Nutrient Stress Symptom Detection in Cucumber Seedlings Using Segmented Regression and a Mask Region-Based Convolutional Neural Network Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seedling Preparation and Growth Condition
2.2. Image Acquisition
2.3. Dataset Preparation
2.3.1. Image Feature Extraction
2.3.2. Stress Symptom Initiation and Detection
2.3.3. Dataset Description for the Detection Model
2.4. Mask R-CNN Model
2.4.1. Mask R-CNN Backbone Network and Feature Pyramid Network (FPN)
2.4.2. FPN with Regional Proposal Network (RPN)
2.4.3. RoIAlign and Loss Function
2.5. Training Configuration
2.6. Evaluation Matrices
3. Results
3.1. Detection of Stress Initiation
3.2. Training and Validation of Data
3.3. Performance Detection on Stressed Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food Security and Nutrition in the World 2021—Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All, Food and Agriculture Organization of the United Nations. 2021. Available online: https://www.fao.org/documents/card/en/c/cb4474en (accessed on 11 March 2024).
- Singh, J.; Singh, M.K.; Kumar, M.; Kumar, V.; Singh, K.P.; Omid, A.Q. Effect of integrated nutrient management on growth, flowering and yield attributes of cucumber (Cucumis sativus L.). Int. J. Chem. Stud. 2018, 6, 567–572. [Google Scholar]
- Singh, J.; Singh, M.K.; Kumar, M.; Gupta, A.; Singh, K.P. Growth, yield and quality parameters of cucumber (Cucumis sativus L.) as influenced by integrated nutrient management application. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1455–1462. [Google Scholar] [CrossRef]
- Zhu, J.; Bie, Z.; Li, Y. Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress. Soil Sci. Plant Nutr. 2008, 54, 400–407. [Google Scholar] [CrossRef]
- Bukhari, S.A.; Peerzada, A.M.; Javed, M.H.; Dawood, M.; Hussain, N.; Ahmad, S. Growth and Development Dynamics in Agronomic Crops under Environmental Stress; Springer: Berlin/Heidelberg, Germany, 2019; pp. 83–114. [Google Scholar]
- Hao, X.; Jia, J.; Gao, W.; Guo, X.; Zhang, W.; Zheng, L.; Wang, M. MFC-CNN: An automatic grading scheme for light stress levels of lettuce (Lactuca sativa L.) leaves. Comput. Electron. Agric. 2020, 179, 105847. [Google Scholar] [CrossRef]
- Wakamori, K.; Mizuno, R.; Nakanishi, G.; Mineno, H. Multimodal neural network with clustering-based drop for estimating plant water stress. Comput. Electron. Agric. 2019, 168, 105118. [Google Scholar] [CrossRef]
- Tran, T.T.; Choi, J.W.; Le, T.t.H.; Kim, J.W. A Comparative Study of Deep CNN in Forecasting and Classifying the Macronutrient Deficiencies on Development of Tomato Plant. Appl. Sci. 2019, 9, 1601. [Google Scholar] [CrossRef]
- Yang, R.; Wu, Z.; Fang, W.; Zhang, H.; Wang, W.; Fu, L.; Majeed, Y.; Li, R.; Cui, Y. Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning. Inf. Process. Agric. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Niu, Y.; Bai, J.; Liu, X.; Zheng, S. HISTONE DEACETYLASE 9 transduces heat signal in plant cells. Plant Biol. 2022, 119, e2206846119. [Google Scholar] [CrossRef]
- Cerda, A.; Pardines, J.; Botella, M.A.; Martinez, V. Effect of potassium on growth, water relations, and the inorganic and organic solute contents for two maize cultivars grown under saline conditions. J. Plant Nutr. 1995, 18, 839–851. [Google Scholar] [CrossRef]
- Lynch, J.; Läuchli, A. Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytol. 1985, 99, 345–354. [Google Scholar] [CrossRef]
- Essa, T.A. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J. Agron. Crop Sci. 2002, 188, 86–93. [Google Scholar] [CrossRef]
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef]
- Savary, S.; Mcroberts, N.; Esker, P.D.; Willocquet, L.; Teng, P.S. Production situations as drivers of crop health: Evidence and implications. Plant Pathol. 2017, 66, 867–876. [Google Scholar] [CrossRef]
- Graeff, S.; Pfenning, J.; Claupein, W.; Liebig, H.P. Evaluation of Image Analysis to Determine the N-Fertilizer Demand of Broccoli Plants (Brassica oleracea convar. botrytis var. italica). Adv. Opt. Technol. 2008, 2008, 1–8. [Google Scholar] [CrossRef]
- Dezordi, L.R.; Aquino, L.A.D.; Aquino, R.F.B.D.A.; Clemente, J.M.; Assunção, N.S. Diagnostic methods to assess the nutritional status of the carrot crop. Rev. Bras. De Ciência Do Solo 2016, 40, e0140813. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Ananthi, V.P. Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm. Nonlinear Dyn. 2016, 83, 849–866. [Google Scholar] [CrossRef]
- Jia, W.; Wei, J.; Zhang, Q.; Pan, N.; Niu, Y.; Yin, X.; Ding, Y.; Ge, X. Accurate segmentation of green fruit based on optimized mask RCNN application in complex orchard. Front. Plant Sci. 2022, 13, 955256. [Google Scholar] [CrossRef]
- Basak, R.; Wahid, K.; Dinh, A. Determination of leaf nitrogen concentrations using electrical impedance spectroscopy in multiple crops. Remote Sens. 2020, 12, 566. [Google Scholar] [CrossRef]
- Santos, C.S.; Sousa, C.; Bagheri, M.; Pinho, S.; Vasconcelos, M.W. Predicting iron deficiency and oxidative stress in Glycine max through Fourier transform infrared spectroscopy in a time-course experiment. Plant Soil 2023, 496, 161–177. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef]
- Moustaka, J.; Moustakas, M. Early-stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. Biosensors 2023, 13, 796. [Google Scholar] [CrossRef]
- Guo, J.; Tian, G.; Zhou, Y.; Wang, M.; Ling, N.; Shen, Q.; Guo, S. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Res. 2016, 196, 463–472. [Google Scholar] [CrossRef]
- Walshe, D.; McInerney, D.; Van De Kerchove, R.; Goyens, C.; Balaji, P.; Byrne, K.A. Detecting nutrient deficiency in spruce forests using multispectral satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 101975. [Google Scholar] [CrossRef]
- Eshkabilov, S.; Lee, A.; Sun, X.; Lee, C.W.; Simsek, H. Hyperspectral imaging techniques for rapid detection of nutrient content of hydroponically grown lettuce cultivars. Comput. Electron. Agric. 2021, 181, 105968. [Google Scholar] [CrossRef]
- Nawaz, M.; Nazir, T.; Javed, A.; Masood, M.; Rashid, J.; Kim, J.; Hussain, A. A robust deep learning approach for tomato plant leaf disease localization and classification. Sci. Rep. 2022, 12, 18568. [Google Scholar] [CrossRef]
- Chilakalapudi, M.; Jayachandran, S. Optimized deep learning network for plant leaf disease segmentation and multi-classification using leaf images. Netw. Comput. Neural Syst. 2024, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Mzoughi, O.; Yahiaoui, I. Deep learning-based segmentation for disease identification. Ecol. Inform. 2023, 75, 102000. [Google Scholar] [CrossRef]
- Shoaib, M.; Hussain, T.; Shah, B.; Ullah, I.; Shah, S.M.; Ali, F.; Park, S.H. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant Sci. 2022, 13, 1031748. [Google Scholar] [CrossRef]
- Ahmad, N.; Asif, H.M.; Saleem, G.; Younus, M.U.; Anwar, S.; Anjum, M.R. Leaf image-based plant disease identification using color and texture features. Wirel. Pers. Commun. 2021, 121, 1139–1168. [Google Scholar] [CrossRef]
- Le Louëdec, J.; Cielniak, G. 3D shape sensing and deep learning-based segmentation of strawberries. Comput. Electron. Agric. 2021, 190, 106374. [Google Scholar] [CrossRef]
- Divyanth, L.G.; Ahmad, A.; Saraswat, D. A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery. Smart Agric. Technol. 2023, 3, 100108. [Google Scholar] [CrossRef]
- Zubler, A.V.; Yoon, J.Y. Proximal methods for plant stress detection using optical sensors and machine learning. Biosensors 2020, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S.; Chakraborty, S.K.; Rajwade, Y.A.; Dubey, K.; Tiwari, M.K.; Jat, D. Identifying crop water stress using deep learning models. Neural Comput. Appl. 2021, 33, 5353–5367. [Google Scholar] [CrossRef]
- Azimi, S.; Kaur, T.; Gandhi, T.K. A deep learning approach to measure stress level in plants due to Nitrogen deficiency. Measurement 2021, 173, 108650. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef]
- Venkatesh, K.; Naik, K.J. Nutrient deficiency identification and yield-loss prediction in leaf images of groundnut crop using transfer learning. Signal Image Video Process. 2024, 18, 4553–4568. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, F.; Li, J.W.; Zou, R.B.; Liao, G.P. Multifractal methods for rapeseed nitrogen nutrition qualitative diagnosis modeling. Int. J. Biomath. 2016, 9, 1650064. [Google Scholar] [CrossRef]
- Sabri, N.; Kassim, N.S.; Ibrahim, S.; Roslan, R.; Mangshor, N.N.; Ibrahim, Z. Nutrient deficiency detection in maize (Zea mays L.) leaves using image processing. IAES Int. J. Artif. Intell. 2020, 9, 304. [Google Scholar] [CrossRef]
- Jogin, M.; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature extraction using convolution neural networks (CNN) and deep learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar]
- Li, Y.; Wang, C.; Wang, C.; Deng, X.; Zhao, Z.; Chen, S.; Lan, Y. Detection of the foreign object positions in agricultural soils using Mask-RCNN. Int. J. Agric. Biol. Eng. 2023, 16, 220–231. [Google Scholar] [CrossRef]
- Yi, J.; Krusenbaum, L.; Unger, P.; Hüging, H.; Seidel, S.J.; Schaaf, G.; Gall, J. Deep learning for non-invasive diagnosis of nutrient deficiencies in sugar beet using RGB images. Sensors 2020, 20, 5893. [Google Scholar] [CrossRef]
- Taha, M.F.; Abdalla, A.; ElMasry, G.; Gouda, M.; Zhou, L.; Zhao, N.; Liang, N.; Niu, Z.; Hassanein, A.; Al-Rejaie, S.; et al. Using deep convolutional neural network for image-based diagnosis of nutrient deficiencies in plants grown in aquaponics. Chemosensors 2022, 10, 45. [Google Scholar] [CrossRef]
- Chen, S. Plant Factory Technologies. Encyclopedia of Smart Agriculture Technologies; Zhang, Q., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- An, S.; Hwang, H.; Chun, C.; Jang, Y.; Lee, H.J.; Wi, S.H.; Yeo, K.H.; Yu, I.H.; Kwack, Y. Evaluation of air temperature, photoperiod and light intensity conditions to produce cucumber scions and rootstocks in a plant factory with artificial lighting. Horticulturae 2021, 7, 102. [Google Scholar] [CrossRef]
- Islam, S.; Reza, M.N.; Ahmed, S.; Samsuzzaman; Cho, Y.J.; Noh, D.H.; Chung, S.-O. Seedling Growth Stress Quantification Based on Environmental Factors Using Sensor Fusion and Image Processing. Horticulturae 2024, 10, 186. [Google Scholar] [CrossRef]
- Islam, S.; Reza, M.N.; Chowdhury, M.; Islam, M.N.; Ali, M.; Kiraga, S.; Chung, S.O. Image processing algorithm to estimate ice-plant leaf area from RGB images under different light conditions. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012013. [Google Scholar] [CrossRef]
- Siswanto, A.; Fadlil, A.; Yudhana, A. Ekstraksi ciri metode gray level co-occurrence matrix untuk identifikasi sel darah putih. J. Inf. Technol. Comput. Sci. 2020, 5, 71–80. [Google Scholar] [CrossRef]
- Kartal, H.B.; Cebi, F. Support vector machines for multi-attribute ABC analysis. Int. J. Mach. Learn. Comput. 2013, 3, 154. [Google Scholar] [CrossRef]
- Kabir, M.; Unal, F.; Akinci, T.C.; Martinez-Morales, A.A.; Ekici, S. Revealing GLCM Metric Variations across a Plant Disease Dataset: A Comprehensive Examination and Future Prospects for Enhanced Deep Learning Applications. Electronics 2024, 13, 2299. [Google Scholar] [CrossRef]
- Lu, K.-P.; Chang, S.-T. An Advanced Segmentation Approach to Piecewise Regression Models. Mathematics 2023, 11, 4959. [Google Scholar] [CrossRef]
- Tomal, J.H.; Ciborowski, J.J. Ecological models for estimating breakpoints and prediction intervals. Ecol. Evolution 2020, 10, 13500–13517. [Google Scholar] [CrossRef] [PubMed]
- Story, D.; Kacira, M.; Kubota, C.; Akoglu, A.; An, L. Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments. Comput. Electron. Agric. 2010, 74, 238–243. [Google Scholar] [CrossRef]
- Vakilian, K.A.; Massah, J. Design, development and performance evaluation of a robot to early detection of nitrogen deficiency in greenhouse cucumber (Cucumis sativus) with machine vision. Int. J. Agric. Res. Rev. 2012, 2, 448–454. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Lv, Y.; Zhang, C.; Yun, W.; Gao, L.; Wang, H.; Ma, J.; Li, H.; Zhu, D. The Delineation and Grading of Actual Crop Production Units in Modern Smallholder Areas Using RS Data and Mask R-CNN. Remote Sens. 2020, 12, 1074. [Google Scholar] [CrossRef]
- Wu, Q. Image retrieval method based on deep learning semantic feature extraction and regularization softmax. Multimed. Tools Appl. 2020, 79, 9419–9433. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, K.; Zheng, Y.; Zhao, D.; Zhou, J. RLEG: Vision-language representation learning with diffusion-based embedding generation. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 42247–42258. [Google Scholar]
- Abirami, R.N.; Durai Raj Vincent, P.M.; Srinivasan, K.; Tariq, U.; Chang, C.Y. Deep CNN and deep GAN in computational visual perception-driven image analysis. Complexity 2021, 2021, 1–30. [Google Scholar]
- Kipping, D. The exomoon corridor: Half of all exomoons exhibit TTV frequencies within a narrow window due to aliasing. Mon. Not. R. Astron. Soc. 2021, 500, 1851–1857. [Google Scholar] [CrossRef]
- Gui, J.W.; Wu, Q.Q. Vehicle movement analyses considering altitude based on modified digital elevation model and spherical bilinear interpolation model: Evidence from GPS-equipped taxi data in Sanya, Zhengzhou, and Liaoyang. J. Adv. Transp. 2020, 2020, 6301703. [Google Scholar] [CrossRef]
- Wang, S.; Sun, G.; Zheng, B.; Du, Y. A crop image segmentation and extraction algorithm based on mask RCNN. Entropy 2021, 23, 1160. [Google Scholar] [CrossRef]
- Gul-Mohammed, J.; Arganda-Carreras, I.; Andrey, P.; Galy, V.; Boudier, T. 2014. A generic classification-based method for segmentation of nuclei in 3D images of early embryos. BMC Bioinform. 2014, 15, 9. [Google Scholar] [CrossRef]
- Sulastri, M.J.; Sulistyaningrum, D.R.; Nurhadi, H. Detection of Nutrient Deficiency in Rice Plants Based on Leaf Image. In Proceedings of the 2021 IEEE International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 8–9 December 2021; pp. 143–148. [Google Scholar]
- Xu, G.; Zhang, F.; Shah, S.G.; Ye, Y.; Mao, H. Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognit. Lett. 2011, 32, 1584–1590. [Google Scholar] [CrossRef]
- Romualdo, L.; Luz, P.H.d.C.; Devechio, F.; Marin, M.; Zúñiga, A.; Bruno, O.M.; Herling, V.R. Use of artificial vision techniques for diagnostic of nitrogen nutritional status in maize plants. Comput. Electron. Agric. 2014, 104, 63–70. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Zhang, G.; Wang, J. Estimating nitrogen status of rice using the image segmentation of GR thresholding method. Field Crops Res. 2013, 149, 33–39. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, B.W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J. Agron. 2013, 48, 57–65. [Google Scholar] [CrossRef]
- Kamelia, L.; Abdul Rahman, T.K.; Nurmalasari, R.R.; Hamdani, K.K. Citrus Tree Nutrient Deficiency Classification: A Comparative Study of ANN and SVM Using Colour-Texture Features in Leaf Images. Int. J. Comput. Digit. Syst. 2024, 15, 153–165. [Google Scholar] [CrossRef]
- Vassallo-Barco, M.; Vives-Garnique, L.; Tuesta-Monteza, V.; Mejía-Cabrera, H.I.; Toledo, R.Y. Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves through Shape And Texture Descriptors. J. Digit. Inf. Manag. 2017, 15, 7–18. [Google Scholar]
- Prey, L.; Von Bloh, M.; Schmidhalter, U. Evaluating RGB imaging and multispectral active and hyperspectral passive sensing for assessing early plant vigor in winter wheat. Sensors 2018, 18, 2931. [Google Scholar] [CrossRef]
- Qur’ania, A.; Harsani, P.; Triastinurmiatiningsih, T.; Wulandhari, L.A.; Gunawan, A.A. Color extraction and edge detection of nutrient deficiencies in cucumber leaves using artificial neural networks. CommIT (Commun. Inf. Technol.) J. 2020, 14, 23–30. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Yang, Y.; Guo, R.; Yang, J.; Yue, J.; Wang, Y. A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN. Comput. Electron. Agric. 2021, 182, 106054. [Google Scholar] [CrossRef]
- Bahtiar, A.R.; Santoso, A.J.; Juhariah, J. Deep learning detected nutrient deficiency in chili plant. In Proceedings of the 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–4. [Google Scholar]
- Holaysan, S.A.; Aldana, I.; Maderazo, C.V. Artificial Light Augmentation in Urban Farming Based on Mask Rcnn for Determination Of Lettuce Light Conditions. In Proceedings of the 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA), Yogyakarta, Indonesia, 4–5 November 2022; pp. 1–6. [Google Scholar]
- Liu, X.; Zhao, D.; Jia, W.; Ji, W.; Ruan, C.; Sun, Y. Cucumber fruits detection in greenhouses based on instance segmentation. IEEE Access 2019, 7, 139635–139642. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Jayasiri, K.N.; Chandrasiri, S.; Rupasinghe, S.; Karunanayake, K.R.; Uthayachandran, A.; Zihara, M.F. Deep Learning-Based Image Analysis for Detecting Nutrient Deficiencies of Tomato Plants. In Proceedings of the 2023 5th International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 7–8 December 2023; pp. 209–214. [Google Scholar]
Raspberry Pi 4B | Raspberry Pi Camera |
---|---|
|
|
Layer | Conv1_x | Conv2_x | Conv3_x |
Output size | 112 × 112 × 64 | 56 × 56 × 56 | 28 × 28 × 128 |
Filters | 7 × 7, 64 stride 2 | ||
Layer | Conv4_x | Conv5_x | Pooling |
Output size | 14 × 14 × 256 | 7 × 7 × 512 | 1 × 1 × 512 |
Filters | Average |
Stress Condition | Condition | Precision Rate (%) | Recall Rate (%) | F1 Score | Accuracy | mAP |
---|---|---|---|---|---|---|
0 dSm−1 | Average | 0.91 | 0.89 | 0.90 | 0.90 | 0.927 |
Best Fit | 0.93 | 0.94 | 0.934 | 0.92 | ||
6 dSm−1 | Average | 0.88 | 0.87 | 0.874 | 0.87 | 0.88 |
Best Fit | 0.90 | 0.89 | 0.894 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, S.; Reza, M.N.; Ahmed, S.; Samsuzzaman; Lee, K.-H.; Cho, Y.J.; Noh, D.H.; Chung, S.-O. Nutrient Stress Symptom Detection in Cucumber Seedlings Using Segmented Regression and a Mask Region-Based Convolutional Neural Network Model. Agriculture 2024, 14, 1390. https://doi.org/10.3390/agriculture14081390
Islam S, Reza MN, Ahmed S, Samsuzzaman, Lee K-H, Cho YJ, Noh DH, Chung S-O. Nutrient Stress Symptom Detection in Cucumber Seedlings Using Segmented Regression and a Mask Region-Based Convolutional Neural Network Model. Agriculture. 2024; 14(8):1390. https://doi.org/10.3390/agriculture14081390
Chicago/Turabian StyleIslam, Sumaiya, Md Nasim Reza, Shahriar Ahmed, Samsuzzaman, Kyu-Ho Lee, Yeon Jin Cho, Dong Hee Noh, and Sun-Ok Chung. 2024. "Nutrient Stress Symptom Detection in Cucumber Seedlings Using Segmented Regression and a Mask Region-Based Convolutional Neural Network Model" Agriculture 14, no. 8: 1390. https://doi.org/10.3390/agriculture14081390
APA StyleIslam, S., Reza, M. N., Ahmed, S., Samsuzzaman, Lee, K.-H., Cho, Y. J., Noh, D. H., & Chung, S.-O. (2024). Nutrient Stress Symptom Detection in Cucumber Seedlings Using Segmented Regression and a Mask Region-Based Convolutional Neural Network Model. Agriculture, 14(8), 1390. https://doi.org/10.3390/agriculture14081390