681,715.60 | 1,708,286.00 | 3,390,001.60 | 171.46 |
2016 | 5,433,120.00 | 1,681,715.60 | 1,733,286.00 | 3,415,001.60 | 159.09 |
2017 | 6,316,516.17 | 1,681,715.60 | 1,863,286.00 | 3,545,001.60 | 178.18 |
Mean | 5,046,610.69 (±1,239,070.00) | 1,681,715.60 (±0) | 1,676,067.33 (±135,982.50) | 3,357,782.93 (±135,982.50) | 149.27 (±31.91) |
Year | Annual Irrigation Water Consumption (m3) | Surface Water Concession (m3) | Groundwater Concession (m3) | Total Concession (m3) | Consumption of Granted Water % |
---|---|---|---|---|---|
2016 | 4,769,960.00 | 6,310,219.52 | 3,632,129.60 | 9,942,349.12 | 47.99 |
2017 | 7,192,564.00 | 6,310,219.52 | 3,943,236.76 | 10,253,456.30 | 70.15 |
2018 | 4,607,688.96 | 7,956,111.52 | 4,277,140.76 | 12,233,252.30 | 37.66 |
2019 | 6,892,080.00 | 7,956,111.52 | 4,317,508.76 | 12,273,620.30 | 56.11 |
2020 | 6,687,310.00 | 7,956,111.52 | 4,434,937.76 | 12,391,049.30 | 54.00 |
Mean | 6,029,920.59 (±1,238,695.00) | 7,297,754.72 (±901,492.20) | 4,120,990.72 (±328,689.30) | 11,418,745.40 (±1,212,152.00) | 53.18 (±11.88) |
Reference | Location, Country | Green Water Footprint m3/ton | Blue Water Footprint m3/ton |
---|---|---|---|
[59] | Quindío, Colombia | 3630.00 | 0 |
[60] | Canary Islands | 651.30 | 1090.61 |
[18] | Global mean water footprint | 849.00 | 283.00 |
[18] | Mean water footrpint of Mexico | 746.00 | 266.00 |
[43] | Uruapan, Michoacan | 417.10 | ---- |
[43] | Uruapan Michoacán | ---- | 1071.40 |
Present study Rainfed plantations | Acuitzio, Michoacan | 1292.97 | ---- |
Present study Irrigation plantations | Acuitzio, Michoacan | ---- | 1714.65 |
Present study Rainfed plantations | Morelia, Michoacan | 582.97 | ---- |
Present study Irrigation plantations | Morelia, Michoacan | ---- | 1179.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuerte-Velázquez, D.J.; Seguí-Amórtegui, L.; Gómez-Tagle, A.; Guerrero-García-Rojas, H. Avocado Water Footprint for Two Municipalities in Michoacán, Mexico: A Research of the Blue and Green WF. Agriculture 2024, 14, 981. https://doi.org/10.3390/agriculture14070981
Fuerte-Velázquez DJ, Seguí-Amórtegui L, Gómez-Tagle A, Guerrero-García-Rojas H. Avocado Water Footprint for Two Municipalities in Michoacán, Mexico: A Research of the Blue and Green WF. Agriculture. 2024; 14(7):981. https://doi.org/10.3390/agriculture14070981
Chicago/Turabian StyleFuerte-Velázquez, Diana J., Luis Seguí-Amórtegui, Alberto Gómez-Tagle, and Hilda Guerrero-García-Rojas. 2024. "Avocado Water Footprint for Two Municipalities in Michoacán, Mexico: A Research of the Blue and Green WF" Agriculture 14, no. 7: 981. https://doi.org/10.3390/agriculture14070981
APA StyleFuerte-Velázquez, D. J., Seguí-Amórtegui, L., Gómez-Tagle, A., & Guerrero-García-Rojas, H. (2024). Avocado Water Footprint for Two Municipalities in Michoacán, Mexico: A Research of the Blue and Green WF. Agriculture, 14(7), 981. https://doi.org/10.3390/agriculture14070981