Automatic Paddy Planthopper Detection and Counting Using Faster R-CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Preparation
2.2. Data Training and Evaluation
2.3. Verification of the Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nodin, M.N.; Mustafa, Z.; Hussain, S.I. Eco-efficiency assessment of Malaysian rice self-sufficiency approach. Socioecon. Plann. Sci. 2023, 85, 101436. [Google Scholar] [CrossRef]
- Nodin, M.N.; Mustafa, Z.; Hussain, S.I. Assessing rice production efficiency for food security policy planning in Malaysia: A non-parametric bootstrap data envelopment analysis approach. Food Policy 2022, 107, 102208. [Google Scholar] [CrossRef]
- Gupta, A.; Sinha, D.K.; Nair, S. Shifts in Pseudomonas species diversity influence adaptation of brown planthopper to changing climates and geographical locations. iScience 2022, 25, 104550. [Google Scholar] [CrossRef] [PubMed]
- IRRI. “Planthopper-IRRI Rice Knowledge Bank”, IRRI Rice Knowledge Bank. Available online: http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/insects/item/planthopper (accessed on 26 September 2023).
- CABI International. Recilia dorsalis (Zigzag leafhopper); PlantwisePlus Knowledge Bank: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Green Leafhopper. Available online: http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/insects/item/green-leafhopper (accessed on 26 September 2023).
- Xiao, L.; Huang, L.-L.; He, H.-M.; Xue, F.-S.; Tang, J.-J. Life history responses of the small brown planthopper Laodelphax striatellus to temperature change. J. Therm. Biol. 2023, 115, 103626. [Google Scholar] [CrossRef]
- Horgan, F.G. Slowing virulence adaptation in Asian rice planthoppers through migration-based deployment of resistance genes. Curr. Opin. Insect Sci. 2023, 55, 101004. [Google Scholar] [CrossRef]
- Bookeri, M.A.M.; Masaruddin, M.F.; Shah, N.A.A.; Noh, A.M.; Samsuri, N.S.; Abu Bakar, B.H.; Khadzir, M.K. Evaluation of Light Trap System in Monitoring of Rice Pests, Brown Planthopper (Nilaparvata lugens). Adv. Agric. Food Res. J. 2021, 3, a0000187. [Google Scholar] [CrossRef]
- Georgantopoulos, P.S.; Papadimitriou, D.; Constantinopoulos, C.; Manios, T.; Daliakopoulos, I.N.; Kosmopoulos, D. A Multispectral Dataset for the Detection of Tuta absoluta and Leveillula taurica in Tomato Plants. Smart Agric. Technol. 2023, 4, 100146. [Google Scholar] [CrossRef]
- Yasmin, R.; Das, A.; Rozario, L.J.; Islam, M.E. Butterfly detection and classification techniques: A review. Intell. Syst. Appl. 2023, 18, 200214. [Google Scholar] [CrossRef]
- Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [Google Scholar] [CrossRef]
- Wu, X.; Zhan, C.; Lai, Y.-K.; Cheng, M.-M.; Yang, J. IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8779–8788. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale Invariant Feature Transform. Comput. Sci. Comput. Vis. Robot. (Auton. Syst.) 2012, 7, 10491. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification With Deep Convolutional Neural Networks. Commun. Acm 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions 2014. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, M.L.; Chuang, T.C.; Liao, Y.C. Application of transfer learning and image augmentation technology for tomato pest identification. Sustain. Comput. Inform. Syst. 2022, 33, 100646. [Google Scholar] [CrossRef]
- Yu, H.; Liu, J.; Chen, C.; Heidari, A.A.; Zhang, Q.; Chen, H. Optimized deep residual network system for diagnosing tomato pests. Comput. Electron. Agric. 2022, 195, 106805. [Google Scholar] [CrossRef]
- Wei, D.; Chen, J.; Luo, T.; Long, T.; Wang, H. Classification of crop pests based on multi-scale feature fusion. Comput. Electron. Agric. 2022, 194, 106736. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object detection. Expert. Syst. Appl. 2021, 172, 114602. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Comput. Vis. Pattern Recognit. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef]
- Islam, M.A.; Shuvo, M.N.R.; Shamsojjaman, M.; Hasan, S.; Hossain, M.S.; Khatun, T. An Automated Convolutional Neural Network Based Approach for Paddy Leaf Disease Detection. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [Google Scholar] [CrossRef]
- Hong, S.J.; Nam, I.; Kim, S.Y.; Kim, E.; Lee, C.H.; Ahn, S.; Park, I.K.; Kim, G. Automatic pest counting from pheromone trap images using deep learning object detectors for matsucoccus thunbergianae monitoring. Insects 2021, 12, 342. [Google Scholar] [CrossRef]
- Nam, N.T.; Hung, P.D. Pest detection on traps using deep convolutional neural networks. In Proceedings of the ACM International Conference Proceeding Series, Tokyo, Japan, 25–28 November 2018; Association for Computing Machinery: New York, NY, USA; pp. 33–38. [Google Scholar]
- Guo, Q.; Wang, C.; Xiao, D.; Huang, Q. An enhanced insect pest counter based on saliency map and improved non-maximum suppression. Insects 2021, 12, 705. [Google Scholar] [CrossRef]
- Ye, Y.; Huang, Q.; Rong, Y.; Yu, X.; Liang, W.; Chen, Y.; Xiong, S. Field detection of small pests through stochastic gradient descent with genetic algorithm. Comput. Electron. Agric. 2023, 206, 107694. [Google Scholar] [CrossRef]
- Patel, D.; Bhatt, N. Improved accuracy of pest detection using augmentation approach with Faster R-CNN. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1042, 012020. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Li, M.; Gao, Y.; Wu, J.; Yang, X. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Comput. Electron. Agric. 2021, 183, 106048. [Google Scholar] [CrossRef]
- Xia, C.; Chon, T.S.; Ren, Z.; Lee, J.M. Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Ecol. Inform. 2015, 29, 139–146. [Google Scholar] [CrossRef]
- Zhao, N.; Zhou, L.; Huang, T.; Taha, M.F.; He, Y.; Qiu, Z. Development of an automatic pest monitoring system using a deep learning model of DPeNet. Meas. J. Int. Meas. Confed. 2022, 203, 111970. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Shariff, A.R.M.; Aris, I.; Halin, I.A. A four stage image processing algorithm for detecting and counting of bagworm, metisa plana walker (Lepidoptera: Psychidae). Agric. Switz. 2021, 11, 1265. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Li, J.; Jian, F.; Jayas, D.S. Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 2018, 145, 319–325. [Google Scholar] [CrossRef]
- Lee, S.H.; Gao, G. A Study on Pine Larva Detection System Using Swin Transformer and Cascade R-CNN Hybrid Model. Appl. Sci. Switz. 2023, 13, 1330. [Google Scholar] [CrossRef]
- Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y. A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves. Agric. Switz. 2022, 12, 248. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, L.; Li, B.; Liu, X.; Xu, W.; Li, J. Recognition and counting of typical apple pests based on deep learning. Ecol. Inform. 2022, 68, 101556. [Google Scholar] [CrossRef]
- Yue, H.; Cai, K.; Lin, H.; Man, H.; Zeng, Z. A markov random field model for image segmentation of rice planthopper in rice fields. J. Eng. Sci. Technol. Rev. 2016, 9, 31–38. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Lin, X.; Liu, D. Classification of rice planthoppers based on shape descriptors. J. Eng. 2019, 2019, 8378–8382. [Google Scholar] [CrossRef]
- Hongwei, Y.; Ken, C.; Hanhui, L.; Zhihui, C.; Zhaofeng, Z. Segmentation of rice planthoppers in rice fields based on an improved level-set approach. INMATEH-Agric. Eng. 2016, 48, 67–74. [Google Scholar]
- Ayob, M.Z.; Rahman, A.H.A.; Kadir, M.K.A.; Hashim, N.H.I.; Sahlan, N.S.; Hassim, M.D. Prototype development of brown planthopper (BPH) detector and data logger. In Proceedings of the 2014 4th International Conference on Engineering Technology and Technopreneuship (ICE2T), Kuala Lumpur, Malaysia, 27–29 August 2014; pp. 252–255. [Google Scholar] [CrossRef]
- YAO, Q.; CHEN, G.-t; WANG, Z.; ZHANG, C.; YANG, B.-j; TANG, J. Automated detection and identification of white-backed planthoppers in paddy fields using image processing. J. Integr. Agric. 2017, 16, 1547–1557. [Google Scholar] [CrossRef]
- Watcharabutsarakham, S.; Methasate, I.; Watcharapinchai, N.; Sinthupinyo, W.; Sriratanasak, W. An approach for density monitoring of brown planthopper population in simulated paddy fields. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 22–25. [Google Scholar] [CrossRef]
- Yao, Q.; Xian, D.-x.; Liu, Q.-j.; Yang, B.-j.; Diao, G.-q.; Tang, J. Automated counting of rice planthoppers in paddy fields based on image processing. J. Integr. Agric. 2014, 13, 1736–1745. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Khairunniza-Bejo, S.; Hanafi, M.; Jahari, M.; Ahmad Saad, F.S.; Mhd Bookeri, M.A. Deep CNN-Based Planthopper Classification Using a High-Density Image Dataset. Agric. Switz. 2023, 13, 1155. [Google Scholar] [CrossRef]
- HumanSignal, ‘labelImg’, GitHub repository. 2024. Available online: https://github.com/HumanSignal/labelImg/tree/master (accessed on 1 April 2024).
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Tensorflow “Object Detection” GitHub. Available online: https://github.com/tensorflow/models/tree/master/research/object_detection (accessed on 28 May 2024).
- Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, D.; Gupta, S. Identification of Alzheimer’s disease from MRI image employing a probabilistic deep learning-based approach and the VGG16. 2023; preprint. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Nazri, A.; Mazlan, N.; Muharam, F. PENYEK: Automated brown planthopper detection from imperfect sticky pad images using deep convolutional neural network. PLoS ONE 2018, 13, e0208501. [Google Scholar] [CrossRef] [PubMed]
Model | Inference Time (ms) | mAP (%) |
---|---|---|
Faster R-CNN Resnet 50 | 12.71 | 92.95 |
Faster R-CNN Resnet 101 | 14.42 | 94.77 |
Faster R-CNN Resnet 152 | 15.16 | 96.63 |
Faster R-CNN VGG 16 | 13.73 | 97.69 |
Model | Accuracy by Class (%) | ||||
---|---|---|---|---|---|
BPH | GLH | WBPH | ZIGZAG | BENIGN | |
Faster R-CNN Resnet 50 | 96.8 | 99.9 | 95.5 | 94.3 | 74.7 |
Faster R-CNN Resnet 101 | 96.5 | 100 | 96.3 | 95.3 | 85.8 |
Faster R-CNN Resnet 152 | 98.7 | 100 | 97.9 | 95.8 | 90.8 |
Faster R-CNN VGG 16 | 99.8 | 100 | 99.4 | 95.8 | 93.5 |
Light Trap | Model Detection Results | Verification Results | |||||
---|---|---|---|---|---|---|---|
BPH | GLH | WBPH | ZIGZAG | Total | Misclassified | Undetected | |
1 | 295 | 258 | 265 | 252 | 1070 | 4 | 270 |
2 | 559 | 1784 | 371 | 1348 | 4062 | 20 | 1252 |
3 | 173 | 468 | 664 | 687 | 1992 | 11 | 859 |
4 | 820 | 106 | 419 | 785 | 2130 | 6 | 504 |
5 | 8 | 70 | 23 | 4 | 105 | 9 | 37 |
6 | 7 | 29 | 16 | 3 | 55 | 4 | 16 |
7 | 2 | 6 | 8 | 0 | 16 | 1 | 7 |
8 | 5 | 25 | 73 | 0 | 103 | 6 | 31 |
9 | 2 | 17 | 45 | 16 | 80 | 0 | 11 |
10 | 7 | 2 | 121 | 0 | 130 | 7 | 27 |
11 | 98 | 3 | 230 | 160 | 491 | 5 | 101 |
12 | 32 | 2 | 10 | 8 | 52 | 11 | 1 |
13 | 80 | 8 | 103 | 203 | 394 | 31 | 210 |
14 | 33 | 62 | 30 | 765 | 890 | 0 | 114 |
15 | 60 | 5 | 45 | 190 | 300 | 2 | 101 |
16 | 164 | 96 | 152 | 846 | 1258 | 20 | 194 |
17 | 46 | 13 | 54 | 349 | 462 | 21 | 50 |
18 | 173 | 430 | 99 | 2812 | 3514 | 59 | 1069 |
19 | 38 | 29 | 22 | 207 | 296 | 6 | 33 |
20 | 294 | 259 | 118 | 1297 | 1968 | 2 | 465 |
Total | 2896 | 3672 | 2868 | 9932 | 19,368 | 225 | 5352 |
Density Level | Number of Images | Number of Detected Planthopper Classes | Verification Results | ||||
---|---|---|---|---|---|---|---|
BPH | GLH | WBPH | ZIGZAG | Misclassified | Undetected | ||
High | 290 | 525 | 1162 | 432 | 2814 | 29 (0.1%) | 1672 (5.77%) |
Low | 6170 | 2371 | 2510 | 2436 | 7118 | 196 (0.03%) | 3680 (0.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairunniza-Bejo, S.; Ibrahim, M.F.; Hanafi, M.; Jahari, M.; Ahmad Saad, F.S.; Mhd Bookeri, M.A. Automatic Paddy Planthopper Detection and Counting Using Faster R-CNN. Agriculture 2024, 14, 1567. https://doi.org/10.3390/agriculture14091567
Khairunniza-Bejo S, Ibrahim MF, Hanafi M, Jahari M, Ahmad Saad FS, Mhd Bookeri MA. Automatic Paddy Planthopper Detection and Counting Using Faster R-CNN. Agriculture. 2024; 14(9):1567. https://doi.org/10.3390/agriculture14091567
Chicago/Turabian StyleKhairunniza-Bejo, Siti, Mohd Firdaus Ibrahim, Marsyita Hanafi, Mahirah Jahari, Fathinul Syahir Ahmad Saad, and Mohammad Aufa Mhd Bookeri. 2024. "Automatic Paddy Planthopper Detection and Counting Using Faster R-CNN" Agriculture 14, no. 9: 1567. https://doi.org/10.3390/agriculture14091567
APA StyleKhairunniza-Bejo, S., Ibrahim, M. F., Hanafi, M., Jahari, M., Ahmad Saad, F. S., & Mhd Bookeri, M. A. (2024). Automatic Paddy Planthopper Detection and Counting Using Faster R-CNN. Agriculture, 14(9), 1567. https://doi.org/10.3390/agriculture14091567