Effects of Marigold and Paprika Extracts as Natural Pigments on Laying Hen Productive Performances, Egg Quality and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Carotenoids Purchasing and Their Proximal Chemical Analyses
2.3. Birds Performances, Housing and Experimental Diets
2.4. Egg Collection and Their Quality Measurement
2.5. Minerals Assessment
2.6. Determination of Total Polyphenols Content
2.7. Total Antioxidant Capacity Assessment
2.8. Determination of Vitamin E, Lutein and Zeaxanthin
2.9. Determination of Thiobarbituric Acid Reactive Substances (TBARS)
2.10. Statistical Analysis
3. Results
3.1. Nutritional Profile of Marigold and Red Pepper Powder Extracts
3.2. Productive Performance Parameters
3.3. External and Internal Egg Quality Parameters
3.4. Yolk Color
3.5. Antioxidant Profile
3.6. Oxidative Stability
4. Discussion
4.1. Nutritional Composition of Powder Extracts of Marigold and Red Pepper
4.2. Dietary Effects of Powder Extracts of Marigold and Red Pepper on Productivity Parameters
4.3. Dietary Effects of Powder Extracts of Marigold and Red Pepper on External and Internal Egg Quality Parameters
4.4. Dietary Effects of Powder Extracts of Marigold and Red Pepper on Yolk Color
4.5. Dietary Effects of Powder Extracts of Marigold and Red Pepper on Antioxidant Profile
4.6. Dietary Effects of Powder Extracts of Marigold and Red Pepper on Oxidative Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Paulino, M.T.F.; de Oliveira Grieser, D.; Gasparino, E.; Maia, K.M.; Toledo, J.B.; Ton, A.P.S.; Budel, E.C.; Marcato, S.M. Influence of pigments on the shelf life of eggs from layers hens in the final phase of production. Res. Soc. Dev. 2022, 11, e155111133484. [Google Scholar] [CrossRef]
- Honorato, C.A.; Seabra, B.S.; Siqueira, M.S.; Melgarejo, M.R.; Fraga, T.L. Qualidade e características físicas de ovos comerciais. Nucl. Anim. 2016, 8, 29–36. [Google Scholar] [CrossRef]
- Silva, R.C.; Nascimento, D.J.W.; Oliveira, D.L.D.; Furtado, D.A. Termohigrometria no transporte e na qualidade de ovos destinados ao consumo humano. Rev. Bras. Eng. Agríc. Ambient. 2015, 19, 668–673. [Google Scholar] [CrossRef]
- Volp, A.C.P.; Renhe, I.R.T.; Stringueta, P.C. Pigmentos naturais bioativos. Alim. Nutr. Araraquara 2009, 20, 157–166. [Google Scholar]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Elvira-Torales, L.I.; García-Alonso, J.; Periago-Castón, M.J. Nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants 2019, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef]
- Detofol, D.F.; Rauta, J.; Winck, C.A. Logística aplicada no processo de produção de ovos comerciais. Rev. Visão Gestão Organ. 2018, 7, 52–69. [Google Scholar] [CrossRef]
- Darvin, M.E.; Lademann, J.; von Hagen, J.; Lohan, S.B.; Kolmar, H.; Meinke, M.C.; Jung, S. Carotenoids in human skin in vivo: Antioxidant and photo-protectant role against external and internal stressors. Antioxidants 2023, 11, 1451. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Aggag, S.; Mishra, B. Advanced Practical Strategies to Enhance Table Egg Production. Scientifica 2022, 2022, 1393392. [Google Scholar] [CrossRef]
- Dansou, D.M.; Zhang, H.; Yu, Y.; Wang, H.; Tang, C.; Zhao, Q.; Qin, Y.; Zhang, J. Carotenoid enrichment in eggs: From bio-chemistry perspective. Anim. Nutr. 2023, 14, 315–333. [Google Scholar] [CrossRef]
- Altuntaş, A.; Aydin, R. Fatty acid composition of egg yolk from chickens fed a diet including marigold (Tagetes erecta L.). J. Lipids 2014, 2014, 564851. [Google Scholar] [CrossRef] [PubMed]
- Burlec, A.F.; Pecio, Ł.; Kozachok, S.; Mircea, C.; Corciovă, A.; Vereștiuc, L.; Cioancă, O.; Oleszek, W.; Hăncianu, M. Phytochemical profile, antioxidant activity, and cytotoxicity assessment of Tagetes erecta L. flowers. Molecules 2021, 26, 1201. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Watanabe, E.; Masuyama, T.; Tsubuku, S.; Otabe, A.; Katsumata, Y.; Bernard, B.K. Studies of the Toxicological Potential of Capsinoids: III. A Two-Generation Reproduction Study of CH-19 Sweet Extract in Rats. Int. J. Toxicol. 2008, 27 (Suppl. S3), 29–39. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.E.; Abraham, A.; Kulkarni, G.; Shettigar, N.; Dave, T.; Kulkarni, M. Capsanthin, a plant-derived xanthophyll: A review of pharmacology and delivery strategies. AAPS PharmSciTech 2021, 22, 203. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Carreira-Casais, A.; Fraga-Corral, M.; Garcia-Oliveira, P.; Soria, A.; Jarboui, A.; Barral, M.; Otero, P.; Simal-Gandara, J.; Prieto, M.A. Carotenoids as natural colorful additives for the food industry. In Natural Food Additives; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Rakonjac, S.; Bogosavljevic-Boskovic, S.; Pavlovski, Z.; Skrbic, Z.; Doskovic, V.; Petrovic, M.D.; Petricevic, V. Laying hen rearing Systems: A review of Chemicals composition and hygienic conditions of eggs. J. World’s Poult. Sci. 2014, 70, 151–163. [Google Scholar] [CrossRef]
- Kelly, E.R.; Plat, J.; Haenen, G.R.M.M.; Kijlstra, A.; Berendschot, T.T.J.M. The effect of modified eggs and egg-yolk based bevegare on serum lutein and zeaxanthin concentrations and macular pigment optical density: Results from a randomized trial. PLoS ONE 2014, 9, e92659. [Google Scholar] [CrossRef]
- Bovier, E.R.; Renzi, L.M.; Hammond, B.R. A doucle-blind, placebo-controlled study on the effects of lutein and zeaxanthin on neural processing speed and efficiency. PLoS ONE 2014, 9, e108178. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994.
- Untea, A.; Criste, R.C.; Vladescu, L. Development and validation of a microwave digestion–FAAS procedure for Cu, Mn and Zn determination in liver. Rev. Chim. 2012, 63, 341–346. [Google Scholar]
- Untea, A.E.; Varzaru, I.; Panaite, T.D.; Gavris, T.; Lupu, A.; Ropotă, M. The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals 2020, 10, 191. [Google Scholar] [CrossRef]
- Varzaru, I.; Panaite, T.D.; Untea, A.E.; Olteanu, M.; Bordei, N.; Van, I. Composition of some botanical mixtures as potential feed additives for laying hens. Food Feed Res. 2015, 42, 59–66. [Google Scholar] [CrossRef]
- Panaite, T.D.; Olteanu, M.; Untea, A.E.; Ropota, M.; Varzaru, I.; Lupu, A. Feeding value of local phyto-additives, potential ingredients in poultry diets. Sci. Papers Ser. D Anim. Sci. 2019, 62, 122. [Google Scholar]
- Rivas-García, L.; Crespo-Antolín, L.; Forbes-Hernández, T.Y.; Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Arredondo, M.; Llopis, J.; Quiles, J.L.; Sánchez-González, C. Bioactive properties of Tagetes erecta edible flowers: Polyphenol and antioxidant characterization and therapeutic activity against ovarian tumoral cells and caenorhabditis elegans tauopathy. Int. J. Mol. Sci. 2024, 25, 280. [Google Scholar] [CrossRef] [PubMed]
- Toliba, A.O.; Egorov, M.A.; Sukhenko, L.T.; Akmaev, E.P. Physicochemical properties and food application of marigold flower extracts prepared by conventional and supercritical CO2 methods. Int. J. Adv. Res. 2018, 6, 876–885. [Google Scholar] [CrossRef]
- Gregory, G.K.; Chen, T.S.; Philip, T. Quantitative analysis of lutein esters in marigold flowers (Tagetes erecta) by high performance liquid chromatography. J. Food Sci. 1986, 51, 1093–1094. [Google Scholar] [CrossRef]
- Panaite, T.D.; Nour, V.; Saracila, M.; Turcu, R.P.; Untea, A.E.; Vlaicu, P.A. Effects of linseed meal and carotenoids from different sources on egg characteristics, yolk fatty acid and carotenoid profile and lipid peroxidation. Food 2021, 10, 1246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveira, M.C.D.; Silva, W.D.D.; Oliveira, H.C.; Moreira, E.D.Q.B.; Ferreira, L.D.O.; Gomes, Y.D.S.; Souza, M.A.P.D. Paprika and/or marigold extracts in diets for laying hens. Rev. Bras. Saude Prod. Anim. 2017, 18, 293–302. [Google Scholar] [CrossRef]
- Skrivan, M.; Englmaierová, M.; Skrivanová, E.; Bubancová, I. Increase in lutein and zeaxanthin content in the eggs of hens fed marigold flower extract. Czech J. Anim. Sci. 2015, 60, 89–96. [Google Scholar] [CrossRef]
- Jang, I.; Ko, Y.; Kang, S.; Kim, S.; Song, M.; Cho, K.; Ham, J.; Sohn, S. Effects of dietary lutein sources on lutein-enriched egg production and hepatic antioxidant system in laying hens. Poult. Sci. J. 2014, 51, 58–65. [Google Scholar] [CrossRef]
- Lokaewmanee, K.; Yamauchi, K.; Komori, T.; Saito, K. Enhancement of yolk color in raw and boiled egg yolk with lutein from marigold flower meal and marigold flower extract. Jpn. Poult. Sci. 2011, 48, 25–32. [Google Scholar] [CrossRef]
- Atay, A. Effect of different levels of lutein on laying performance and egg quality in laying hens. Indian J. Anim. Sci. 2022, 92, 1102–1106. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Li, J.; Cong, J.; Gao, F.; Zhou, G. Effects of dietary marigold extract supplementation on growth performance, pigmentation, antioxidant capacity and meat quality in broiler chickens. Asian-Australas J. Anim. Sci. 2017, 30, 71. [Google Scholar] [CrossRef] [PubMed]
- Sözcü, A. Effects of supplementing layer hen diet with red pepper (Capsicum annuum L.) powder as natural yolk colourant on laying performance, pigmentation of yolk, egg quality and serum immunoglobulin levels. J. Poult. Res. 2019, 16, 80–85. [Google Scholar] [CrossRef]
- Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega-3 eggs. J. Sci. Food Agric. 2019, 99, 2292–2299. [Google Scholar] [CrossRef]
- Maia, K.M.; Grieser, D.O.; Ton, A.P.S.; Aquino, D.R.; Paulino, M.T.F.; Toledo, J.B.; Marcato, S.M. Perfor-mance and egg quality of light laying hens fed with canthaxanthin and marigold flower extract. S. Afr. J. Anim. Sci. 2022, 52, 433–443. [Google Scholar] [CrossRef]
- Chowdhury, S.D.; Hassin, B.M.; Das, S.C.; Rashid, M.H.; Ferdaus, A.J. Evaluation of marigold flower and orange skin as sources of xanthophyll pigment for the improvement of egg yolk color. J. Poult. Sci. 2008, 45, 265–272. [Google Scholar] [CrossRef]
- Spasevski, N.; Tasić, T.; Vukmirović, Ð.; Banjac, V.; Rakita, S.; Lević, J.; Ðuragić, O. Effect of different levels of marigold and paprika on egg production and yolk colour. Arch. Zootech. 2017, 20, 51–57. [Google Scholar]
- Moraleco, D.D.; Valentim, J.K.; Silva, L.G.; Lima, H.J.D.Á.; Bitencourtt, T.M.; Dallago, G.M. Egg quality of lay-ing hens fed diets with plant extracts. Acta Sci. Anim. Sci. 2019, 41, e43801. [Google Scholar] [CrossRef]
- Aktaran Bala, D.; Matur, E.; Ergul Ekiz, E.; Akyazi, I.; Ergen, E.; Erek, M.; Atmaca, G.; Eseceli, H.; Keten, M. Can dried tomato and red pepper powder be used as a dietary supplement to strengthen defence systems and production performance in laying hens. EPS/Arch. für Geflügelkunde 2020, 84, 1–15. [Google Scholar] [CrossRef]
- Hussain, S.; Gulfreen, E.; Abid, S.; Khalil, S.; Rizwan, M.; Batool, N.; Aziz, A.; Abid, H.M.U.; Mahmood, N. Investigating the Impact of Marigold Supplementation on Egg Yolk Color Intensity: A Study on Dietary Additives. J. Health Rehabil. Res. 2024, 4, 1744–1751. [Google Scholar] [CrossRef]
- Belyavin, C.G.; Marangos, A.G. Natural products for egg yolk pigmentation. In Recent Advances in Animal Nutrition; Haresign, W., Cole, D.J.A., Eds.; Butterworths: London, UK, 1987. [Google Scholar]
- Englmaierová, M.; Skrivan, M. Effect of synthetic carotenoids, lutein, and mustard on the performance and egg quality. Sci. Agric. Bohem. 2013, 44, 138–143. [Google Scholar] [CrossRef]
- Niu, Z.; Fu, J.; Gao, Y.; Liu, F. Influence of páprica extract supplement on egg quality of laying hens fed wheat-based diet. Int. J. Poult. Sci. 2008, 7, 887–889. [Google Scholar] [CrossRef]
- Lokaewmanee, K.; Yamauchi, K.; Komori, T.; Saito, K. Enhancement of egg yolk color by paprika combined with a probiotic. J. Appl. Poult. Res. 2011, 20, 90–94. [Google Scholar] [CrossRef]
- Moura, A.M.A.; Takata, F.N.; Nascimento, G.R.; Silva, A.F.; Melo, T.V.; Cecon, P.R. Pigmentantes naturais em rações à base de sorgo para codornas japonesas em postura. Rev. Bras. Zootec. 2011, 40, 2443–2449. [Google Scholar] [CrossRef]
- Lokaewmanee, K.; Yamauchi, K.; Okuda, N. Effects of dietary red pepper on egg yolk colour and histological intestinal morphology in laying hens. J. Anim. Physiol. Anim. Nutr. 2013, 97, 986–995. [Google Scholar] [CrossRef]
- Santos-Bocanegra, E.; Ospina-Osorio, X.; Oviedo-Rondon, E.O. Evaluation of xanthophylls extracted from Tagetes erectus (Marigold flower) and Capsicum sp. (Red pepper paprika) as a pigment for egg-yolks compare with Syn-thetic pigments. Int. J. Poult. Sci. 2004, 3, 685–689. [Google Scholar]
- Biacs, P.; Czinkotai, B.; Hoschke, A. Factors affecting stability of coloured substances in paprika. J. Agric. Food Chem. 1992, 40, 363–367. [Google Scholar] [CrossRef]
- Daood, H.G.; Palotás, G.; Palotás, G.; Somogyi, G.; Pék, Z.; Helyes, L. Carotenoid and antioxidant content of ground paprika from indoor-cultivated traditional varieties and new hybrids of spice red peppers. Int. Food Res. J. 2014, 65, 231–237. [Google Scholar] [CrossRef]
- Wang, M.; Tsao, R.; Zhang, S.; Dong, Z.; Yang, R.; Gong, J.; Pei, Y. Antioxidant activity, mutagenici-ty/anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers. Food Chem. Toxicol. 2006, 44, 1522–1529. [Google Scholar] [CrossRef]
- Tadesse, D.; Retta, N.; Girma, M.; Ndiwa, N.; Dessie, T.; Hanotte, O.; Getachew, P.; Dannenberger, D.; Maak, S. Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts. Foods 2023, 12, 1819. [Google Scholar] [CrossRef]
- Shahid, M.S.; Zhou, S.; Nie, W.; Wang, L.; Lv, H.; Yuan, J. Phytogenic antioxidants prolong n-3 fatty acid-enriched eggs’ shelf life by activating the Nrf-2 pathway through phosphorylation of MAPK. Foods 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Arija, I.; Viveros, A.; Chamorro, S. Productive performance, egg quality and yolk lipid oxidation in laying hens fed diets including grape pomace or grape extract. Animals 2022, 12, 1076. [Google Scholar] [CrossRef]
- Kara, K.; Kocaoğlu Güçlü, B.; Baytok, E.; Şentürk, M. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res. 2016, 44, 303–310. [Google Scholar] [CrossRef]
- Rezaei, M.; Zakizadeh, S.; Eila, N. Effects of pigments extracted from the marigold flower on egg quality and oxidative stability of the egg yolk lipids in laying hens. Iran. J. Appl. Anim. Sci. 2019, 9, 541–547. [Google Scholar]
- Cadun, A.; Įakli, Ş.; Kişla, D.; Dinįer, T.; Erdem, Ö.A. Effects of fibers on the quality of fish patties stored at (0–4 °C). J. Food Health Sci. 2015, 1, 211–219. [Google Scholar] [CrossRef]
Specifications | C | E1 | E2 | E3 |
---|---|---|---|---|
Red pepper extract, % | - | - | 0.07 | 0.05 |
Marigold extract, % | - | 0.07 | - | 0.02 |
Corn, % | 55.07 | 54.93 | 54.93 | 54.93 |
Soybean meal, % | 13.97 | 14.00 | 14.00 | 14.00 |
Sunflower meal, % | 16.00 | 16.00 | 16.00 | 16.00 |
Lysine, % | 0.26 | 0.26 | 0.26 | 0.26 |
Methionine, % | 0.23 | 0.23 | 0.23 | 0.23 |
Calcium carbonate, % | 8.77 | 8.77 | 8.77 | 8.77 |
Monocalcium phosphate, % | 1.01 | 1.01 | 1.01 | 1.01 |
Salt, % | 0.36 | 0.36 | 0.36 | 0.36 |
Soybean oil, % | 3.26 | 3.31 | 3.31 | 3.31 |
Choline 60% | 0.05 | 0.05 | 0.05 | 0.05 |
Phytase | 0.01 | 0.01 | 0.01 | 0.01 |
Premix *, 1% | 1.00 | 1.00 | 1.00 | 1.00 |
Total ingredients, % | 100.00 | 100.00 | 100.00 | 100.00 |
Calculated Analysis | ||||
Metabolizable energy, kcal/kg | 2.750 | 2.750 | 2.750 | 2.750 |
Crude protein, % | 17.00 | 17.00 | 17.00 | 17.00 |
Calcium, % | 3.90 | 3.90 | 3.90 | 3.90 |
Phosphorus, % | 0.38 | 0.38 | 0.38 | 0.38 |
Lysine, % | 0.94 | 0.94 | 0.94 | 0.94 |
Met + cist, % | 0.85 | 0.85 | 0.85 | 0.85 |
Threonine, % | 0.64 | 0.64 | 0.64 | 0.64 |
Chemical Analysis | ||||
Gamma tocopherol (mg/kg) | 7.31 | 8.79 | 8.13 | 8.06 |
Alpha-tocopherol (mg/kg) | 34.61 | 36.07 | 28.25 | 31.69 |
Lutein + zeaxanthin (ppm) | 9.90 | 22.19 | 9.06 | 14.77 |
Antioxidant capacity (µM Trolox) | 22.64 | 26.89 | 30.07 | 28.28 |
Total polyphenols, mg/g GAE | 4.31 | 4.89 | 4.54 | 4.74 |
Parameters | Red Pepper Extract Powder | Marigold Extract Powder |
---|---|---|
Proximate Composition | ||
Dry matter (DM), % | 92.79 | 94.84 |
Crude protein (CP), % | 0.25 | 5.15 |
Ether extract (EE), % | 4.21 | 0.23 |
Crude fiber (CF), % | 0.21 | 1.17 |
Ash, % | 55.54 | 50.74 |
Mineral Content | ||
Cooper (Cu), % | n.d. | 3.78 |
Iron (Fe), % | 284.26 | 1296.77 |
Manganese (Mn), % | 20.87 | 158.94 |
Zinc (Zn), % | n.d. | 33.71 |
Antioxidant Activity | ||
Total polyphenols, mg/g GAE | 5.32 | 3.64 |
Antioxidant capacity (μM Trolox/kg) | 22.80 | 52.82 |
Delta tocopherol (mg/kg) | n.d. | n.d. |
Gamma tocopherol (mg/kg) | 560.32 | 68.22 |
Alpha-tocopherol (mg/kg) | 199.43 | 150.11 |
Lutein + zeaxanthin (ppm) | 956.26 | 3786.66 |
Astaxanthin, (mg/kg) | 660.05 | n.d. |
Canthaxanthin (mg/kg) | 31.72 | n.d. |
Specifications | C | E1 | E2 | E3 | SEM | p-Value |
---|---|---|---|---|---|---|
Initial body weight (g/layer) | 1667.60 | 1624.60 | 1684.00 | 1657.00 | 18.500 | 0.71 |
Final body weight (g/layer) | 1830.52 | 1825.00 | 1894.20 | 1830.20 | 17.080 | 0.43 |
Average daily feed intake (g/hen/day) | 118.92 a | 116.21 b | 120.76 a | 119.96 a | 0.469 | <0.0001 |
Feed conversion rate (kg feed/kg egg) | 2.15 bc | 2.21 b | 2.22 b | 2.11 c | 0.017 | <0.0001 |
Laying rate intensity (%) | 89.02 | 89.21 | 89.02 | 90.33 | 0.531 | <0.110 |
Average egg weight (g) | 63.46 b | 63.17 b | 64.39 a | 64.37 a | 0.095 | <0.0001 |
Total egg weight (g) | 1393.65 | 1326 | 1406.95 | 1429.91 | 10.561 | <0.081 |
Specification | Egg Weight and Components | Albumen | Yolk | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole Egg Weight (g) | Albumen (g) | Yolk (g) | Eggshell (g) | Shell Thickness (mm) | Breaking Strengths (kgF) | pH Albumen | Albumen Height (mm) | Haugh Units | pH Yolk | Yolk Height (mm) | Yolk Diameter (mm) | Yolk Index | ||
3 weeks | C | 60.95 | 38.47 | 14.91 | 7.57 | 0.38 | 3.54 b | 8.29 d | 7.23 ab | 84.42 ab | 6.15 | 18.23 ab | 40.83 | 0.45 |
E1 | 62.25 | 40.44 | 14.38 | 7.44 | 0.38 | 4.08 ab | 8.44 cd | 8.23 a | 90.07 a | 6.37 | 17.78 ab | 39.73 | 0.45 | |
E2 | 61.57 | 38.48 | 15.27 | 7.82 | 0.39 | 4.85 a | 8.30 d | 7.63 ab | 86.68 ab | 6.43 | 17.12 ab | 41.78 | 0.41 | |
E3 | 61.57 | 38.67 | 15.32 | 7.58 | 0.37 | 4.57 ab | 8.36 d | 7.85 ab | 88.23 ab | 6.29 | 17.25 ab | 40.98 | 0.42 | |
6 weeks | C | 61.29 | 38.95 | 15.07 | 7.27 | 0.39 | 4.51 ab | 8.85 a | 7.16 ab | 83.60 ab | 6.33 | 17.92 ab | 39.91 | 0.45 |
E1 | 62.14 | 39.40 | 15.40 | 7.34 | 0.38 | 4.23 ab | 8.62 bc | 7.76 ab | 87.18 ab | 6.25 | 18.32 a | 40.67 | 0.45 | |
E2 | 61.32 | 38.97 | 15.22 | 7.13 | 0.39 | 4.42 ab | 8.67 ab | 6.68 b | 80.67 b | 6.22 | 17.51 ab | 41.21 | 0.43 | |
E3 | 60.87 | 38.07 | 15.64 | 7.17 | 0.38 | 4.42 ab | 8.69 ab | 7.18 ab | 83.90 ab | 6.16 | 17.16 ab | 41.63 | 0.41 | |
Main effects | ||||||||||||||
Group | C | 61.12 | 38.71 | 14.99 | 7.42 | 0.38 | 4.02 | 8.57 | 7.19 | 84.01 | 6.24 | 17.83 a | 40.37 | 0.45 a |
E1 | 62.19 | 39.92 | 14.89 | 7.38 | 0.37 | 4.15 | 8.53 | 8.00 | 88.62 | 6.31 | 17.81 a | 40.20 | 0.45 a | |
E2 | 61.44 | 38.73 | 15.24 | 7.47 | 0.38 | 4.64 | 8.49 | 7.16 | 83.68 | 6.33 | 17.32 ab | 41.50 | 0.42 b | |
E3 | 61.22 | 38.37 | 15.48 | 7.38 | 0.37 | 4.50 | 8.52 | 7.51 | 86.07 | 6.23 | 17.25 b | 41.31 | 0.42 b | |
SEM group | 0.412 | 0.435 | 0.258 | 0.141 | 0.004 | 0.199 | 0.030 | 0.225 | 1.34 | 0.064 | 0.183 | 0.554 | 0.008 | |
Period | ||||||||||||||
3 weeks | 61.58 | 39.01 | 14.97 | 7.60 a | 0.38 | 4.26 | 8.35 b | 7.74 a | 87.35 a | 6.31 | 17.60 | 40.83 | 0.43 | |
6 weeks | 61.41 | 38.85 | 15.33 | 7.23 b | 0.39 | 4.40 | 8.70 a | 7.19 b | 83.84 b | 6.24 | 17.72 | 40.85 | 0.44 | |
SEM period | 0.292 | 0.307 | 0.182 | 0.099 | 0.003 | 0.140 | 0.021 | 0.159 | 0.951 | 0.045 | 0.130 | 0.392 | 0.005 | |
Interaction (p-Value) | ||||||||||||||
group | 0.260 | 0.077 | 0.378 | 0.961 | 0.081 | 0.115 | 0.279 | 0.042 | 0.048 | 0.602 | 0.001 | 0.259 | 0.003 | |
period | 0.669 | 0.701 | 0.168 | 0.012 | 0.114 | 0.493 | 0.000 | 0.020 | 0.013 | 0.259 | 0.490 | 0.970 | 0.736 | |
period×group | 0.850 | 0.504 | 0.493 | 0.520 | 0.945 | 0.09 | 0.001 | 0.575 | 0.574 | 0.158 | 0.326 | 0.574 | 0.782 |
Specifications | Yolk Fan Color (DSM) | L* | a* | b* | |
---|---|---|---|---|---|
3 weeks | C | 4.83 d | 42.84 a | 0.49 d | 20.54 bc |
E1 | 7.33 c | 42.88 a | 2.80 bc | 27.51 a | |
E2 | 9.00 ab | 40.30 bc | 4.44 a | 20.62 bc | |
E3 | 9.67 a | 42.88 a | 4.42 a | 21.60 bc | |
6 weeks | C | 4.50 d | 42.06 ab | 0.12 d | 21.52 bc |
E1 | 6.89 c | 39.79 c | 2.21 c | 28.18 a | |
E2 | 8.78 ab | 40.13 bc | 3.52 ab | 18.99 c | |
E3 | 8.11 bc | 39.74 c | 3.00 bc | 22.67 b | |
Main effects | |||||
Group | C | 4.67 c | 42.45 a | 0.30 c | 21.03 bc |
E1 | 7.11 b | 41.34 ab | 2.50 b | 27.84 a | |
E2 | 8.89 a | 40.21 b | 3.98 a | 19.81 c | |
E3 | 8.89 a | 41.31 ab | 3.71 a | 22.14 b | |
SEM group | 0.222 | 0.331 | 0.169 | 0.458 | |
Period | |||||
3 weeks | 7.71 a | 42.23 a | 3.04 a | 22.57 a | |
6 weeks | 7.07 b | 40.43 b | 2.21 b | 22.84 a | |
SEM period | 0.157 | 0.234 | 0.120 | 0.324 | |
Interaction (p-Value) | |||||
group | 0.000 | 0.000 | 0.000 | 0.000 | |
period | 0.006 | 0.000 | 0.000 | 0.549 | |
period × group | 0.139 | 0.001 | 0.149 | 0.123 |
Specifications | Experimental Diets | SEM | p-Value | |||
---|---|---|---|---|---|---|
C | E1 | E2 | E3 | |||
Lutein + zeaxanthin (ppm) | 7.77 c | 28.67 a | 8.03 c | 12.35 b | 0.436 | 0.0001 |
Alfa tocopherol (ppm) | 158.48 | 179.34 | 160.43 | 163.74 | 6.01 | 0.167 |
Gama tocopherol (ppm) | 15.83 | 18.21 | 17.92 | 17.65 | 0.533 | 0.052 |
Vitamin E (ppm) | 174.31 | 197.55 | 178.35 | 181.39 | 6.44 | 0.166 |
Vitamin A (ppm) | 19.84 | 22.76 | 19.09 | 21.26 | 1.07 | 0.195 |
Antioxidant capacity (µM Trolox) | 0.54 b | 0.60 ab | 0.69 a | 0.60 ab | 0.033 | 0.067 |
Total polyphenols, mg/g GAE | 0.15 c | 0.19 bc | 0.29 a | 0.24 ab | 0.020 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matache, C.-C.; Cornescu, G.M.; Drăgotoiu, D.; Cișmileanu, A.E.; Untea, A.E.; Sărăcilă, M.; Panaite, T.D. Effects of Marigold and Paprika Extracts as Natural Pigments on Laying Hen Productive Performances, Egg Quality and Oxidative Stability. Agriculture 2024, 14, 1464. https://doi.org/10.3390/agriculture14091464
Matache C-C, Cornescu GM, Drăgotoiu D, Cișmileanu AE, Untea AE, Sărăcilă M, Panaite TD. Effects of Marigold and Paprika Extracts as Natural Pigments on Laying Hen Productive Performances, Egg Quality and Oxidative Stability. Agriculture. 2024; 14(9):1464. https://doi.org/10.3390/agriculture14091464
Chicago/Turabian StyleMatache, Cristina-Camelia, Gabriela Maria Cornescu, Dumitru Drăgotoiu, Ana Elena Cișmileanu, Arabela Elena Untea, Mihaela Sărăcilă, and Tatiana Dumitra Panaite. 2024. "Effects of Marigold and Paprika Extracts as Natural Pigments on Laying Hen Productive Performances, Egg Quality and Oxidative Stability" Agriculture 14, no. 9: 1464. https://doi.org/10.3390/agriculture14091464
APA StyleMatache, C. -C., Cornescu, G. M., Drăgotoiu, D., Cișmileanu, A. E., Untea, A. E., Sărăcilă, M., & Panaite, T. D. (2024). Effects of Marigold and Paprika Extracts as Natural Pigments on Laying Hen Productive Performances, Egg Quality and Oxidative Stability. Agriculture, 14(9), 1464. https://doi.org/10.3390/agriculture14091464