Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concepts of WUE and EWP
2.1.1. Historical Background and Definitions
2.1.2. Definitions Adopted for This Study
2.1.3. Factors Affecting WUE and EWP
2.1.4. Integration of WUE and EWP
2.1.5. Multi-Disciplinary Approach in WUE and EWP
2.2. Study Area
2.3. Data and Variables
2.4. Regression Models
Determinants of WUE and EWP
3. Results
3.1. Farm Size, Regional Variations, and Water Use Efficiency in Paddy and Wheat
3.2. Farm Size, Regional Variations, and Economic Water Productivity in Paddy and Wheat
3.3. Determinants of Water Use Efficiency (WUE)
3.4. Determinants of Economic Water Productivity (EWP)
4. Discussion
5. Conclusions
6. Limitations and Scope for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V.J.A.W.M. Factors affecting crop water use efficiency: A worldwide meta-analysis. Agric. Water Manag. 2020, 228, 105878. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Gamo, M. Classification of arid regions by climate and vegetation. J. Arid. Land. Stud. 1999, 1, 9–17. [Google Scholar]
- Moench, M.; Burke, J.J.; Moench, Y. Rethinking the Approach to Groundwater and Food Security (No. 24); Food & Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- Scheierling, S.; Treguer, D.O.; Booker, J.F. Water productivity in agriculture: Looking for water in the agricultural productivity and efficiency literature. Water Econ. Policy 2016, 2, 1650007. [Google Scholar] [CrossRef]
- World Economic Forum. 4 Ways to Improve Food Productivity. Available online: https://www.weforum.org/agenda/2015/05/4-ways-to-improve-food-productivity/ (accessed on 10 April 2023).
- WWAP United Nations Educational; Scientific and Cultural Organization (UNESCO). United Nations World Water Assessment Programme (WWAP), UN-Water. 2012. Available online: http://www.wri.org/resource/physical-and-economic-water-scarcity (accessed on 3 December 2022).
- Wijnen, M.; Augeard, B.; Hiller, B.; Ward, C.; Huntjens, P. Managing the Invisible: Understanding and Improving Groundwater Governance; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Food & Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- Sharma, B.R.; Amarasinghe, U.; Xueliang, C. Assessing and improving water productivity in conservation agriculture systems in the Indus-Gangetic Basin. In Proceedings of the 4th World Congress on Conservation Agriculture—Innovations for Improving efficiency, Equity and Environment, New Delhi, India, 4–7 February 2009; pp. 4–7. [Google Scholar]
- Graham, N.T.; Hejazi, M.I.; Kim, S.H.; Davies, E.G.; Edmonds, J.A.; Miralles-Wilhelm, F. Future changes in the trading of virtual water. Nat. Commun. 2020, 11, 3632. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.A. Virtual water: A strategic resource. Ground Water 1998, 36, 545–547. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Katyaini, S.; Barua, A. Assessment of interstate virtual water flows embedded in agriculture to mitigate water scarcity in India (1996–2014). Water Resour. Res. 2017, 53, 7382–7400. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with, GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Sharda, R.; Singh, S. Spatio-temporal assessment of groundwater depletion in Punjab, India. Groundw. Sustain. Dev. 2021, 12, 100498. [Google Scholar] [CrossRef]
- Attri, M.; Bharti, V.; Ahmad Nesar, N.; Mehta, S.; Bochalya, R.S.; Kumar Bansal, K.; Sandhu, R. Improved irrigation practices for higher agricultural productivity: A review. Int. J. Environ. Clim. Chang. 2022, 12, 51–61. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Guo, J.; Yan, S.; Zhuang, Q.; Cui, N.; Guo, L. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agric. Water Manag. 2021, 248, 106778. [Google Scholar] [CrossRef]
- Kang, J.; Hao, X.; Zhou, H.; Ding, R. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agric. Water Manag. 2021, 255, 107008. [Google Scholar] [CrossRef]
- Ding, Y.; Nie, Y.; Chen, H.; Wang, K.; Querejeta, J.I. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol. 2021, 229, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.P.; Karnam, V.; Sendhil, R.; Sharma, R.K.; Tripathi, S.C.; Singh, G.P. Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India. Agric. Water Manag. 2019, 223, 105709. [Google Scholar] [CrossRef]
- Sandhu, O.S.; Gupta, R.K.; Thind, H.S.; Jat, M.L.; Sidhu, H.S. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 2019, 219, 19–26. [Google Scholar] [CrossRef]
- Kumar, A.; Sirohi, S.; Pandey, D.; Devi, R.H.; Choudhary, B.B. Gross economic efficiency of water use in agriculture and water-saving farm plans for Punjab. Agric. Econ. Res. Rev. 2019, 32, 43–53. [Google Scholar] [CrossRef]
- Ram, H.; Dadhwal, V.; Vashist, K.K.; Kaur, H. Grain yield and water use efficiency of wheat (Triticum aestivum L.) in relation to irrigation levels and rice straw mulching in North West India. Agric. Water Manag. 2013, 128, 92–101. [Google Scholar] [CrossRef]
- Mahajan, G.; Timsina, J.; Singh, K. Performance and water-use efficiency of rice relative to establishment methods in northwestern indo-gangetic plains. J. Crop Improv. 2011, 25, 597–617. [Google Scholar] [CrossRef]
- Mahajan, G.; Bharaj, T.S.; Timsina, J. Yield and water productivity of rice as affected by time of transplanting in Punjab, India. Agric. Water Manag. 2009, 96, 525–532. [Google Scholar] [CrossRef]
- Thind, H.S.; Buttar, G.S.; Aujla, M.S. Yield and water use efficiency of wheat and cotton under alternate furrow and check-basin irrigation with canal and tube well water in Punjab, India. Irrig. Sci. 2010, 28, 489–496. [Google Scholar] [CrossRef]
- Kaur, B.; Sidhu, R.S.; Vatta, K. Optimal crop plans for sustainable water use in Punjab. Agric. Econ. Res. Rev. 2010, 23, 273–284. [Google Scholar]
- Njuki, E.; Bravo-Ureta, B.E. Examining irrigation productivity in US agriculture using a single-factor approach. J. Prod. Anal. 2019, 51, 125–136. [Google Scholar] [CrossRef]
- Murray, A. Partial versus total factor productivity measures: An assessment of their strengths and weaknesses. Int. Product. Monit. 2016, 31, 113. [Google Scholar]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103–110. [Google Scholar] [CrossRef]
- Briggs, L.J.; Shantz, H.L. The Water Requirement of Plants (No. 284-285); US Government Printing Office: Washington DC, WA, USA, 1913.
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in water use efficiency in agriculture: A bibliometric analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef]
- Bacon, M.A. Water Use Efficiency in Plant Biology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Viets, F.G. Fertilizers and the efficient use of water. Adv. Agron. 1962, 14, 223–264. [Google Scholar]
- Boutraa, T. Improvement of water use efficiency in irrigated agriculture: A review. J. Agron. 2010, 9, 1–8. [Google Scholar] [CrossRef]
- Israelsen, O.W. Irrigation Principles and Practices, 1st ed.; John Wiley: New York, NY, USA, 1932. [Google Scholar]
- Sharma, B.; Molden, D.; Cook, S. Water Use Efficiency in Agriculture: Measurement, Current Situation and Trends (No. 612-2016-40604). In Managing Water and Fertilizer for Sustainable Agricultural Intensification; International Water Management Institute: Colombo, Sri Lanka, 2015. [Google Scholar]
- Raza, A.; Friedel, J.K.; Bodner, G. Improving water use efficiency for sustainable agriculture. In Agroecology and Strategies for Climate Change; Springer: Dordrecht, The Netherlands, 2012; pp. 167–211. [Google Scholar]
- Blum, A. Drought Resistance, Water-Use Efficiency, and Yield Potential—Are They Compatible, Dissonant, or Mutually Exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1169. [Google Scholar] [CrossRef]
- Igbadun, H.E. Evaluation of Irrigation Scheduling Strategies for Improving Water Productivity: Computer-Based Simulation Model Approach. Ph.D. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2006. [Google Scholar]
- Sharma, B.R.; Gulati, A.; Mohan, G.; Manchanda, S.; Ray, I.; Amarasinghe, U. Water Productivity Mapping of Major Indian Crops; ICRIER-NABARD: New Delhi, India, 2018. [Google Scholar]
- Hong-Xing, C.; Zheng-Bin, Z.; Ping, X.; Li-Ye, C.; Hong-Bo, S.; Zhao-Hua, L.; Jun-Hong, L. Mutual physiological genetic mechanism of plant high water use efficiency and nutrition use efficiency. Colloids Surf. B Biointerfaces 2007, 57, 1–7. [Google Scholar]
- Food and Agriculture Organization (FAO). Concepts on Price Data. 2018. Available online: http://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/price-statistics-and-index-numbers-of-agricultural-production-and-prices/4-concepts-on-price-data/en/ (accessed on 20 February 2022).
- Zwart, S.J.; Bastiaanssen, W.G. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Norton, R.M.; Wachsmann, N.G. Nitrogen use and crop type affect the water use of annual crops in south-eastern Australia. Aust. J. Agric. Res. 2006, 57, 257–267. [Google Scholar] [CrossRef]
- Sadras, V.O.; McDonald, G. Water use efficiency of grain crops in Australia: Principles, benchmarks and management. Change 2012, 11, 24. [Google Scholar]
- Erdem, T.; Delibas, L.; Orta, A.H. Water-use characteristics of sunflower (Helianthus annuus L.) under deficit irrigation. Pak. J. Biol. Sci. 2001, 4, 766–769. [Google Scholar] [CrossRef]
- Rusere, F.; Soropa, G.; Svubure, O.; Gwatibaya, S.; Moyo, D.; Ndeketeya, A.; Mavima, G.A. Effects of deficit irrigation on winter silage maize production in Zimbabwe. Int. Res. J. Plant Sci. 2012, 3, 188–192. [Google Scholar]
- Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Water use characteristics of a bambara groundnut (Vigna subterranea, L. Verdc) landrace during seedling establishment. Water SA 2015, 41, 472–482. [Google Scholar] [CrossRef]
- Ibragimov, N.; Evett, S.R.; Esanbekov, Y.; Kamilov, B.S.; Mirzaev, L.; Lamers, J.P. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agric. Water Manag. 2007, 90, 112–120. [Google Scholar] [CrossRef]
- Ismail, S.M.; Ozawa, K. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application. Appl. Clay Sci. 2007, 37, 81–89. [Google Scholar] [CrossRef]
- Dou, F.; Soriano, J.; Tabien, R.E.; Chen, K. Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PLoS ONE 2016, 11, e0150549. [Google Scholar] [CrossRef]
- Fan, T.; Wang, S.; Xiaoming, T.; Luo, J.; Stewart, B.A.; Gao, Y. Grain yield and water use in a long-term fertilization trial in Northwest China. Agric. Water Manag. 2005, 76, 36–52. [Google Scholar] [CrossRef]
- Wang, L.; Palta, J.A.; Chen, W.; Chen, Y.; Deng, X. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agric. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Zhang, H.; Khan, A.; Tan, D.K.; Luo, H. Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front. Plant Sci. 2017, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.R. Effective water use required for improving crop growth rather than transpiration efficiency. Front. Plant Sci. 2018, 9, 1442. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.K.; Wang, Y.J.; Li, F.M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 2005, 75, 71–83. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Yan, S.; Guo, J.; Chen, D.; Li, Z. Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China. J. Arid. Land. 2018, 10, 794–808. [Google Scholar] [CrossRef]
- Porwal, M.; Verma, B. Agronomic interventions for the mitigation of climate change. Emrg. Trnd. Clim. Chng. 2023, 2, 27–39. [Google Scholar]
- Lemerle, D.; Luckett, D.J.; Wu, H.; Widderick, M.J. Agronomic interventions for weed management in canola (Brassica napus L.)—A review. Crop Prot. 2017, 95, 69–73. [Google Scholar] [CrossRef]
- Ram, H.; Singh, G.; Aggarwal, N.; Sekhon, H.S. Effect of sowing methods, nutrients and seed rate on mungbean (Vigna radiata (L.) Wilczek) growth, productivity and water-use efficiency. J. Appl. Nat. Sci. 2018, 10, 190–195. [Google Scholar] [CrossRef]
- IWMI—International Water Management Institute. Pathways for Increasing Agricultural Water Productivity. Available online: http://www.iwmi.cgiar.org/assessment/Water%20for%20Food%20Water%20for%20Life/Chapters/Chapter%207%20Water%20Productivity.pdf (accessed on 23 November 2023).
- Ragab, R. A Note on Water Use Efficiency and Water Productivity. Available online: https://www.researchgate.net/profile/Anoop-Srivastava/post/Is_it_time_to_focus_in_water_productivity_more_than_yield_productivity_in_high_water_storage_countries_or_just_in_low_water_storage_countries/attachment/59d6510179197b80779a9acf/AS%3A505760595406848%401497594130257/download/RR_Water-use-efficiency-and-water-productivity.pdf (accessed on 16 December 2023).
- Jensen, M.E. Beyond irrigation efficiency. Irrig. Sci. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Directorate of Economics & Statistics, Ministry of Agriculture and Farmers Welfare, Govt. of India. Land Use Statistics. Available online: https://aps.dac.gov.in/LUS/Index.htm (accessed on 2 May 2023).
- Srivastava, S.K.; Chand, R.; Singh, J.; Kaur, A.P.; Jain, R.; Kingsly, I.; Raju, S.S. Revisiting groundwater depletion and its implications on farm economics in Punjab, India. Curr. Sci. 2017, 113, 422–429. [Google Scholar] [CrossRef]
- Rosencranz, A.; Puthucherril, T.G.; Tripathi, S.; Gupta, S. Groundwater management in India’s Punjab and Haryana: A case of too little and too late? J. Energy Nat. Resour. Law. 2022, 40, 225–250. [Google Scholar] [CrossRef]
- Mahajan, G.; Singh, K.; Gill, M.S. Scope for enhancing and sustaining rice productivity in Punjab (food bowl of India). Afr. J. Agric. Res. 2012, 7, 5611–5620. [Google Scholar]
- Mukherji, A. Sustainable groundwater management in India needs a water-energy-food nexus approach. Appl. Econ. Perspect. Policy 2022, 44, 394–410. [Google Scholar] [CrossRef]
- Sarkar, A. Groundwater irrigation and farm power policies in Punjab and West Bengal: Challenges and opportunities. Energy Policy 2020, 140, 111437. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Chand, R.; Raju, S.S.; Jain, R.; Kingsly, I.; Sachdeva, J.; Singh, J.; Kaur, A.P. Unsustainable groundwater use in Punjab agriculture: Insights from cost of cultivation survey. Indian J. Agric. Econ. 2015, 70, 365–378. [Google Scholar]
- Administrative Set-Up of Punjab. Department of Mines & Geology, Punjab. Available online: https://minesandgeology.punjab.gov.in/ (accessed on 20 February 2023).
- Clarke-Sather, A.; Tang, X.; Xiong, Y.; Qu, J. The impact of green water management strategies on household-level agricultural water productivity in a semi-arid region: A survey-based assessment. Water 2017, 10, 11. [Google Scholar] [CrossRef]
- Njiraini, G.W. An Assesment of Water Use Efficiency in Lake Naivasha Basin, Kenya. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2011. [Google Scholar]
- Namrata, K.; Chandra, R. Estimation of water productivity of different varieties of rice in Burhi Gandak basin of north Bihar. J. Pharmacogn. Phytochem. 2019, 8, 2631–2634. [Google Scholar]
- Wang, F.; Yu, C.; Xiong, L.; Chang, Y. How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar] [CrossRef]
- Dinar, A. Economic factors and opportunities as determinants of water use efficiency in agriculture. Irrig. Sci. 1993, 14, 47–52. [Google Scholar] [CrossRef]
- Al-Maadid, A.; Akesson, J.; Bernstein, D.H.; Chakravarti, J.; Khalifa, A. Understanding water consumption in Qatar: Evidence from a nationally representative survey. Urban. Water J. 2023, 20, 1450–1461. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Kimaru-Muchai, S.W.; Ngetich, F.K.; Baaru, M.; Mucheru-Muna, M.W. Adoption and utilisation of Zai pits for improved farm productivity in drier upper Eastern Kenya. J. Agric. Rural. Dev. Trop. Subtrop. 2020, 121, 13–22. [Google Scholar]
- Johnson, D.; Almaraz, M.; Rudnick, J.; Parker, L.E.; Ostoja, S.M.; Khalsa, S.D.S. Farmer adoption of climate-smart practices is driven by farm characteristics, information sources, and practice benefits and challenges. Sustainability 2023, 15, 8083. [Google Scholar] [CrossRef]
- Perumal, A.; Singh, D. The Empirical Investigation of the Relationship Between Farm Size and Productivity in Modern Indian Agriculture. In Proceedings of the XIV Agricultural Science Congress, New Delhi, India, 23 February 2019. [Google Scholar]
- Aktar, S.S.; Khan, M.A.; Prodhan, M.M.H.; Mukta, M.A. Farm Size, Productivity and Efficiency Nexus: The Case of Pangas Fish Farming in Bangladesh. J. Bangladesh Agric. Univ. 2018, 16, 513–522. [Google Scholar] [CrossRef]
- Bojnec, Š.; Latruffe, L. Farm size, agricultural subsidies and farm performance in Slovenia. Land. Use Policy 2013, 32, 207–217. [Google Scholar] [CrossRef]
- Central Ground Water Board. Dynamic Ground Water Resources of India. 2022. Available online: http://cgwb.gov.in/sites/default/files/inline-files/2022-11-11-gwra_2022_1_compressed.pdf (accessed on 17 January 2023).
- Economic Survey 2018–2019. Available online: https://www.indiabudget.gov.in/budget2019-20/economicsurvey/doc/echapter.pdf (accessed on 14 December 2022).
- Shahane, A.A.; Shivay, Y.S.; Prasanna, R.; Kumar, D. Improving water and nutrient use efficiency in rice by changing crop establishment methods, application of microbial inoculations, and Zn fertilization. Glob. Chall. 2019, 3, 1800005. [Google Scholar] [CrossRef] [PubMed]
- Ramulu, V.; Reddy, M.D.; Umadevi, M. Evaluation of water saving rice production systems. J. Pharmacogn. Phytochem. 2020, 9, 658–660. [Google Scholar] [CrossRef]
- Thejaswi, J.K.; Lokesha, H.; Thapa, S. Resource use efficiency among aerobic and conventional rice farms in Eastern Dry Zone of Karnataka: A comparative analysis. Econ. Aff. 2021, 66, 439–446. [Google Scholar]
- Grassi, C.; Bouman, B.A.M.; Castañeda, A.R.; Manzelli, M.; Vecchio, V. Aerobic rice: Crop performance and water use efficiency. J. Agric. Environ. Int. Dev. 2009, 103, 259–270. [Google Scholar]
- Kato, Y.; Okami, M.; Katsura, K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 2009, 113, 328–334. [Google Scholar] [CrossRef]
- Patel, R.J.; Rank, H.D. Water use efficiency of wheat under different irrigation regimes using high discharge drip irrigation system. Agric. Eng. Today 2020, 44, 19–31. [Google Scholar]
- Zhang, X.; Zhang, J.; Xue, J.; Wang, G. Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China. Sustainability 2023, 15, 10503. [Google Scholar] [CrossRef]
- Asghar, S.; Sasaki, N.; Jourdain, D.; Tsusaka, T.W. Levels of technical, allocative, and groundwater use efficiency and the factors affecting the allocative efficiency of wheat farmers in Pakistan. Sustainability 2018, 10, 1619. [Google Scholar] [CrossRef]
- Jairath, J. Private Tubewell Utilisation in Punjab: A Study of Cost and Efficiency. Econ. Political Wkly. 1985, 20, 1703–1712. [Google Scholar]
- Jia, B.; Luo, X.; Wang, L.; Lai, X. Changes in water use efficiency caused by climate change, CO2 fertilization, and land use changes on the Tibetan Plateau. Adv. Atmos. Sci. 2023, 40, 144–154. [Google Scholar] [CrossRef]
- Xie, X.; Li, C.; Wu, L.; Wang, L.; Zhou, X.; Lv, J. Variation in vegetation water use efficiency at the basin scale: Separating the contributions of climate change and human activities. Environ. Earth Sci. 2023, 82, 195. [Google Scholar] [CrossRef]
- Huang, M.; Zhai, P.; Piao, S. Divergent responses of ecosystem water use efficiency to drought timing over Northern Eurasia. Environ. Res. Lett. 2021, 16, 045016. [Google Scholar] [CrossRef]
- Ma, W.; Li, X. Impact of government subsidy on the optimal strategies of improving water use efficiency for a high-water-consumption manufacturer. Kybernetes 2023, 52, 2092–2117. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Yu, L.; Gao, X.; Zhao, X. Global synthesis of the impact of droughts on crops’ water-use efficiency (WUE): Towards both high WUE and productivity. Agric. Syst. 2020, 177, 102723. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, L.; Shao, M.A.; Zhang, Y. Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress. J. Arid Land 2020, 12, 791–805. [Google Scholar] [CrossRef]
- Li, X.; Xiong, H.; Hao, J.; Li, G. Impacts of internet access and use on grain productivity: Evidence from Central China. Humanit. Soc. Sci. Commun. 2024, 11, 1–9. [Google Scholar] [CrossRef]
- Kaila, H.; Tarp, F. Can the Internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. [Google Scholar] [CrossRef]
- Yu, H.; Bai, X.; Zhang, H. Strengthen or weaken? Research on the influence of internet use on agricultural green production efficiency. Front. Environ. Sci. 2022, 10, 1018540. [Google Scholar] [CrossRef]
- Mehta, V.P.; Malik, D.P.; Kumar, R. Impact of agricultural price policy on major food crops in Haryana. Econ. Aff. 2020, 65, 267–274. [Google Scholar]
- Devi, G.; Zala, Y.C.; Bansal, R.; Jadav, S.K. A Study of Minimum Support Price, Farm Harvest Price and their effect on Area of Major Food-Grain Crops of Gujarat. Indian. J. Econ. Dev. 2016, 12, 555–558. [Google Scholar] [CrossRef]
- Perrin, R.K.; Fulginiti, L.E. Productivity measurement in the presence of “poorly priced” goods. Am. J. Agric. Econ. 1996, 78, 1355–1359. [Google Scholar] [CrossRef]
- Mobarok, M.H.; Skevas, T.; Thompson, W. Women’s empowerment in agriculture and productivity change: The case of Bangladesh rice farms. PLoS ONE 2021, 16, e0255589. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Ehiakpor, D.S.; Aidoo, R. Agricultural extension and its effects on farm productivity and income: Insight from Northern Ghana. Agric. Food Secur. 2018, 7, 74. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Yasmeen, R.; Yan, H.; Qi, Y. Impact of agricultural technological innovation on total-factor agricultural water usage efficiency: Evidence from 31 Chinese Provinces. Agric. Water Manag. 2024, 299, 108905. [Google Scholar] [CrossRef]
- Nazari, B.; Liaghat, A.; Akbari, M.R.; Keshavarz, M. Irrigation water management in Iran: Implications for water use efficiency improvement. Agric. Water Manag. 2018, 208, 7–18. [Google Scholar] [CrossRef]
- SWEEP California Department of Food and Agriculture. Available online: https://www.cdfa.ca.gov/oefi/sweep/#:~:text=The%20State%20Water%20Efficiency%20and,water%20on%20California%20agricultural%20operations (accessed on 17 July 2024).
- Ilakut, B.; Barungi, J.; Okonya, J.; Odeke, M.; Recha, J.W. Dialogue on Commercialization of Climate-Smart Agricultural Technologies, Innovations and Management Practices in Eastern & Central Africa; AICCRA: Nyando, Kenya, 2022. [Google Scholar]
- Chuenchum, P.; Meneesrikum, C.; Teerapanuchaikul, C.; Sriariyawat, A. Community participation and effective water management: A study on water user organizations (WUOs) in Thailand. World Dev. Perspect. 2024, 34, 100589. [Google Scholar] [CrossRef]
- Haggblade, S.; Theriault, V.; Staatz, J.; Dembele, N.; Diallo, B. A Conceptual Framework for Promoting Inclusive Agricultural Value Chains; International Fund for Agricultural Development (IFAD): Rome, Italy, 2012. [Google Scholar]
- Ghosh, R.K.; Gupta, S.; Singh, V.; Ward, P.S. Demand for crop insurance in developing countries: New evidence from India. J. Agric. Econ. 2021, 72, 293–320. [Google Scholar] [CrossRef] [PubMed]
District | Blocks | Villages | Farmers Surveyed | Average Farm Size (Ha) | Average Paddy Crop Yield (Qn/Ha) | Average Age of Farmers |
---|---|---|---|---|---|---|
Jalandhar | 3 | 6 | 58 | 8.5 | 75.27 | 58 |
Sangrur | 3 | 5 | 57 | 3.2 | 75.79 | 51 |
Bathinda | 3 | 9 | 76 | 5.2 | 73.81 | 49 |
Pathankot | 3 | 6 | 55 | 3.6 | 63.65 | 55 |
Total | 12 | 26 | 246 | 5.3 | 72.13 | 53 |
Variable Name | Type | Definition | Notes |
---|---|---|---|
WUE/EWP | Continuous | Water use efficiency/productivity | - |
Age | Continuous | Age of farmer | - |
Family | Continuous | Number of household members of farmer | - |
Size | Categorical | Farm size (marginal/small/semi-medium/medium/large) | Small farm as base |
District | Categorical | Region/district of study | Pathankot as base |
Farm price | Continous | Farm harvest prices/farm gate prices | - |
Education | Categorical | Highest educational qualification | Masters as base |
Religion | Categorical | Religious preference followed (Hindu/Sikh) | Hindu as base |
LLL | Continuous | Number of times of land laser leveled in the last 6 years | - |
Fertilizer | Continuous | Kilograms of fertilizer used per hectare | - |
Tubewell | Categorical | Type of tubewell (diesel/electric) | Diesel as base |
Internet | Categorical | Does the farmer access internet on phone (yes/no) | No as base |
Depth | Continous | Depth of tubewell to water table (meters) | - |
Labour | Continuous | Number of man-days worked on the farm per hectare | - |
Cultivars | Categorical | Variety of paddy seed (PUSA44, PR126, etc.) | PR130 as base |
Seed | Continuous | Kilograms of seed used per hectare | - |
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Age | 49 | 13 | 24 | 85 |
Family members | 5 | 2 | 2 | 11 |
WUE paddy | 0.54 | 0.05 | 0.42 | 0.72 |
WUE wheat | 0.76 | 0.13 | 0.5 | 0.98 |
EWP paddy | 10.56 | 0.95 | 8.07 | 14.13 |
EWP wheat | 15.20 | 2.51 | 9.88 | 19.28 |
Paddy fertilizer (kg) | 271.38 | 31.84 | 200 | 350 |
Wheat fertilizer (kg) | 291.54 | 52.29 | 200 | 370 |
Labour man-days paddy per hectare | 104 | 18 | 80 | 130 |
Labour man-days wheat per hectare | 102 | 10 | 90 | 120 |
Seed rate paddy (kg/hectare) | 113 | 4.46 | 100 | 120 |
Seed rate wheat (kg/hectare) | 106 | 8.15 | 100 | 120 |
Gross revenue (INR/hectare) | 209,380 ($2500) | 15,805 ($189) | 182,188 ($2176) | 245,563 ($2933) |
Depth of tubewell (meters) | 88 | 38.7 | 15 | 140 |
Farm prices paddy (INR/quintal) | 19.3 ($0.23) | 0.35 | 18.5 ($0.22) | 19.9 ($0.24) |
Farm prices wheat (INR/quintal) | 19.95 ($0.24) | 0.34 | 19.3 ($0.23) | 20.5 ($0.24) |
District | Marginal | Small | Semi-Medium | Medium | Large | Total |
---|---|---|---|---|---|---|
Bathinda | 13 | 25 | 15 | 16 | 7 | 76 |
Jalandhar | 4 | 8 | 13 | 22 | 11 | 58 |
Pathankot | 14 | 23 | 11 | 3 | 4 | 55 |
Sangrur | 5 | 16 | 23 | 12 | 1 | 57 |
Total | 36 | 72 | 62 | 53 | 23 | 246 |
District | Illiterate | 5th–8th | 10th | 10 + 2 | B.A | M.A | Total |
---|---|---|---|---|---|---|---|
Bathinda | 11 | 17 | 15 | 12 | 8 | 13 | 76 |
Jalandhar | 7 | 13 | 11 | 9 | 6 | 12 | 58 |
Pathankot | 5 | 12 | 7 | 8 | 7 | 16 | 55 |
Sangrur | 9 | 12 | 11 | 10 | 4 | 11 | 57 |
Total | 32 | 54 | 44 | 39 | 25 | 52 | 246 |
District | Diesel Tubewell | Electric Tubewell | Total |
---|---|---|---|
Bathinda | 0 | 76 | 76 |
Jalandhar | 0 | 58 | 58 |
Pathankot | 24 | 55 | 55 |
Sangrur | 0 | 57 | 57 |
Total | 24 | 246 | 246 |
Paddy | Wheat | |||||
---|---|---|---|---|---|---|
Farm Size | Yield (kg/ha) | Water Applied (m3/ha) | WUE (kg/m3) | Yield (kg/ha) | Water Applied (m3/ha) | WUE (kg/m3) |
Marginal | 4936 | 9700 | 0.512 | 4622 | 7022 | 0.66 |
Small | 5091 | 9637 | 0.529 | 4896 | 6805 | 0.721 |
Semi-medium | 5030 | 9350 | 0.540 | 5194 | 6731 | 0.773 |
Medium | 5152 | 9242 | 0.559 | 5643 | 6675 | 0.845 |
Large | 5339 | 9230 | 0.580 | 5597 | 6624 | 0.844 |
All | 5089 | 9451 | 0.540 | 5155 | 6774 | 0.763 |
Farm Size | Paddy | Wheat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jalandhar | Sangrur | Pathankot | Bathinda | All | Jalandhar | Sangrur | Pathankot | Bathinda | All | |
Marginal | 0.481 ± 0.02 | 0.492 ± 0.02 | 0.507 ± 0.05 | 0.533 ± 0.04 | 0.503 ± 0.05 | 0.722 ± 0.04 | 0.80 ± 0.02 | 0.571 ± 0.03 | 0.683 ± 0.13 | 0.694 ± 0.11 |
Small | 0.496 ± 0.04 | 0.508 ± 0.02 | 0.527 ± 0.03 | 0.556 ± 0.04 | 0.522 ± 0.04 | 0.76 ± 0.02 | 0.849 ± 0.04 | 0.566 ± 0.03 | 0.768 ± 0.11 | 0.736 ± 0.13 |
Semi-medium | 0.503 ± 0.02 | 0.527 ± 0.03 | 0.553 ± 0.02 | 0.583 ± 0.05 | 0.542 ± 0.04 | 0.772 ± 0.04 | 0.857 ± 0.05 | 0.599 ± 0.03 | 0.772 ± 0.09 | 0.75 ± 0.11 |
Medium | 0.523 ± 0.02 | 0.552 ± 0.02 | 0.594 ± 0.02 | 0.603 ± 0.03 | 0.568 ± 0.04 | 0.873 ± 0.06 | 0.904 ± 0.04 | 0.660 ± 0 | 0.80 ± 0.07 | 0.809 ± 0.08 |
Large | 0.532 ± 0.03 | 0.568 ± 0 | 0.604 ± 0.04 | 0.643 ± 0.04 | 0.587 ± 0.06 | 0.899 ± 0.06 | 0.976 ± 0 | 0.684 ± 0.05 | 0.831 ± 0.10 | 0.848 ± 0.11 |
All | 0.513 ± 0.03 | 0.525 ± 0.03 | 0.536 ± 0.05 | 0.575 ± 0.05 | 0.537 ± 0.05 | 0.805 ± 0.08 | 0.877 ± 0.05 | 0.588 ± 0.05 | 0.767 ± 0.11 | 0.759 ± 0.13 |
Farm Size | Paddy | Wheat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jalandhar | Sangrur | Pathankot | Bathinda | All | Jalandhar | Sangrur | Pathankot | Bathinda | All | |
Marginal | 9.33 ± 0.40 | 9.64 ± 0.48 | 9.94 ± 1.05 | 10.45 ± 0.8 | 9.84 ± 0.91 | 14.55 ± 0.73 | 15.8 ± 0.33 | 11.51 ± 0.62 | 13.49 ± 2.61 | 13.84 ± 2.21 |
Small | 9.62 ± 0.8 | 9.96 ± 0.42 | 10.33 ± 0.55 | 10.90 ± 0.78 | 10.20 ± 0.78 | 15.31 ± 0.35 | 16.77 ± 0.76 | 11.40 ± 0.59 | 15.17 ± 2.26 | 14.66 ± 2.54 |
Semi-medium | 9.76 ± 0.35 | 10.33 ± 0.51 | 10.84 ± 0.46 | 11.43 ± 0.93 | 10.59 ± 0.85 | 15.56 ± 0.79 | 16.93 ± 0.97 | 12.07 ± 0.54 | 15.25 ± 1.77 | 14.95 ± 2.03 |
Medium | 10.15 ± 0.42 | 10.82 ± 0.42 | 11.64 ± 0.37 | 11.82 ± 0.61 | 11.11 ± 0.86 | 17.59 ± 1.2 | 17.85 ± 0.76 | 13.30 ± 0.11 | 15.8 ± 1.52 | 16.14 ± 1.69 |
Large | 10.32 ± 0.57 | 11.13 ± 0 | 11.84 ± 0.88 | 12.60 ± 0.81 | 11.47 ± 1.23 | 18.11 ± 1.13 | 19.28 ± 0 | 13.78 ± 0.95 | 16.41 ± 1.98 | 16.9 ± 2.15 |
All | 9.95 ± 0.58 | 10.29 ± 0.59 | 10.51 ± 0.9 | 11.27 ± 0.99 | 10.50 ± 0.95 | 16.22 ± 1.56 | 17.32 ± 1.02 | 11.85 ± 0.92 | 15.15 ± 2.19 | 15.13 ± 2.51 |
Variables | Paddy | Wheat | ||||
---|---|---|---|---|---|---|
Log WUE | Coeff. | SE | CI | Coeff. | SE | CI |
Log age | −0.0303 ** | 0.015 | −0.0551, −0.0056 | −0.0407 | 0.0317 | −0.0929, 0.0115 |
Log family | 0.0119 | 0.0073 | 0, 0.0239 | 0.0010 | 0.0154 | −0.0244, 0.0263 |
Log depth tubewell | −0.0513 * | 0.0099 | −0.0676, −0.0349 | 0.1195 * | 0.0212 | 0.0846, 0.1543 |
Log lll frequency | 0.0028 | 0.0152 | −0.0222, 0.0278 | −0.0272 | 0.0319 | −0.0797, 0.0252 |
Log seed | 0.1928 ** | 0.0852 | 0.0527, 0.3330 | 0.3635 * | 0.0950 | 0.2073, 0.5198 |
Log fertilizer | −0.0255 | 0.0533 | −0.1131, 0.0622 | 0.2924 * | 0.0945 | 0.1370, 0.4479 |
Log labour | 0.0143 | 0.0358 | −0.0447, 0.0732 | 0.0442 | 0.0909 | −0.1053, 0.1937 |
Marginal farm | −0.0130 * | 0.0040 | −0.0197, −0.0064 | −0.022 * | 0.0086 | −0.036, −0.0079 |
Large farm | 0.0253 * | 0.0065 | 0.0146, 0.0361 | 0.0522 * | 0.0138 | 0.0296, 0.0748 |
Medium farm | 0.015 * | 0.0051 | 0.0066, 0.0234 | 0.0387 * | 0.0104 | 0.0216, 0.0558 |
Semi-medium farm | 0.0042 | 0.0045 | −0.0032, 0.0117 | 0.0126 | 0.0093 | −0.0027, 0.0278 |
Sikh religion | 0.0053 | 0.0039 | −0.0011, 0.0116 | −0.0062 | 0.0081 | −0.0196, 0.0072 |
Electric tubewell | 0.0206 * | 0.0056 | 0.0113, 0.0299 | 0.0073 | 0.0119 | −0.0123, 0.0270 |
Internet usage | 0.006 ** | 0.0031 | 0.0009, 0.011 | −0.0114 ** | 0.0064 | −0.0220, −0.0008 |
Bathinda district | 0.0383 * | 0.0059 | 0.0286, 0.0480 | 0.0338 * | 0.0125 | 0.0134, 0.0543 |
Jalandhar district | −0.0075 | 0.0052 | −0.0161, 0.001 | −0.023 * | 0.0085 | −0.0370, −0.0089 |
PUSA44 variety | −0.0398 * | 0.0040 | −0.0463, −0.0333 | - | - | |
PR126 variety | −0.0083 | 0.0051 | −0.0167, 0 | - | - | |
Education (12th) | 0.0041 | 0.0042 | −0.0028, 0.0111 | 0.0068 | 0.0090 | −0.0078, 0.0216 |
Education (10th) | −0.0003 | 0.0042 | −0.0072, 0.0066 | 0.0136 | 0.0089 | −0.0009, 0.0282 |
Education (5th) | −0.0058 | 0.0057 | −0.0152, 0.0036 | 0.0035 | 0.0121 | −0.0164, 0.0234 |
Education (6th) | 0.0154 ** | 0.0076 | 0.0029, 0.0280 | −0.0222 | 0.0158 | −0.0482, 0.0038 |
Education (7th) | 0.029 ** | 0.0145 | 0.0052, 0.0528 | −0.0072 | 0.0307 | −0.0577, 0.0434 |
Education (8th) | −0.0045 | 0.0046 | −0.0120, 0.0030 | 0.0029 | 0.0097 | −0.0131, 0.0189 |
Education (BA) | 0.0032 | 0.0049 | −0.0049, 0.0113 | 0.0098 | 0.0103 | −0.0071, 0.0267 |
Education (Illit) | 0.0070 | 0.0047 | −0.0007, 0.0147 | 0.0037 | 0.0099 | −0.0126, 0.02 |
Cons | −0.5176 * | 0.2135 | −0.8689, −0.1664 | −1.8279 * | 0.3173 | −2.3498, −1.306 |
Observations | 246 | 246 | ||||
F-value | 28.80 | 27.64 | ||||
Adjusted R2 | 0.75 | 0.72 |
Variables | Paddy | Wheat | ||||
---|---|---|---|---|---|---|
Log EWP | Coeff. | SE | CI | Coeff. | SE | CI |
Log age | −0.0344 ** | 0.0151 | −0.0592, −0.0095 | −0.0396 | 0.0314 | −0.0913, 0.0121 |
Log family | 0.0128 *** | 0.0072 | 0.0009, 0.0247 | 0.0047 | 0.0154 | −0.0206, 0.0299 |
Log depth tubewell | −0.0514 * | 0.0099 | −0.0677, −0.0351 | 0.1181 * | 0.0212 | 0.0831, 0.1530 |
Log lll frequency | 0.0045 | 0.0151 | −0.0205, 0.0295 | −0.0311 | 0.0317 | −0.0834, 0.0212 |
Log seed | 0.1922 ** | 0.0848 | 0.0522, 0.3322 | 0.3676 * | 0.0941 | 0.2121, 0.5231 |
Log fertilizer | −0.0227 | 0.0530 | −0.1102, 0.0649 | 0.2510 * | 0.0943 | 0.0953, 0.4068 |
Log labour | 0.0113 | 0.0357 | −0.0477, 0.0702 | 0.0236 | 0.0906 | −0.126, 0.1732 |
Log farm prices | 0.1319 ** | 0.0722 | 0.0127, 0.2512 | 0.2645 *** | 0.1563 | 0.0064, 0.5226 |
Marginal farm | −0.0137 * | 0.0040 | −0.0204, −0.0071 | −0.0221 * | 0.0085 | −0.0361,−0.0082 |
Large farm | 0.0244 * | 0.0065 | 0.0136, 0.0351 | 0.0548 * | 0.0137 | 0.0322, 0.0775 |
Medium farm | 0.0148 * | 0.0051 | 0.0064, 0.0232 | 0.0395 * | 0.0103 | 0.0224, 0.0565 |
Semi-medium farm | 0.0041 | 0.0045 | −0.0033, 0.0115 | 0.0128 | 0.0092 | −0.0023, 0.028 |
Sikh religion | 0.0052 | 0.0038 | −0.0011, 0.0115 | −0.0060 | 0.0081 | −0.0193, 0.0073 |
Electric tubewell | 0.0203 * | 0.0056 | 0.0111, 0.0295 | 0.0077 | 0.0118 | −0.0118, 0.0273 |
Internet usage | 0.0064 ** | 0.0031 | 0.0014, 0.0114 | −0.0105 *** | 0.0064 | −0.0210, 0 |
Bathinda district | 0.0387 * | 0.0059 | 0.0291, 0.0483 | 0.0263 ** | 0.0124 | 0.0058, 0.0469 |
Jalandhar district | −0.0113 ** | 0.0052 | −0.0198, −0.0027 | −0.0146 *** | 0.0084 | −0.0286,−0.0007 |
PUSA44 variety | −0.0311 * | 0.0042 | −0.0390, −0.0232 | - | - | |
PR126 variety | −0.0083 | 0.0051 | −0.0167, 0.0001 | - | - | |
Education (12th) | 0.0051 | 0.0042 | −0.0029, 0.0130 | 0.0087 | 0.0089 | −0.0061, 0.0235 |
Education (10th) | −0.0003 | 0.0041 | −0.0071, 0.0065 | 0.0143 | 0.0088 | −0.0002, 0.0288 |
Education (5th) | −0.0049 | 0.0057 | −0.0143, 0.0045 | 0.0045 | 0.0120 | −0.0153, 0.0243 |
Education (6th) | 0.0173 ** | 0.0077 | 0.0047, 0.03 | −0.0178 | 0.0158 | −0.044, 0.0083 |
Education (7th) | 0.0330 ** | 0.0145 | 0.0089, 0.057 | −0.0081 | 0.0304 | −0.0584, 0.0422 |
Education (8th) | −0.0037 | 0.0046 | −0.0112, 0.0039 | 0.0037 | 0.0096 | −0.0122, 0.0196 |
Education (BA) | 0.0044 | 0.0049 | −0.0038, 0.0125 | 0.0112 | 0.0102 | −0.0057, 0.0281 |
Education (Illit) | 0.0070 | 0.0046 | −0.0007, 0.0147 | 0.0043 | 0.0098 | −0.0119, 0.0205 |
Cons | 0.3811 | 0.2993 | −0.1133, 0.8755 | −1.1869 ** | 0.5348 | −2.0703,−0.3035 |
Observations | 246 | 246 | ||||
F-value | 29.38 | 25.79 | ||||
Adjusted R2 | 0.75 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.; Singh, S.P. Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives. Agriculture 2024, 14, 1299. https://doi.org/10.3390/agriculture14081299
Bhatia S, Singh SP. Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives. Agriculture. 2024; 14(8):1299. https://doi.org/10.3390/agriculture14081299
Chicago/Turabian StyleBhatia, Sahil, and S. P. Singh. 2024. "Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives" Agriculture 14, no. 8: 1299. https://doi.org/10.3390/agriculture14081299
APA StyleBhatia, S., & Singh, S. P. (2024). Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives. Agriculture, 14(8), 1299. https://doi.org/10.3390/agriculture14081299