A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net
Abstract
:1. Introduction
- A Regional Framework for Coverage Path-Planning for Precision Fertilization (RFCPPF) is proposed, including nitrogen stress spatial distribution extraction based on GEE, multi-area task environmental map construction, and coverage path-planning.
- Improvements to the Double Deep Q Network (DDQN) are proposed, incorporating Long Short-Term Memory (LSTM) networks and dueling network structures. Additionally, a multi-objective reward function and tailored state and action selection strategies for stress area plant protection operations are designed.
- Deep learning and directional topology are integrated into CPP for specific precision fertilization scenarios, achieving the goal of precision fertilization in multi-area tasks and providing a demonstration case for search path-planning in complex environments for precision agriculture.
2. Materials and Methods
2.1. Mission Map Creation Based on GEE
2.2. Improved Double Deep Q-Learning
2.2.1. UAV Agent and Environmental Status
2.2.2. Reward Function
2.2.3. Action Selection Strategy
- Termination of the current training episode when the agent reaches the boundary;
- Termination of the current training episode when the agent reaches the maximum number of steps (200);
- Termination of the current training episode when the agent consecutively fails to score more than 80 times;
- Termination of the current training episode when the agent covers all task areas in the submap;
- These conditions are formulated as follows:
2.2.4. DDQN for Precision Fertilization Navigation with UAVs
Algorithm 1: Training algorithm of improved DDQN |
Input: learning rate , maximum episode , maximum step size , maximum step size with no reward , size of batch, memory length, threshold |
1. Initialize device, hyperparameters, and other variables. |
2. Initialize neural networks. |
3. Define optimizer and scaler |
4. Initialize replay memories for each map. |
5. Initialize reward and loss tracking variables. |
6. Define helper functions. |
7. |
8. Use policy network to select greedy action |
9. Else: Select random action |
10. for episode in range): |
11. for t = 1 to do |
12. Select action using epsilon-greedy policy based on DDQN predictions: |
13. |
14. Calculate target Q-values using DDQN: |
15. |
16. Apply attention mechanism to DDQN outputs. |
17. Compute DDQN loss: |
18. |
19. Update DDQN networks using backpropagation: |
20. Update target networks periodically: |
21. if t mod update_target_interval == 0: |
22. Update current state: |
23. Continue to the next timestep if the episode is not done. |
24. end for |
25. end for |
2.3. Experimental Setup
- Step: The number of optimal moves required by the algorithm to complete the task.
- Coverage (%): This metric quantifies the proportion of the mission area that has been effectively covered by the UAV, as shown in Equation (15):
- 3.
- Repeated·coverage (%): The percentage of grid cells that are revisited during the path-planning process, as shown in Equation (16):
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions and Future Work
- The proposed algorithm still encounters some instances of path repetition, indicating the need for further optimization to enhance its efficiency;
- The study was conducted in a relatively ideal environment without considering the presence of obstacles. However, for drones performing tasks, obstacles are a significant threat. Thus, addressing multi-area CPP tasks in the presence of obstacles is crucial.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
DDQN | Double Deep Q-learning Net |
CPP | Coverage Path Planning |
RFCPPF | Regional Framework for Coverage Path Planning for Precision Fertilization |
GEE | Google Earth Engine |
GNDVI | Green Normalized Difference Vegetation Index |
LSTM | Long Short-Term Memory |
BFS-BA | Breadth-First Search-Boustrophedon Algorithm |
DQN | Deep Q-learning Net |
S | State |
A | Action |
R | Reward |
Natural Numbers |
References
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth around the World. China CDC Wkly. 2021, 3, 604. [Google Scholar] [CrossRef]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Edwards, C.A. The Importance of Integration in Sustainable Agricultural Systems. In Sustainable Agricultural Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 249–264. [Google Scholar]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable Lands under the Pressure of Multiple Land Degradation Processes. A Global Perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, A.R.T.; Hasyim, A.W.; Prayitno, G.; Harisandy, J.D. Farm Owners’ Perception toward Farmland Conversion: An Empirical Study from Indonesian Municipality. Environ. Res. Eng. Manag. 2021, 77, 109–124. [Google Scholar] [CrossRef]
- Saputra, R.A.; Tisnanta, H.S.; Sumarja, F.X.; Triono, A. Agricultural Land Conversion for Housing Development and Sustainable Food Agricultural Land. Tech. Soc. Sci. J. 2022, 37, 216. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field Sizes and the Future of Farmland Biodiversity in European Landscapes. Conserv. Lett. 2020, 13, e12752. [Google Scholar] [CrossRef] [PubMed]
- Folberth, C.; Khabarov, N.; Balkovič, J.; Skalský, R.; Visconti, P.; Ciais, P.; Janssens, I.A.; Peñuelas, J.; Obersteiner, M. The Global Cropland-Sparing Potential of High-Yield Farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Singh, P.K.; Sharma, A. An Intelligent WSN-UAV-Based IoT Framework for Precision Agriculture Application. Comput. Electr. Eng. 2022, 100, 107912. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q.-V. Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sens. J. 2021, 21, 17608–17619. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Wang, K.; Lou, A. Unmanned aerial vehicle (uav) remote sensing in grassland ecosystem monitoring: A systematic review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Shamsoshoara, A.; Afghah, F.; Razi, A.; Mousavi, S.; Ashdown, J.; Turk, K. An Autonomous Spectrum Management Scheme for Unmanned Aerial Vehicle Networks in Disaster Relief Operations. IEEE Access 2020, 8, 58064–58079. [Google Scholar] [CrossRef]
- Van Cuong, N.; Hong, Y.-W.P.; Sheu, J.-P. UAV Trajectory Optimization for Joint Relay Communication and Image Surveillance. IEEE Trans. Wirel. Commun. 2022, 21, 10177–10192. [Google Scholar] [CrossRef]
- Sudhakar, S.; Vijayakumar, V.; Kumar, C.S.; Priya, V.; Ravi, L.; Subramaniyaswamy, V. Unmanned Aerial Vehicle (UAV) Based Forest Fire Detection and Monitoring for Reducing False Alarms in Forest-Fires. Comput. Commun. 2020, 149, 1–16. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, P.K. UAV-based Framework for Effective Data Analysis of Forest Fire Detection Using 5G Networks: An Effective Approach towards Smart Cities Solutions. Int. J. Commun. Syst. 2021, 2021, e4826. [Google Scholar] [CrossRef]
- Chen, J.; Du, C.; Zhang, Y.; Han, P.; Wei, W. A Clustering-Based Coverage Path Planning Method for Autonomous Heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 25546–25556. [Google Scholar] [CrossRef]
- Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms. IEEE Access 2021, 9, 119310–119342. [Google Scholar] [CrossRef]
- Qin, Y.; Fu, L.; He, D.; Liu, Z. Improved Optimization Strategy Based on Region Division for Collaborative Multi-Agent Coverage Path Planning. Sensors 2023, 23, 3596. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kumar, N. Region Coverage-Aware Path Planning for Unmanned Aerial Vehicles: A Systematic Review. Phys. Commun. 2023, 59, 102073. [Google Scholar] [CrossRef]
- Jing, W.; Deng, D.; Wu, Y.; Shimada, K. Multi-Uav Coverage Path Planning for the Inspection of Large and Complex Structures. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 1480–1486. [Google Scholar]
- Bezas, K.; Tsoumanis, G.; Angelis, C.T.; Oikonomou, K. Coverage Path Planning and Point-of-Interest Detection Using Autonomous Drone Swarms. Sensors 2022, 22, 7551. [Google Scholar] [CrossRef] [PubMed]
- Fevgas, G.; Lagkas, T.; Argyriou, V.; Sarigiannidis, P. Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles. Sensors 2022, 22, 1235. [Google Scholar] [CrossRef] [PubMed]
- Theile, M.; Bayerlein, H.; Nai, R.; Gesbert, D.; Caccamo, M. UAV Coverage Path Planning under Varying Power Constraints Using Deep Reinforcement Learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 1444–1449. [Google Scholar]
- Le, A.V.; Veerajagadheswar, P.; Thiha Kyaw, P.; Elara, M.R.; Nhan, N.H.K. Coverage Path Planning Using Reinforcement Learning-Based TSP for hTetran—A Polyabolo-Inspired Self-Reconfigurable Tiling Robot. Sensors 2021, 21, 2577. [Google Scholar] [CrossRef]
- Hu, W.; Yu, Y.; Liu, S.; She, C.; Guo, L.; Vucetic, B.; Li, Y. Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method. IEEE Trans. Veh. Technol. 2023, 72, 11727–11740. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L.; Li, X. Distributed Localization in Dynamic Networks via Complex Laplacian. Automatica 2023, 151, 110915. [Google Scholar] [CrossRef]
- Xing, B.; Wang, X.; Yang, L.; Liu, Z.; Wu, Q. An Algorithm of Complete Coverage Path Planning for Unmanned Surface Vehicle Based on Reinforcement Learning. J. Mar. Sci. Eng. 2023, 11, 645. [Google Scholar] [CrossRef]
- Fang, X.; Li, X.; Xie, L. 3-D Distributed Localization with Mixed Local Relative Measurements. IEEE Trans. Signal Process. 2020, 68, 5869–5881. [Google Scholar] [CrossRef]
- Fang, X.; Li, X.; Xie, L. Angle-Displacement Rigidity Theory with Application to Distributed Network Localization. IEEE Trans. Autom. Control 2020, 66, 2574–2587. [Google Scholar] [CrossRef]
- Ni, J.; Gu, Y.; Tang, G.; Ke, C.; Gu, Y. Cooperative Coverage Path Planning for Multi-Mobile Robots Based on Improved K-Means Clustering and Deep Reinforcement Learning. Electronics 2024, 13, 944. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L.; Li, X. Integrated Relative-Measurement-Based Network Localization and Formation Maneuver Control. IEEE Trans. Autom. Control 2023, 69, 1906–1913. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L. Distributed Formation Maneuver Control Using Complex Laplacian. IEEE Trans. Autom. Control 2023, 69, 1850–1857. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, L.; Chu, S.; Song, Y. An Autonomous Coverage Path Planning Algorithm for Maritime Search and Rescue of Persons-in-Water Based on Deep Reinforcement Learning. Ocean Eng. 2024, 291, 116403. [Google Scholar] [CrossRef]
- Xing, B.; Wang, X.; Liu, Z. The Wide-Area Coverage Path Planning Strategy for Deep-Sea Mining Vehicle Cluster Based on Deep Reinforcement Learning. J. Mar. Sci. Eng. 2024, 12, 316. [Google Scholar] [CrossRef]
- Zhu, L.; Cheng, J.; Zhang, H.; Zhang, W.; Liu, Y. Multi-Robot Environmental Coverage With a Two-Stage Coordination Strategy via Deep Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2024, 25, 5022–5033. [Google Scholar] [CrossRef]
- Höffmann, M.; Patel, S.; Büskens, C. Optimal Guidance Track Generation for Precision Agriculture: A Review of Coverage Path Planning Techniques. J. Field Robot. 2024, 41, 823–844. [Google Scholar] [CrossRef]
- Li, J.; Sheng, H.; Zhang, J.; Zhang, H. Coverage Path Planning Method for Agricultural Spraying UAV in Arbitrary Polygon Area. Aerospace 2023, 10, 755. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Yakunin, K.; Aubakirov, M.; Assanov, I.; Kuchin, Y.; Symagulov, A.; Levashenko, V.; Zaitseva, E.; Sokolov, D.; Amirgaliyev, Y. Coverage Path Planning Optimization of Heterogeneous UAVs Group for Precision Agriculture. IEEE Access 2023, 11, 5789–5803. [Google Scholar] [CrossRef]
- Apostolidis, S.D.; Vougiatzis, G.; Kapoutsis, A.C.; Chatzichristofis, S.A.; Kosmatopoulos, E.B. Systematically Improving the Efficiency of Grid-Based Coverage Path Planning Methodologies in Real-World UAVs’ Operations. Drones 2023, 7, 399. [Google Scholar] [CrossRef]
- Liu, C.; Sziranyi, T. Active Wildfires Detection and Dynamic Escape Routes Planning for Humans through Information Fusion between Drones and Satellites. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 1977–1982. [Google Scholar]
- Zhu, Y.; Zhang, G.; Chu, R.; Xiao, H.; Yang, Y.; Wu, X. Research on Escape Route Planning Analysis in Forest Fire Scenes Based on the Improved A* Algorithm. Ecol. Indic. 2024, 166, 112355. [Google Scholar] [CrossRef]
- Burns, B.W.; Green, V.S.; Hashem, A.A.; Massey, J.H.; Shew, A.M.; Adviento-Borbe, M.A.A.; Milad, M. Determining Nitrogen Deficiencies for Maize Using Various Remote Sensing Indices. Precis. Agric. 2022, 23, 791–811. [Google Scholar] [CrossRef]
- Ma, G.; Yue, X. An Improved Whale Optimization Algorithm Based on Multilevel Threshold Image Segmentation Using the Otsu Method. Eng. Appl. Artif. Intell. 2022, 113, 104960. [Google Scholar] [CrossRef]
- Peng, B.; Sun, Q.; Li, S.E.; Kum, D.; Yin, Y.; Wei, J.; Gu, T. End-to-End Autonomous Driving Through Dueling Double Deep Q-Network. Automot. Innov. 2021, 4, 328–337. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, H.; Xv, F.; Luo, Y.; Chen, J.; Ding, X. GA-LSTM Speed Prediction-Based DDQN Energy Management for Extended-Range Vehicles. Energy AI 2024, 17, 100367. [Google Scholar] [CrossRef]
- Li, Y.; Shi, J.; Jiang, W.; Zhang, W.; Lyu, Y. Autonomous Maneuver Decision-Making for a UCAV in Short-Range Aerial Combat Based on an MS-DDQN Algorithm. Def. Technol. 2022, 18, 1697–1714. [Google Scholar] [CrossRef]
- Yang, G.; Hu, C.; Meng, H.; Wang, S.Y. Constraint Path Planning for an Autonomous Wall Spray Coating Robot. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dalian, China, 6–8 December 2019; pp. 2977–2983. [Google Scholar]
- Zhang, S.; Li, Y.; Dong, Q. Autonomous Navigation of UAV in Multi-Obstacle Environments Based on a Deep Reinforcement Learning Approach. Appl. Soft Comput. 2022, 115, 108194. [Google Scholar] [CrossRef]
- Gu, Y.; Zhu, Z.; Lv, J.; Shi, L.; Hou, Z.; Xu, S. DM-DQN: Dueling Munchausen Deep Q Network for Robot Path Planning. Complex Intell. Syst. 2023, 9, 4287–4300. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Wang, Y.; Zhang, T.; Gong, Y. A Fast Formation Obstacle Avoidance Algorithm for Clustered UAVs Based on Artificial Potential Field. Aerosp. Sci. Technol. 2024, 147, 108974. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Wang, J.; Noguchi, N.; He, Y. Obstacle Avoidance Method Based on Double DQN for Agricultural Robots. Comput. Electron. Agric. 2023, 204, 107546. [Google Scholar] [CrossRef]
- Guo, T.; Jiang, N.; Li, B.; Zhu, X.; Wang, Y.; Du, W. UAV Navigation in High Dynamic Environments: A Deep Reinforcement Learning Approach. Chin. J. Aeronaut. 2021, 34, 479–489. [Google Scholar] [CrossRef]
- Gök, M. Dynamic Path Planning via Dueling Double Deep Q-Network (D3QN) with Prioritized Experience Replay. Appl. Soft Comput. 2024, 158, 111503. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, X.; Zhou, Z.; Tang, Y. Deep-Reinforcement-Learning-Based UAV Autonomous Navigation and Collision Avoidance in Unknown Environments. Chin. J. Aeronaut. 2024, 37, 237–257. [Google Scholar] [CrossRef]
- Fu, X.; Zhi, C.; Wu, D. Obstacle Avoidance and Collision Avoidance of UAV Swarm Based on Improved VFH Algorithm and Information Sharing Strategy. Comput. Ind. Eng. 2023, 186, 109761. [Google Scholar] [CrossRef]
- Castro, G.G.R.D.; Berger, G.S.; Cantieri, A.; Teixeira, M.; Lima, J.; Pereira, A.I.; Pinto, M.F. Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs. Agriculture 2023, 13, 354. [Google Scholar] [CrossRef]
Band Specification | Color | Wavelength (nm) | Resolution (m) |
---|---|---|---|
Band 1 | Coastal | 433–453 | 60 |
Band 2 | Blue | 458–523 | 10 |
Band 3 | Green | 543–578 | 10 |
Band 4 | Red | 650–680 | 10 |
Band 5 | Vegetation red edge | 698–713 | 20 |
Band 6 | Vegetation red edge | 734–748 | 20 |
Band 7 | Vegetation red edge | 765–785 | 20 |
Band 8 | NIR | 785–900 | 10 |
Band 8a | Vegetation red edge | 855–875 | 20 |
Band 9 | Water vapor | 930–950 | 60 |
Band 10 | SWIR(Cirrus) | 1365–1385 | 60 |
Band 11 | SWIR | 1565–1655 | 20 |
Band 12 | SWIR | 2100–2280 | 20 |
The Value of | State |
---|---|
0 | Non-mission areas |
1 | Mission areas |
2 | The current location of the UAV |
4 | Map boundaries |
Parameter | Value | Description |
---|---|---|
100,000 | maximum episode | |
200 | maximum step size | |
80 | Maximum Step Size Without Reward | |
0.95 | discount factor | |
1.0 | The initial value of the exploration rate | |
0.1 | The final value of the exploration rate | |
5000 | The number of steps over which the exploration rate decays | |
128 | batch size | |
100,000 | Memory size | |
1 × 10−4 | learning rate | |
32 | Number of neurons in conv1 | |
64 | Number of neurons in conv2 | |
128 | Number of neurons in conv3 | |
128 | Number of neurons in LSTM | |
5 | target network update frequency | |
8 | the output neurons | |
Optimizer | Adam | optimizer |
Map | Algorithms | Step | Repeated Coverage (%) | Coverage (%) |
---|---|---|---|---|
Map 1 | Ours | 121 | 0 | 100% |
BFS-BA | 137 | 12.84% | 100% | |
MLP-DDQN | 150 | 1.83% | 53.21% | |
Map 2 | Ours | 118 | 1.82% | 100% |
BFS-BA | 135 | 10.91% | 100% | |
MLP-DDQN | 155 | 5.45% | 56.36% | |
Map 3 | Ours | 83 | 0.00% | 100% |
BFS-BA | 91 | 13.92% | 100% | |
MLP-DDQN | 116 | 12.66% | 78.48% | |
Map 4 | Ours | 109 | 0.00% | 100% |
BFS-BA | 113 | 0.00% | 100% | |
MLP-DDQN | 170 | 12.12% | 59.60% | |
Sum | Ours | 431 | 0.50% | 100% |
BFS-BA | 476 | 9.32% | 100% | |
MLP-DDQN | 591 | 7.56% | 60.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, W.; Ren, J.; Yu, W.; Wang, G.; Ding, P.; Wang, J.; Zhang, X. A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net. Agriculture 2024, 14, 1294. https://doi.org/10.3390/agriculture14081294
Li J, Zhang W, Ren J, Yu W, Wang G, Ding P, Wang J, Zhang X. A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net. Agriculture. 2024; 14(8):1294. https://doi.org/10.3390/agriculture14081294
Chicago/Turabian StyleLi, Jian, Weijian Zhang, Junfeng Ren, Weilin Yu, Guowei Wang, Peng Ding, Jiawei Wang, and Xuen Zhang. 2024. "A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net" Agriculture 14, no. 8: 1294. https://doi.org/10.3390/agriculture14081294
APA StyleLi, J., Zhang, W., Ren, J., Yu, W., Wang, G., Ding, P., Wang, J., & Zhang, X. (2024). A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net. Agriculture, 14(8), 1294. https://doi.org/10.3390/agriculture14081294