Measuring the Digitization Level of China’s Grain Industry Chain and Its Spatial–Temporal Evolution
Abstract
:1. Introduction
2. Indicator Construction and Measurement Analysis of the Digitization Level of China’s Grain Industry Chain
2.1. Indicator System of the Digitalization Level of the Grain Industry Chain
2.1.1. Concept Definition
2.1.2. Indicator Construction
2.2. Data Sources and Explanations
2.3. Measurement of the Level of Digitization of the Grain Chain
3. Regional Spatial–Temporal Differences in the Level of Digitization of China’s Grain Industry Chain
3.1. Results and Analyses of the Digitization Measurement of China’s Grain Industry Chain
3.2. Temporal Evolution of the Digitalization Level of China’s Grain Industry Chain
3.2.1. Four Major Economic Regions
3.2.2. Grain Functional Areas
3.3. Spatial Distribution of the Digitization Level of China’s Grain Industry Chain
4. Conclusions and Policy Implications
4.1. Conclusions
4.2. Policy Implications
4.3. Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dayioğlu, M.A.; Turker, U. Digital transformation for sustainable future-agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; Available online: https://reliefweb.int/report/world/future-food-and-agriculture-trends-and-challenges?gad_source=1&gclid=EAIaIQobChMIqLi258LhhgMV8xN7Bx1akgPkEAAYASAAEgJw0PD_BwE (accessed on 11 December 2023).
- World Bank Group. Future of Food: Harnessing Digital Technologies to Improve Food System Outcomes; World Bank: Washington, DC, USA, 2019; Available online: https://www.worldbank.org/en/topic/agriculture/publication/future-of-food-harnessing-digital-technologies-to-improve-food-system-outcomes (accessed on 15 December 2023).
- Trendov, M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas: Status Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.everand.com/book/419496193/Digital-Technologies-in-Agriculture-and-Rural-Areas-Status-Report (accessed on 16 December 2023).
- EST, G.R.; Sylvester, G. Information and Communication Technology (ICT) in Agriculture—A Report to the G20 Agricultural Deputies. 2017. Available online: https://policycommons.net/artifacts/2090743/information-and-communication-technology-ict-in-agriculture/2846041/ (accessed on 20 December 2023).
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability driven by agriculture through digital transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef]
- Zorić, N.; Marić, R.; Đurković-Marić, T.; Vukmirović, G. The importance of digitalization for the sustainability of the food supply chain. Sustainability 2023, 15, 3462. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Bacco, M.; Bartolini, F.; Bulten, E.; Debruyne, L.; Dessein, J.; Scotti, I.; Brunori, G. Digital transformation of agriculture and rural areas: A socio-cyber-physical system framework to support responsibilisation. J. Rural. Stud. 2021, 85, 79–90. [Google Scholar] [CrossRef]
- Johnson, D. Food security, the agriculture value chain, and digital transformation: The case of Jamaica’s agricultural business information system (ABIS). Technol. Soc. 2024, 77, 102523. [Google Scholar] [CrossRef]
- Jouanjean, M.A. Digital Opportunities for Trade in the Agriculture and Food Sectors; OECD Food, Agriculture and Fisheries Papers 122; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future (s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Lima, G.C.; Figueiredo, F.L.; Barbieri, A.E.; Seki, J. Agro 4.0: Enabling agriculture digital transformation through IoT. Revista Ciência Agronômica 2021, 51, e20207771. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Jouanjean, M.A.; Casalini, F.; Wiseman, L.; Gray, E. Issues around Data Governance in the Digital Transformation of Agriculture: The Farmers’ Perspective; OECD Food, Agriculture and Fisheries Papers 146; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Tao, F.; Wang, X.; Xu, Y.; Zhu, P. Digital Transformation, Resilience of Industrial Chain and Supply Chain, and Enterprise Productivity. China Ind. Econ. 2023, 5, 118–136. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, J.; Qiu, S. Digital agriculture and urbanization: Mechanism and empirical research. Technol. Forecast. Soc. Chang. 2020, 180, 121724. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, X. Industrial digitalization on the reduction of air pollution and carbon dioxide emission—From the perspective of productivity paradox. Syst. Eng.-Theory Pract. 2023, 1–25. Available online: https://link.cnki.net/urlid/11.2267.N.20231102.1350.006 (accessed on 5 January 2024).
- Schumacher, A.; Erol, S.; Sihn, W. A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp 2016, 52, 161–166. [Google Scholar] [CrossRef]
- Santos, R.C.; Martinho, J.L. An Industry 4.0 maturity model proposal. J. Manuf. Technol. Manag. 2020, 31, 1023–1043. [Google Scholar] [CrossRef]
- Gökalp, E.; Martinez, V. Digital transformation capability maturity model enabling the assessment of industrial manufacturers. Comput. Ind. 2021, 132, 103522. [Google Scholar] [CrossRef]
- Chanias, S.; Hess, T. How digital are we? Maturity models for the assessment of a company’s status in the digital transformation. Manag. Rep./Inst. Wirtsch. Neue Medien. 2016, 2, 1–14. [Google Scholar]
- He, Z.; Huang, H.; Choi, H.; Bilgihan, A. Building organizational resilience with digital transformation. J. Serv. Manag. 2023, 34, 147–171. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. J. Manag. World 2020, 10, 65–76. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.; Luo, Q. Research on the Measurement of China’s Digital Economy Development and the Characteristics. J. Quant. Technol. Econ. 2021, 7, 26–42. [Google Scholar] [CrossRef]
- Chen, G.; Han, J.; Han, K. Urban Digital Economy Development, Skill-Biased Technological Change and Underemployment. China Ind. Econ. 2022, 8, 118–136. [Google Scholar] [CrossRef]
- Wu, F.; Hu, H.; Ling, H. Enterprise Digital Transformation and Capital Market Performance: Empirical Evidence from Stock Liquidity. J. Manag. World 2021, 7, 130–144+10. [Google Scholar] [CrossRef]
- Yuan, C.; Xiao, T.; Geng, C. Digital Transformation and Division of Labor between Enterprises: Vertical Specialization or Vertical Integration. China Ind. Econ. 2021, 9, 137–155. [Google Scholar] [CrossRef]
- Li, S.; Gao, L.; Han, C.; Gupta, B.; Alhalabi, W.; Almakdi, S. Exploring the effect of digital transformation on Firms’ innovation performance. J. Innov. Knowl. 2023, 8, 100317. [Google Scholar] [CrossRef]
- Harrison, J.S.; Hall, E.H., Jr.; Nargundkar, R. Resource allocation as an outcropping of strategic consistency: Performance implications. Acad. Manag. J. 1993, 36, 1026–1051. [Google Scholar] [CrossRef]
- Westerman, G.; Bonnet, D. Revamping your business through digital transformation. MIT Sloan Manag. Rev. 2015, 56, 10. Available online: https://www.proquest.com/openview/b75212b67fadff1603c0c75f015e6331/1?pq-origsite=gscholar&cbl=26142 (accessed on 28 December 2023).
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Gurbaxani, V.; Dunkle, D. Gearing up for successful digital transformation. MIS Q. Exec. 2019, 18, 6. Available online: https://www.centerfordigitaltransformation.org/assets/APC-Report-Digital-Transformation_18_r2-merged.pdf (accessed on 15 January 2024). [CrossRef]
- Zhu, H.; Chen, H. Measurement, Spatial-temporal Evolution and Promotion Path of Digital Village Development in China. Issues Agric. Econ. 2023, 3, 21–33. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital economy development, industrial structure upgrading and green total factor productivity: Empirical evidence from China’s cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Su, J.; Su, K.; Wang, S. Does the digital economy promote industrial structural upgrading? —A test of mediating effects based on heterogeneous technological innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- Theil, H. Economics and Information Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1967. Available online: https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=67004596&searchType=1&permalink=y (accessed on 18 January 2024).
- Malakar, K.; Mishra, T.; Patwardhan, A. Inequality in water supply in India: An assessment using the Gini and Theil indices. Environ. Dev. Sustain. 2018, 20, 841–864. [Google Scholar] [CrossRef]
- Miśkiewicz, J. Globalization—Entropy unification through the Theil index. Phys. A Stat. Mech. Its Appl. 2008, 387, 6595–6604. [Google Scholar] [CrossRef]
- Yu, H.; Yu, S.; He, D.; Lu, Y. Equity analysis of Chinese physician allocation based on Gini coefficient and Theil index. BMC Health Serv. Res. 2021, 21, 455. [Google Scholar] [CrossRef] [PubMed]
- Proeger, T.; Runst, P. Digitization and knowledge spillover effectiveness—Evidence from the “German Mittelstand”. J. Knowl. Econ. 2020, 11, 1509–1528. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, T.; Li, H.; Zhang, H. Dynamic spillover capacity of R&D and digital investments in China’s manufacturing industry under long-term technological progress based on the industry chain perspective. Technol. Soc. 2022, 71, 102129. [Google Scholar] [CrossRef]
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS; Routledge: London, UK, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Espindola, G.M.; Câmara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040. [Google Scholar] [CrossRef]
- Yuan, Y.; Cave, M.; Zhang, C. Using Local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of London. Appl. Geochem. 2018, 88, 167–178. [Google Scholar] [CrossRef]
- Lee, J.; Li, S. Extending Moran’s index for measuring spatiotemporal clustering of geographic events. Geogr. Anal. 2017, 49, 36–57. [Google Scholar] [CrossRef]
Primary Dimension | Secondary Dimension | Specific Indicator | Category of Indicators |
---|---|---|---|
Digital Infrastructure | Traditional digital infrastructure | Internet penetration (%) | Positive |
Number of Internet broadband access ports (10,000) | Positive | ||
Number of Internet broadband access subscribers (10,000) | Positive | ||
Number of Internet domain names (10,000) | Positive | ||
Number of Internet pages (10,000) | Positive | ||
New digital infrastructure | Number of mobile-phone base stations (10,000) | Positive | |
Number of IPV4 addresses (10,000) | Positive | ||
Mobile phone penetration rate (units/100 population) | Positive | ||
Length of fiber-optic lines (kilometers) | Positive | ||
Digital Technology Support | Digital industrialization | Revenue from software operations (CNY ten thousand) | Positive |
Total telecoms business (CNYone hundred million) | Positive | ||
Innovative capacity of food enterprises | Number of patents obtained by food enterprises (number) | Positive | |
Digitalization Funding | Investment in scientific research in food enterprises | Investment in research and development by food enterprises (CNY one hundred million) | Positive |
Digitalization of financial inclusion | Digitization of inclusive finance in the Peking University Digital Inclusive Finance Index | Positive | |
Investments such as the Internet of Things | Fixed investment in transport, storage, and postal services (CNY one hundred million) | Positive | |
Investment in food production | Investment in fixed assets in agriculture, forestry, animal husbandry, and fisheries (CNY one hundred million) | Positive | |
Investment in the information technology industry | Fixed investment in information transmission, software, and information technology services (CNY one hundred million) | Positive | |
Digital Workforce | Support for professional and technical personnel in the food sector | Number of persons obtaining national vocational qualification certificates in the food industry (persons) | Positive |
Total number of professional and technical staff in the food industry (persons) | Positive | ||
Information technology talent support | Employment in urban units of the information transmission, software, and information technology services industry (10,000 persons) | Positive | |
Researcher support | Employees in scientific research and technical services (10,000 persons) | Positive | |
Undergraduate talent support | Undergraduate enrolment (persons) | Positive | |
Logistics staff support | Number of persons employed in the postal sector (persons) | Positive | |
Digitization of grain chain links | Digital production | Total power of agricultural machinery (10,000 kW) | Positive |
Number of operational agrometeorological observation stations (number) | Positive | ||
Rural electricity consumption (billion kWh) | Positive | ||
Digital warehousing | Grain enterprises with intact warehouses (10,000 tons) | Positive | |
Enterprise digital supply and marketing | Enterprise e-commerce purchases and e-commerce sales (CNYone hundred million) | Positive | |
National Modern Agriculture Demonstration Project | Number of national modern agricultural demonstration zones and industrial parks, and number of national demonstration parks for the integrated development of rural industries and agricultural industrialization countries (number) | Positive | |
Digital food industrialization levels | Number of Taobao villages (nos.) | Positive | |
Scope of services for information technology applications such as the Internet of Things | Urban delivery routes (kilometers) | Positive | |
Rural delivery routes (kilometers) | Positive | ||
Post office (Branch) | Positive |
District | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Rank | CAGR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.1138 | 0.1399 | 0.1469 | 0.2045 | 0.2060 | 0.2227 | 0.2791 | 0.3009 | 0.3241 | 0.3352 | 0.3713 | 0.4035 | 5 | 12.2 |
Tianjin | 0.0247 | 0.0348 | 0.0420 | 0.0472 | 0.0505 | 0.0525 | 0.0543 | 0.0607 | 0.0682 | 0.0760 | 0.0817 | 0.0823 | 27 | 11.6 |
Hebei | 0.1005 | 0.1165 | 0.1363 | 0.1401 | 0.1442 | 0.1546 | 0.1739 | 0.1901 | 0.2195 | 0.2335 | 0.2364 | 0.2544 | 9 | 8.8 |
Shanxi | 0.0571 | 0.0685 | 0.0796 | 0.0797 | 0.0814 | 0.0865 | 0.0789 | 0.0895 | 0.0943 | 0.0992 | 0.0987 | 0.1044 | 22 | 5.6 |
Inner Mongolia | 0.0563 | 0.0640 | 0.0728 | 0.0780 | 0.0834 | 0.0903 | 0.1035 | 0.1012 | 0.1123 | 0.1097 | 0.1089 | 0.1107 | 20 | 6.3 |
Liaoning | 0.0830 | 0.1017 | 0.1129 | 0.1173 | 0.1287 | 0.1363 | 0.1239 | 0.1362 | 0.1361 | 0.1405 | 0.1366 | 0.1408 | 15 | 4.9 |
Jilin | 0.0624 | 0.0704 | 0.0786 | 0.0812 | 0.0855 | 0.0893 | 0.1019 | 0.1042 | 0.1004 | 0.1045 | 0.1002 | 0.1043 | 21 | 4.8 |
Heilongjiang | 0.0816 | 0.0944 | 0.1200 | 0.1162 | 0.1475 | 0.1465 | 0.1439 | 0.1327 | 0.1331 | 0.1388 | 0.1359 | 0.1408 | 14 | 5.1 |
Shanghai | 0.0564 | 0.0776 | 0.0999 | 0.1212 | 0.1363 | 0.1470 | 0.1564 | 0.1584 | 0.1814 | 0.1904 | 0.1830 | 0.2000 | 13 | 12.2 |
Jiangsu | 0.1646 | 0.1898 | 0.2429 | 0.2434 | 0.2860 | 0.2918 | 0.3204 | 0.3333 | 0.3912 | 0.4100 | 0.3869 | 0.4182 | 2 | 8.9 |
Zhejiang | 0.1146 | 0.1431 | 0.1542 | 0.1729 | 0.2068 | 0.2488 | 0.2787 | 0.3224 | 0.3624 | 0.3735 | 0.3847 | 0.4175 | 4 | 12.5 |
Anhui | 0.1177 | 0.1196 | 0.1504 | 0.1484 | 0.1713 | 0.1805 | 0.1952 | 0.2278 | 0.2343 | 0.2092 | 0.2426 | 0.2553 | 8 | 7.3 |
Fujian | 0.0828 | 0.0904 | 0.0943 | 0.0961 | 0.1239 | 0.1495 | 0.1935 | 0.1966 | 0.2094 | 0.2004 | 0.2128 | 0.2248 | 12 | 9.5 |
Jiangxi | 0.0597 | 0.0667 | 0.0712 | 0.0697 | 0.0866 | 0.1009 | 0.1193 | 0.1287 | 0.1253 | 0.1356 | 0.1416 | 0.1484 | 17 | 8.6 |
Shandong | 0.1545 | 0.1824 | 0.2473 | 0.2473 | 0.2521 | 0.2674 | 0.2939 | 0.3087 | 0.3315 | 0.3569 | 0.3702 | 0.3933 | 3 | 8.9 |
Henan | 0.1128 | 0.1451 | 0.1707 | 0.1603 | 0.2034 | 0.2209 | 0.2636 | 0.2751 | 0.3035 | 0.3205 | 0.3297 | 0.3449 | 6 | 10.7 |
Hubei | 0.0927 | 0.1074 | 0.1319 | 0.1254 | 0.1496 | 0.1579 | 0.1737 | 0.1842 | 0.2064 | 0.2066 | 0.2138 | 0.2270 | 11 | 8.5 |
Hunan | 0.1149 | 0.1177 | 0.1471 | 0.1331 | 0.1473 | 0.1488 | 0.1771 | 0.1822 | 0.2123 | 0.2133 | 0.2134 | 0.2197 | 10 | 6.1 |
Guangdong | 0.1525 | 0.1982 | 0.2675 | 0.2730 | 0.3090 | 0.3406 | 0.3872 | 0.4455 | 0.4985 | 0.5336 | 0.5291 | 0.5647 | 1 | 12.6 |
Guangxi | 0.0478 | 0.0566 | 0.0679 | 0.0721 | 0.0781 | 0.0875 | 0.0976 | 0.1092 | 0.1281 | 0.1439 | 0.1444 | 0.1532 | 19 | 11.2 |
Hainan | 0.0102 | 0.0147 | 0.0194 | 0.0220 | 0.0274 | 0.0270 | 0.0300 | 0.0319 | 0.0369 | 0.0377 | 0.0405 | 0.0436 | 29 | 14.2 |
Chongqing | 0.0400 | 0.0478 | 0.0608 | 0.0586 | 0.0644 | 0.0709 | 0.0758 | 0.0870 | 0.0969 | 0.1085 | 0.1112 | 0.1258 | 23 | 11.0 |
Sichuan | 0.1012 | 0.1133 | 0.1350 | 0.1389 | 0.1646 | 0.1984 | 0.2254 | 0.2627 | 0.2798 | 0.2916 | 0.3006 | 0.3157 | 7 | 10.9 |
Guizhou | 0.0333 | 0.0374 | 0.0484 | 0.0500 | 0.0544 | 0.0625 | 0.0755 | 0.0980 | 0.1116 | 0.1170 | 0.1218 | 0.1297 | 24 | 13.2 |
Yunnan | 0.0547 | 0.0611 | 0.0741 | 0.0741 | 0.0758 | 0.0887 | 0.1001 | 0.1151 | 0.1330 | 0.1448 | 0.1489 | 0.1615 | 18 | 10.3 |
Shaanxi | 0.0616 | 0.0700 | 0.0835 | 0.0924 | 0.0925 | 0.1004 | 0.1096 | 0.1240 | 0.1384 | 0.1439 | 0.1392 | 0.1419 | 16 | 7.9 |
Gansu | 0.0420 | 0.0465 | 0.0541 | 0.0571 | 0.0551 | 0.0566 | 0.0574 | 0.0641 | 0.0729 | 0.0791 | 0.0793 | 0.0827 | 26 | 6.4 |
Qinghai | 0.0110 | 0.0144 | 0.0173 | 0.0182 | 0.0232 | 0.0226 | 0.0254 | 0.0279 | 0.0308 | 0.0317 | 0.0335 | 0.0362 | 30 | 11.5 |
Ningxia | 0.0129 | 0.0153 | 0.0223 | 0.0204 | 0.0261 | 0.0303 | 0.0347 | 0.0384 | 0.0348 | 0.0338 | 0.0365 | 0.0374 | 28 | 10.1 |
Xinjiang | 0.0404 | 0.0489 | 0.0586 | 0.0568 | 0.0624 | 0.0641 | 0.0708 | 0.0767 | 0.0836 | 0.0898 | 0.0956 | 0.0952 | 25 | 8.1 |
National Average | 0.0752 | 0.0885 | 0.1069 | 0.1105 | 0.1241 | 0.1347 | 0.1507 | 0.1638 | 0.1797 | 0.1870 | 0.1910 | 0.2026 | - | 9.4 |
Year | Theil’s Index | Theil’s Index Contribution | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nationwide | East | Central | West | Northeastern | Regional | Intra-Regional | East | Central | West | Northeastern | Regional | Intra-Regional | |
2011 | 0.1646 | 0.1681 | 0.0401 | 0.1351 | 0.0080 | 0.1132 | 0.0514 | 0.4408 | 0.0599 | 0.1821 | 0.0049 | 0.6877 | 0.3123 |
2012 | 0.1637 | 0.1561 | 0.0381 | 0.1251 | 0.0118 | 0.1071 | 0.0566 | 0.4267 | 0.0549 | 0.1657 | 0.0072 | 0.6545 | 0.3456 |
2013 | 0.1745 | 0.1754 | 0.0468 | 0.1143 | 0.0159 | 0.1166 | 0.0579 | 0.4546 | 0.0628 | 0.1418 | 0.0088 | 0.6680 | 0.3320 |
2014 | 0.1744 | 0.1587 | 0.0421 | 0.1211 | 0.0134 | 0.1116 | 0.0629 | 0.4301 | 0.0522 | 0.1500 | 0.0073 | 0.6396 | 0.3604 |
2015 | 0.1763 | 0.1526 | 0.0507 | 0.1216 | 0.0243 | 0.1107 | 0.0656 | 0.4051 | 0.0649 | 0.1444 | 0.0134 | 0.6278 | 0.3722 |
2016 | 0.1776 | 0.1526 | 0.0477 | 0.1408 | 0.0212 | 0.1147 | 0.0629 | 0.4043 | 0.0594 | 0.1711 | 0.0110 | 0.6458 | 0.3542 |
2017 | 0.1876 | 0.1542 | 0.0625 | 0.1449 | 0.0097 | 0.1199 | 0.0676 | 0.3942 | 0.0742 | 0.1667 | 0.0042 | 0.6394 | 0.3606 |
2018 | 0.1887 | 0.1617 | 0.0585 | 0.1519 | 0.0069 | 0.1249 | 0.0638 | 0.4096 | 0.0686 | 0.1809 | 0.0028 | 0.6619 | 0.3381 |
2019 | 0.1957 | 0.1610 | 0.0655 | 0.1514 | 0.0089 | 0.1275 | 0.0681 | 0.4003 | 0.0730 | 0.1754 | 0.0031 | 0.6518 | 0.3482 |
2020 | 0.1961 | 0.1637 | 0.0627 | 0.1519 | 0.0087 | 0.1290 | 0.0670 | 0.4089 | 0.0675 | 0.1787 | 0.0030 | 0.6581 | 0.3419 |
2021 | 0.1943 | 0.1575 | 0.0651 | 0.1497 | 0.0097 | 0.1261 | 0.0683 | 0.3955 | 0.0725 | 0.1775 | 0.0032 | 0.6488 | 0.3512 |
2022 | 0.1996 | 0.1597 | 0.0644 | 0.1511 | 0.0093 | 0.1278 | 0.0718 | 0.3952 | 0.0690 | 0.1731 | 0.0029 | 0.6403 | 0.3597 |
Year | Theil’s Index | Theil’s Index Contribution | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nationwide | Major Grain-Producing Areas | Major Grain Purchasing Areas | Grain Production and Marketing Balance Areas | Regional | Intra-Regional | Major Grain-Producing Areas | Major Grain Purchasing Areas | Grain Production and Marketing Balance Areas | Regional | Intra-Regional | |
2011 | 0.1646 | 0.0507 | 0.2124 | 0.0980 | 0.0989 | 0.0658 | 0.1777 | 0.3171 | 0.1057 | 0.6006 | 0.3994 |
2012 | 0.1637 | 0.0533 | 0.2026 | 0.0928 | 0.0996 | 0.0641 | 0.1827 | 0.3259 | 0.0996 | 0.6082 | 0.3918 |
2013 | 0.1745 | 0.0710 | 0.2158 | 0.0819 | 0.1102 | 0.0644 | 0.2305 | 0.3178 | 0.0829 | 0.6312 | 0.3688 |
2014 | 0.1744 | 0.0689 | 0.2058 | 0.0889 | 0.1111 | 0.0634 | 0.2143 | 0.3334 | 0.0891 | 0.6368 | 0.3632 |
2015 | 0.1763 | 0.0669 | 0.1953 | 0.0698 | 0.1039 | 0.0724 | 0.2090 | 0.3152 | 0.0653 | 0.5894 | 0.4106 |
2016 | 0.1776 | 0.0636 | 0.2033 | 0.0739 | 0.1064 | 0.0712 | 0.1935 | 0.3364 | 0.0690 | 0.5989 | 0.4011 |
2017 | 0.1876 | 0.0667 | 0.2098 | 0.0712 | 0.1111 | 0.0765 | 0.1900 | 0.3412 | 0.0609 | 0.5921 | 0.4079 |
2018 | 0.1887 | 0.0716 | 0.2251 | 0.0746 | 0.1195 | 0.0692 | 0.1983 | 0.3681 | 0.0668 | 0.6332 | 0.3668 |
2019 | 0.1957 | 0.0847 | 0.2236 | 0.0866 | 0.1283 | 0.0673 | 0.2236 | 0.3563 | 0.0759 | 0.6558 | 0.3442 |
2020 | 0.1961 | 0.0895 | 0.2278 | 0.0925 | 0.1331 | 0.0629 | 0.2337 | 0.3619 | 0.0834 | 0.6790 | 0.3210 |
2021 | 0.1943 | 0.0894 | 0.2213 | 0.0868 | 0.1304 | 0.0639 | 0.2342 | 0.3583 | 0.0787 | 0.6712 | 0.3288 |
2022 | 0.1996 | 0.0940 | 0.2248 | 0.0892 | 0.1348 | 0.0648 | 0.2381 | 0.3588 | 0.0785 | 0.6754 | 0.3246 |
Year | HH (Facilitation Zone) | LH (Transition Zone) | LL (Low-Level Zone) | HL (Radiation Area) |
---|---|---|---|---|
2011 | Jiangsu, Zhejiang, Shandong, Anhui, Fujian, Henan, Hebei, Hubei | Hainan, Shanghai, Tianjin, Jiangxi, Guangxi, Chongqing, Shanxi | Guizhou, Jilin, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Gansu, Ningxia, Xinjiang | Liaoning, Heilongjiang, Hunan, Beijing, Guangdong, Sichuan |
2012 | Jiangsu, Shandong, Zhejiang, Henan, Hebei, Anhui, Fujian, Hubei | Hainan, Shanghai, Tianjin, Jiangxi, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang | Liaoning, Hunan, Beijing, Heilongjiang, Sichuan, Guangdong |
2013 | Jiangsu, Shandong, Zhejiang, Henan, Hebei, Hubei, | Shanghai, Hainan, Jiangxi, Fujian, Tianjin, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang | Hunan, Liaoning, Beijing, Guangdong, Heilongjiang, Sichuan |
2014 | Jiangsu, Shandong, Anhui, Shanghai, Hebei, Henan, Zhejiang | Hainan, Tianjin, Jiangxi, Fujian, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang | Hubei, Hunan, Liaoning, Heilongjiang, Beijing, Guangdong, Sichuan |
2015 | Shanghai, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei, Fujian | Hainan, Tianjin, Jiangxi, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang | Hunan, Liaoning, Beijing, Guangdong, Heilongjiang, Sichuan |
2016 | Shanghai, Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei | Hainan, Tianjin, Jiangxi, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang | Hunan, Hubei, Liaoning, Heilongjiang, Beijing, Guangdong, Sichuan |
2017 | Shanghai, Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei | Hainan, Tianjin, Jiangxi, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang, Liaoning, Heilongjiang | Hunan, Hubei, Beijing, Guangdong, Beijing, Sichuan |
2018 | Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei | Hainan, Shanghai, Tianjin, Jiangxi, Guangxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang, Liaoning, Heilongjiang, Shanxi | Hunan, Hubei, Beijing, Guangdong, Sichuan |
2019 | Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei, Hunan, Shanghai | Hainan, Tianjin, Jiangxi, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang, Liaoning, Heilongjiang | Hunan, Hubei, Beijing, Guangdong, Sichuan |
2020 | Shanghai, Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei, Hunan | Hainan, Tianjin, Jiangxi, Guangxi, Shanxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang, Liaoning, Heilongjiang | Hubei, Beijing, Guangdong, Sichuan |
2021 | Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hebei, Hunan | Hainan, Shanghai, Tianjin, Jiangxi, Guangxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang, Liaoning, Heilongjiang, Shanxi | Hubei, Beijing, Guangdong, Sichuan |
2022 | Fujian, Anhui, Shandong, Jiangsu, Zhejiang, Henan, Hunan, Hebei | Shanghai, Hainan, Tianjin, Jiangxi, Guangxi | Chongqing, Jilin, Guizhou, Shaanxi, Inner Mongolia, Yunnan, Qinghai, Ningxia, Gansu, Xinjiang, Liaoning, Heilongjiang, Shanxi | Hubei, Beijing, Guangdong, Sichuan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Guo, W.; Chen, Y. Measuring the Digitization Level of China’s Grain Industry Chain and Its Spatial–Temporal Evolution. Agriculture 2024, 14, 1371. https://doi.org/10.3390/agriculture14081371
Huang Q, Guo W, Chen Y. Measuring the Digitization Level of China’s Grain Industry Chain and Its Spatial–Temporal Evolution. Agriculture. 2024; 14(8):1371. https://doi.org/10.3390/agriculture14081371
Chicago/Turabian StyleHuang, Qingqing, Wenjing Guo, and Yanchi Chen. 2024. "Measuring the Digitization Level of China’s Grain Industry Chain and Its Spatial–Temporal Evolution" Agriculture 14, no. 8: 1371. https://doi.org/10.3390/agriculture14081371
APA StyleHuang, Q., Guo, W., & Chen, Y. (2024). Measuring the Digitization Level of China’s Grain Industry Chain and Its Spatial–Temporal Evolution. Agriculture, 14(8), 1371. https://doi.org/10.3390/agriculture14081371