Prevention and Control of Ginger Blast by Two Fumigants and Their Effects on a Soil Bacterial Community and the Metabolic Components of Ginger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Overview of the Test Site
2.3. Test Treatment
2.4. Sample Collection
2.5. Investigation of Ginger Blast and Yield
area)/incidence in control area × 100%.
2.6. Sequencing and Data Analysis of the 16S rRNA of Soil Microorganisms
2.7. Determination and Data Analysis of the Metabolome of Small Yellow Ginger
3. Results and Analysis
3.1. Effects of Two Fumigation Treatments on the Control of Ginger Blast in the Field
3.2. Effects of Two Fumigation Treatments on Agronomic Traits and Yield of Ginger
3.3. Effects of Different Treatments on Soil Bacterial Community Diversity
3.3.1. Sparse Curve
3.3.2. Venn Diagram
3.3.3. Alpha Diversity of Soil Bacterial Communities
3.3.4. Beta Diversity of Soil Bacterial Communities
3.3.5. Changes in the Composition of Soil Bacterial Communities at the Phylum and Genus Levels
3.4. Effects of Different Treatments on Ginger Metabolites
3.4.1. PCA Analysis
3.4.2. Differential Metabolite Screening
3.4.3. Differential Analysis of Functional Related Metabolites of Ginger
4. Discussion
4.1. Prevention and Control Effects of Two Fumigants on Ginger Blast
4.2. Effects of Two Fumigants on Soil Bacterial Communities
4.3. Effects of Two Fumigants on Metabolites of Ginger
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Plata-Gryl, M.; Castro-Muñoz, R. A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules. Food Chem. 2023, 413, 135629. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Batey, R.; Yamahara, J.; Li, Y. Multiple molecular targets in the liver, adipose tissue and skeletal muscle in ginger-elicited amelioration of nonalcoholic fatty liver disease. J. Funct. Foods 2017, 36, 43–51. [Google Scholar] [CrossRef]
- Zick, S.M.; Djuric, Z.; Ruffin, M.T.; Litzinger, A.J.; Normolle, D.P.; Alrawi, S.; Feng, M.R.; Brenner, D.E. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1930–1936. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-kont, I.; Fürst, R. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes. Pharmaceuticals 2021, 14, 571. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Li, J.; Hu, W.; Yu, A.; Tang, H.; Li, J.; Kuang, H.; Zhang, H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules 2023, 28, 3855. [Google Scholar] [CrossRef]
- Ji, S.; Zeng, X.; Xie, Y.; Gao, G.; Shao, Y.; Li, D. Analysis on international market competitiveness of China’s ginger industry (2001–2021). China Cucurbits Veg. 2023, 36, 145–152. [Google Scholar]
- Zhao, X.; Cai, X.; Liu, Y.; Ye, L.; Zhu, X.; Wang, X. Status of production and marketing of ginger industry in China in recent ten years and future development strategies. China Cucurbits Veg. 2024, 37, 150–155. [Google Scholar]
- Wang, Q.; Li, D.; Qin, X.; Che, J.; Song, J.; Chen, T. Screening and Identification of Biocontrol Strain Claroideoglomus etunicatum N62 against Ginger Wilt. Chin. J. Biol. Control 2022, 38, 267–274. [Google Scholar]
- Wang, Q.; Qin, X.; Chen, T.; Zhou, S.; Song, J. Preventive effects of arbuscular mycorrhizal fungi and dark septate endophytes on ginger and the anti-disease mechanism. Microbiol. China 2023, 50, 788–801. [Google Scholar]
- Thomas, P.; Upreti, R. Testing of Bacterial Endophytes from Non-Host Sources as Potential Antagonistic Agents against Tomato Wilt Pathogen Ralstonia solanacearum. Adv. Microbiol. 2014, 4, 656–666. [Google Scholar] [CrossRef]
- Ohike, T.; Makuni, K.; Okanami, M.; Ano, T. Screening of endophytic bacteria against fungal plant pathogens. J. Environ. Sci. 2013, 25, S122–S126. [Google Scholar] [CrossRef]
- Chi, L. Study on the Control Effect of Several Soil Fumigants on Ginger Blast and Other Soil-Borne Pathogens. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
- Wang, N.; Zhang, K.; Guo, J. Introduction to foreign research on soil chemical disinfection. Agric. Eng. Technol. Greenh. Hortic. 2014, 5, 28–29+32. [Google Scholar]
- Cao, A.; Fang, W.; Li, Y.; Yan, D.; Wang, Q.; Guo, M. Review of 60 years of soil fumigation and disinfection in China. J. Plant Prot. 2022, 49, 325–335. [Google Scholar]
- Gilreath, J.P.; Santos, B.M.; Motis, T.N.; Noling, J.W.; Mirusso, J.M. Methyl bromide alternatives for nematode and Cyperus control in bell pepper (Capsicum annuum). Crop Prot. 2005, 24, 903–908. [Google Scholar] [CrossRef]
- Prider, J.; Williams, A. Using dazomet to reduce broomrape seed banks in soils with low moisture content. Crop Prot. 2014, 59, 43–50. [Google Scholar] [CrossRef]
- Fu, C.; Hu, B.; Chang, T.; Hsueh, K.; Hsu, W. Evaluation of dazomet as fumigant for the control of brown root rot disease. Pest. Manag. Sci. 2012, 68, 959–962. [Google Scholar] [CrossRef]
- Qiao, D.; Gu, S.; Cheng, L. Species analysis and application of soil fumigants. Qual. Certif. 2023, 09, 49–51. [Google Scholar]
- Locascio, S.; Gilreath, J.; Dickson, D.; Kucharek, T.; Jones, J.P.; Noling, J.W. Fumigant Alternatives to Methyl Bromide for Polyethylene-mulched. HortScience 1997, 32, 1208–1211. [Google Scholar] [CrossRef]
- De Cal, A.; Martinez-treceño, A.; Salto, T.; López-Aranda, J.M.; Melgarejo, P. Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Appl. Soil. Ecol. 2005, 28, 47–56. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Li, W.; Zhang, D.; Fang, W.; Li, Y.; Wang, Q.; Cao, A.; Yan, D. Long-term effects of chloropicrin fumigation on soil microbe recovery and growth promotion of Panax notoginseng. Front. Microbiol. 2023, 14, 1225944. [Google Scholar] [CrossRef]
- Wang, H.; Chen, P.; Wang, Y.; Wei, F.; Yang, S.; Guan, H.; Xu, W. Effects of soil fumigation on microbial community under continuous cropping of Panax notoginseng. J. Yunnan Norm. Univ. Nat. Sci. Ed. 2024, 44, 51–58. [Google Scholar]
- Cao, A.; Fang, W.; Wang, Q.; Yan, D.; Li, Y.; Ouyang, C.; Guo, M. Ecotoxicological effects of chloropicrin. World Pestic. 2020, 42, 32–35. [Google Scholar]
- Fang, W.; Wang, Q.; Yan, D.; Li, Y.; Cao, B.; Xu, J.; Jin, Q.; Cao, A. Research progresses and future development trends of soil fumigant dazomet in control of soil-borne diseases. J. Plant Prot. 2023, 50, 40–49. [Google Scholar]
- Cao, A.; Wang, Q.; Yan, D.; Fang, W.; Li, Y.; Song, Z.; Zhang, Y.; Zhang, D.; Jin, Q.; Hao, Z.; et al. Research and development and application of soil disinfection machinery in China. Mod. Agrochem. 2024, 23, 8–14+22. [Google Scholar]
- Cao, A.; Guo, M.; Wang, Q.; Li, Y.; Yan, D. Progress of soil disinfection technology in the world. China Veg. 2010, 21, 17–22. [Google Scholar]
- Mao, L.; Wang, Q.; Yan, D.; Xie, H.; Li, Y.; Guo, M.; Cao, A. Evaluation of the combination of 1,3-dichloropropene and dazomet as an efficient alternative to methyl bromide for cucumber production in China. Pest. Manag. Sci. 2012, 68, 602–609. [Google Scholar] [CrossRef]
- CODEX STAN 218-1999; Standard For Ginger. Codex Alimentarius Commission: Rome, Italy, 2005.
- Mao, L.; Jiang, H.; Wang, Q.; Yan, D.; Cao, A. Efficacy of soil fumigation with dazomet for controlling ginger bacterial wilt (Ralstonia solanacearum) in China. Crop Prot. 2017, 100, 111–116. [Google Scholar] [CrossRef]
- Tian, H.; Hu, S.; Chen, Y.; Chen, J.; Zhou, Y. Comprehensive technology and application of soil disinfection of “Fengtou ginger” dazomet in Laifeng County. Hubei Plant Protection 2019, 06, 62–64. [Google Scholar]
- Zhou, X.; Zhang, T.; Jia, C.; Li, H.; Liu, Y.; Liu, R. Effect of soil fumigants on soil borne diseases and yield of ginger. Plant Dr. 2021, 34, 40–44. [Google Scholar]
- Yang, S.; Fang, W.; Bai, Q.; Wang, Q.; Li, Y.; Yan, D.; Cao, A. Effect of dazomet fumigation on nitrogen uptake and utilization of tobacco. Plant Prot. 2024, 50, 100–110. [Google Scholar]
- Wang, H.; Chen, Y.; Guo, F.; Dong, P.; Liang, W.; Cheng, J. Improvement in the quality and productivity of Codonopsis pilosula seedlings by dazomet soil fumigation. Sci. Rep. 2024, 14, 5407. [Google Scholar] [CrossRef]
- Mao, L.; Jiang, H.; Zhang, L.; Zhang, Y.; Sial, M.U.; Yu, H.; Cao, A. Assessment of the potential of a reduced dose of dimethyl disulfide plus metham sodium on soilborne pests and cucumber growth. Sci. Rep. 2019, 9, 19806. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Wang, Q.; Mao, L.; Xie, H.; Guo, M.; Cao, A. Evaluation of Chloropicrin Gelatin Capsule Formulation as a Soil Fumigant for Greenhouse Strawberry in China. J. Agric. Food Chem. 2012, 60, 5023–5027. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manterd, K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T.; Lin, W. Plant allelopathy types and their application in agriculture. Chin. J. Eco-Agric. 2013, 21, 1173–1183. [Google Scholar] [CrossRef]
- Zeng, W.; Li, Q.; Ma, Y.; Ma, R.; Zhang, X.; Li, S.; Wei, H.; Gu, Y. Analysis of soil microbial community structure in strawberry growing area of Beijing. Biot. Resour. 2024, 46, 1–10. [Google Scholar]
- Han, C. Allelopathy Mechanism and Cultivation Model of Ginger; Chengdu Institute of Biology, Chinese Academy of Sciences: Chengdu, China, 2008. [Google Scholar]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef]
- Hollister, E.B.; Hu, P.; Wang, A.; Hons, F.M.; Genty, T.J. Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities. FEMS Microbiol. Ecol. 2013, 83, 632–641. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil. Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Luo, Q.; Hiessl, S.; Steinbüchel, A. Functional diversity of Nocardia in metabolism. Env. Microbiol. 2014, 16, 29–48. [Google Scholar] [CrossRef]
- Taketani, R.G.; Lima, A.B.; Da Conceição Jesus, E.; Teixeira, W.G.; Tiedje, J.M.; Tsai, S.M. Bacterial community composition of anthropogenic biochar and amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie Van Leeuwenhoek 2013, 104, 233–242. [Google Scholar] [CrossRef]
- Feld, L.; Hjelmsø, M.H.; Nielsen, M.S.; Jacobsen, A.D.; Rønn, R.; Ekelund, F.; Krogh, P.H.; Strobel, B.W.; Jacobsen, C.S. Pesticide Side Effects in an Agricultural Soil Ecosystem as Measured by amoA Expression Quantification and Bacterial Diversity Changes. PLoS ONE. 2015, 10, e0126080. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, X.; Wang, H.; Wang, K.; Qiao, K. Effect of fumigation with 1,3-dichloropropene on soil bacterial communities. Chemosphere 2015, 139, 379–385. [Google Scholar] [CrossRef]
- Rokunuzzaman, M.; Hayakawa, A.; Yamane, S.; Tanaka, S.; Ohnishi, K. Effect of soil disinfection with chemical and biological methods on bacterial communities. Egypt. J. Basic. Appl. Sci. 2016, 3, 141–148. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Trivedi, C.; Hamonts, K.; Anderson, I.C.; Singh, B.K. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil. Biol. Biochem. 2017, 111, 10–14. [Google Scholar] [CrossRef]
- Xiong, W.; Li, R.; Ren, Y.; Liu, C.; Zhao, Q.; Wu, H.; Jousset, A.; Shen, Q. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil. Biol. Biochem. 2017, 107, 198–207. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, X.; Huang, H.; Jing, J.; Zhao, H.; Wang, L.; Long, X. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Appl. Microbiol. Biotechnol. 2018, 102, 5717–5729. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Cheng, H.; Song, Z.; Ren, L.; Hao, B.; Zhu, J.; Fang, W.; Yan, D.; Li, Y.; et al. Chloropicrin alternated with dazomet improved the soil’s physicochemical properties, changed microbial communities and increased strawberry yield. Ecotoxicol. Env. Saf. 2021, 220, 112362. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, S.; Zhao, J.; Zhang, K.; Jiang, J.; Guan, Z.; Chen, S.; Chen, F.; Fang, W. Deep tillage combined with biofertilizer following soil fumigation improved chrysanthemum growth by regulating the soil microbiome. Microbiologyopen 2020, 9, e1045. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Ren, L.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Effects of dazomet and chloropicrin on soil nutrients, pathogens and microbial communities of strawberry. J. Agric. Univ. Hebei 2021, 44, 24–29. [Google Scholar]
- Zhang, S.; Liu, X.; Jiang, Q.; Shen, G.; Ding, W. Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity. AMB Express 2017, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, D.; Wang, S.; Luo, L.; Li, J.; Leng, J.; Wang, J. Analysis and evaluation on agronomic characters and active components of 10 ginger resources introduced in Guizhou. China Cucurbits Veg. 2024, 94–102. [Google Scholar]
- Tan, J.; Li, M.; Han, T.; Sun, J.; Song, Y.; Zhou, L. Evaluation of ginger quality in Shandong region based on principal component and cluster analysis. Food Res. Dev. 2021, 42, 14–20. [Google Scholar]
- Wang, S.; Zhang, C.; Yang, G.; Yang, Y. Biological properties of 6-gingerol: A brief review. Nat. Prod. Commun. 2014, 9, 1027–1030. [Google Scholar] [CrossRef]
- Ahmad, B.; Rehman, M.U.; Amin, I.; Arif, A.; Rasool, S.; Bhat, S.A.; Afzal, I.; Hussain, I.; Bilal, S.; Mir, M.R. A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone). Sci. World, J. 2015, 2015, 816364. [Google Scholar] [CrossRef]
- Ohnishi, M.; Ohshita, M.; Tamaki, H.; Marutani, Y.; Nakayama, Y.; Akagi, M.; Miyata, M.; Maehara, S.; Hata, T.; Inoue, A. Shogaol but not gingerol has a neuroprotective effect on hemorrhagic brain injury: Contribution of the α, β-unsaturated carbonyl to heme oxygenase-1 expression. Eur. J. Pharmacol. 2019, 842, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Zhang, C.; Niu, H.; Xin, X.; Liu, D.; Zhang, J. Research progress of the species, biological activity and application in food packaging of ginger extract. Food Sci. 2024, 14, 341–351. [Google Scholar]
- He, J.; Zhang, M.; Yang, Z.; Yang, X.; Li, S.; Zhang, R.; Wei, J. Research progress on sexual effect, processing history and component activity of dried ginger. J. Chin. Med. Mater. 2024, 2, 497–505. [Google Scholar]
- Han, H.; Chen, X.; Liang, Y.; Li, K.; Chang, X.; Zhao, T.; Zhang, H.; Wang, H. Analysis of free amino acids and hydrolyzed amino acids in different varieties of ginger. Anhui Agric. Sci. 2021, 49, 187–190+208. [Google Scholar]
- Yang, F.; Tang, L.; He, H.; Tang, X.; Wang, W. Effects of different fumigants on soil physicochemical properties and strawberry growth and development. China Fruits. 2023, 11, 50–55+60. [Google Scholar]
- Wang, N.; Zhang, N.; Zhang, A.; Ren, X.; Wang, J. Effects of Adding Waste of Edible Fungi Cultivation and Chloropicrin Fumigation on Physical and Chemical Properties of Continuous Cropping Soil and Growth of Strawberry. Shaanxi J. Agric. Sci. 2021, 67, 1–5+12. [Google Scholar]
Physical and Chemical Property | Test Site in 2022 | Test Site in 2023 |
---|---|---|
pH (water-to-soil ratio = 2.5:1) | 5.58 | 6.14 |
Organic material (g/kg) | 40.78 | 38.14 |
Moisture (%) | 20.06 | 19.13 |
Ammonium nitrogen (mg/kg) | 6.45 | 5.50 |
Total nitrogen (g/kg) | 2.22 | 2.10 |
Available potassium (mg/kg) | 487 | 348.00 |
Treatment | 0 Days after Tarp Removal | 60 Days after Tarp Removal | 120 Days after Tarp Removal |
---|---|---|---|
Dazomet | DA 1 | DA 2 | DA 3 |
Chloropicrin | PS 1 | PS 2 | PS 3 |
Control | CK 1 | CK 2 | CK 3 |
Treatment | Agronomic Trait | |||
---|---|---|---|---|
Plant Height (cm) | Stem Diameter (cm) | Number of Branches (pcs) | Fresh Weight of Rhizomes (kg) | |
Dazomet | 87.07 ± 0.45 | 1.04 ± 0.01 | 11.83 ± 0.15 | 0.92 ± 0.02 |
Chloropicrin | 83.10 ± 0.53 | 1.03 ± 0.01 | 11.67 ± 0.50 | 0.86 ± 0.03 |
t | −9.882 | −2 | −0.549 | −3.043 |
p-value | 0.001 | 0.116 | 0.612 | 0.038 |
Treatment | Corrected Yield (kg/hm2) | ||
---|---|---|---|
First-Grade Rhizome Yield | Second-Grade Rhizome Yield | Total Yield | |
Dazomet | 43,391.17 ± 135.44 | 6763.27 ± 84.35 | 50,154.40 ± 106.61 |
Chloropicrin | 43,651.10 ± 511.51 | 6841.47 ± 54.62 | 50,296.90 ± 218.68 |
t | −0.851 | −1.348 | −1.015 |
p-value | 0.443 | 0.249 | 0.368 |
Treatment | Agronomic Trait | |||
---|---|---|---|---|
Plant Height (cm) | Stem Diameter (cm) | Number of Branches (pcs) | Fresh Weight of Rhizomes (kg) | |
Dazomet | 95.23 ± 0.91 | 1.13 ± 0.06 | 11.87 ± 0.47 | 1.08 ± 0.04 |
Chloropicrin | 93.80 ± 0.89 | 1.10 ± 0.01 | 11.47 ± 0.31 | 0.99 ± 0.01 |
t | 1.955 | 0.985 | 1.231 | 4.372 |
p-value | 0.122 | 0.380 | 0.286 | 0.012 |
Treatment | Corrected Yield (kg/hm2) | ||
---|---|---|---|
First-Grade Rhizome Yield | Second-Grade Rhizome Yield | Total Yield | |
Dazomet | 55,642.57 ± 623.58 | 9473.30 ± 345.49 | 65,115.83 ± 799.74 |
Chloropicrin | 55,708.67 ± 1041.31 | 9036.03 ± 180.05 | 65,337.93 ± 859.57 |
t | −0.094 | 1.944 | −0.328 |
p-value | 0.929 | 0.124 | 0.760 |
Metabolites | Dazomet VS CK | Chloropicrin VS CK | ||||
---|---|---|---|---|---|---|
Total Variance | Up | Down | Total Variance | Up | Down | |
Amino acids and derivatives | 40 | 16 | 24 | 36 | 19 | 17 |
Terpenoids | 9 | 5 | 4 | 11 | 5 | 6 |
Flavonoids | 24 | 8 | 16 | 24 | 12 | 12 |
Phenols | 18 | 11 | 7 | 16 | 11 | 5 |
Phenols (gingerol) | 2 | 2 | 0 | 2 | 2 | 0 |
Phenols (6-gingerdione) | 1 | 1 | 0 | 1 | 1 | 0 |
Phenols (6-shogaol) | 0 | 0 | 0 | 1 | 1 | 0 |
Phenols (zingerone) | 1 | 1 | 0 | 1 | 1 | 0 |
Diarylheptanoids | 10 | 2 | 8 | 11 | 3 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Ge, L.; He, X.; Li, T.; Huang, B.; Zhao, H.; Li, C.; Han, Q. Prevention and Control of Ginger Blast by Two Fumigants and Their Effects on a Soil Bacterial Community and the Metabolic Components of Ginger. Agriculture 2024, 14, 1439. https://doi.org/10.3390/agriculture14091439
Liao L, Ge L, He X, Li T, Huang B, Zhao H, Li C, Han Q. Prevention and Control of Ginger Blast by Two Fumigants and Their Effects on a Soil Bacterial Community and the Metabolic Components of Ginger. Agriculture. 2024; 14(9):1439. https://doi.org/10.3390/agriculture14091439
Chicago/Turabian StyleLiao, Liyan, Liqing Ge, Xiahong He, Tao Li, Bin Huang, Hanxi Zhao, Chaolian Li, and Qingli Han. 2024. "Prevention and Control of Ginger Blast by Two Fumigants and Their Effects on a Soil Bacterial Community and the Metabolic Components of Ginger" Agriculture 14, no. 9: 1439. https://doi.org/10.3390/agriculture14091439
APA StyleLiao, L., Ge, L., He, X., Li, T., Huang, B., Zhao, H., Li, C., & Han, Q. (2024). Prevention and Control of Ginger Blast by Two Fumigants and Their Effects on a Soil Bacterial Community and the Metabolic Components of Ginger. Agriculture, 14(9), 1439. https://doi.org/10.3390/agriculture14091439