Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danta, S. Lietuvos Juodgalvių Avių Veilslė ir Tolesnio Jos Tobulinimo Priemonės. Ph.D. Thesis, Institutes of Animal Science, Baisogala, Lithuania, 1962; pp. 40–56. [Google Scholar]
- Šveistienė, E. Lietuvos Avininkystė (Nuo Seniausių Laikų iki 1990 m); UAB Litera: Baisogala, Lithuania, 2010; pp. 17–31. [Google Scholar]
- Sveistiene, R.; Tapio, M. SNPs in Sheep: Characterization of Lithuanian Sheep populations. Animals 2021, 11, 2651. [Google Scholar] [CrossRef] [PubMed]
- Kupčinskas, T.; Stadalienė, I.; Šarkūnas, M.; Riškevičienė, V.; Várady, M.; Höglund, J.; Petkevičius, S. Prevalence of anthelmintic resistance on Lithuanian sheep farms assessed by in vitro methods. Acta Vet. Scand. 2015, 57, 88. [Google Scholar] [CrossRef] [PubMed]
- Šveistienė, R.; Razmaitė, V. Animal genetic resources in Lithuania. Slovak J. Anim. Sci. 2013, 46, 131–136. [Google Scholar]
- 3D-465 Dėl Lietuvos Ūkinių Gyvūnų Genetinių Išteklių Išsaugojimo Programos Administravimo Taisyklių Patvirtinimo. Available online: https://e-seimas.lrs.lt/portal/legalActEditions/lt/TAD/TAIS.326502 (accessed on 12 November 2024).
- Zapasnikiene, B. The prospects of sheep breeds raised in Lithuania. Vet. Med. Zoot. 2001, 15, 131–134. [Google Scholar]
- Stock, J.; Bennewitz, J.; Hinrichs, D.; Wellmann, R. A review of genomic models for the analysis of livestock crossbred data. Front. Genet. 2020, 11, 568. [Google Scholar] [CrossRef]
- Van Arendonk, J.A.M. The role of reproductive etechnologies in breeding schemes for livestock populations in developing countries. Livest. Sci. 2011, 136, 29–37. [Google Scholar] [CrossRef]
- Freyer, G.; Konig, S.; Fischer, B.; Bergfeld, U.; Cassell, B.G. Invited review: Crossbreeding in dairy cattle from a German perspective of the past and today. J. Dairy Sci. 2008, 91, 3725–3743. [Google Scholar] [CrossRef]
- Trapina, I.; Kairisa, D.; Paramonova, N. Analysing the Cost of Concentrated Feed and Income from Meat in Relation to Relative Growth Rate and Kleiber’s Ratio in Intensive Fattening of Latvian Dark-Headed Lambs. Agriculture 2024, 14, 593. [Google Scholar] [CrossRef]
- Abdoli, R.; Zamani, P.; Mirhoseini, S.Z.; Ghavi Hossein-Zadeh, N.; Nadri, S. A review on prolificacy genes in sheep. Reprod. Dom. Anim. 2016, 51, 631–637. [Google Scholar] [CrossRef]
- Notter, D.R. Effects of ewe age and season of lambing on prolificacy in US Targhee, Suffolk, and Polypay sheep. Small Rumin. Res. 2000, 38, 1–7. [Google Scholar] [CrossRef]
- Murphy, T.W.; Keele, J.W.; Freking, B.A. Genetic and nongenetic factors influencing ewe prolificacy and lamb body weight in a closed Romanov flock. J. Anim. Sci. 2020, 98, skaa283. [Google Scholar] [CrossRef] [PubMed]
- Tornero, C.; Balasse, M.; Bréhard, S.; Carrère, I.; Fiorillo, D.; Guilaine, J.; Vigne1, J.-D.; Manen, C. Early evidence of sheep lambing de-seasoning in the Western Mediterranean in the sixth millennium BCE. Sci. Rep. 2020, 10, 12798. [Google Scholar] [CrossRef] [PubMed]
- Kern, G.; Kemper, N.; Traulsen, I.; Henze, C.; Stamer, E.; Krieter, J. Analysis of different effects on longevity in four sheep breeds of northern Germany. Small Rumin. Res. 2010, 90, 71–74. [Google Scholar] [CrossRef]
- Gootwine, E. Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep. Small Rumin. Res. 2020, 186, 106090. [Google Scholar] [CrossRef]
- Gudra, D.; Valdovska, A.; Kairisa, D.; Galina, D.; Jonkus, D.; Ustinova, M.; Viksne, K.; Kalnina, I.; Fridmanis, D. Genomic diversity of the locally developed Latvian Darkheaded sheep breed. Heliyon 2024, 10, e31455. [Google Scholar] [CrossRef]
- Ozolins, I. Characteristics of Sheep Farming Sector and Its Development in LATVIA; Economic Science for Rural Development No. 34; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2014; ISSN 1691-3078. ISBN 978-9934-8466-1-8. [Google Scholar]
- Ekiz, B.; Altinel, A. The Growth and Survival Characteristics of Lambs Produced by Commercial Crossbreeding Kıvırcık Ewes with F_2 Rams with the German Black-Headed Mutton Genotype. Turk. J. Vet. Anim. Sci. 2006, 30, 507–512. Available online: https://journals.tubitak.gov.tr/veterinary/vol30/iss6/1 (accessed on 12 November 2024).
- Ceyhan, A.; Sezenler, T.; Erdoğan, İ.; Torun, O. Improvement studies on mutton sheep for Marmara region conditions: I. fertility, lamb survival, and growth traits of lambs. Turk. J. Vet. Anim. Sci. 2011, 35, 79–86. [Google Scholar] [CrossRef]
- Gavojdian, D.; Sauer, M.; Pacala, N.; Padeanu, I.; Voia, S. Improving growth rates in Turcana Indigenous sheep breed using German Blackheaded Mutton rams. Scientific Papers: Anim. Sci. Biotechnol. 2011, 44, 379–382. [Google Scholar]
- Duman, L.; Răducuță, I.; Ilişiu, E.; Marin, A.; Ciurea, A.-M.; Dreve, V.; Bucătaru, T.; Călin, I. improvement of meat lamb production in Mures county by crossbreeding of local TsigaI breed with German Blackheaded breed. Sci. Papers. Series D Anim. Sci. 2017, LX, 226–230. [Google Scholar]
- Justinski, C.; Wilkens, J.; Distl, O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals 2023, 13, 3547. [Google Scholar] [CrossRef]
- Ajafar, M.H.; Kadhim, A.H.; AL-Thuwaini, T.M. The reproductive traits of sheep and their influencing factors. Rev. Agric. Sci. 2022, 10, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Gül, S.; Keskin, M.; Biçer, O.; Gündüz, Z.; Behrem, S. Effects of different lambing season on some reproductive characteristics of ewes and growth performance of lambs in Awassi sheep. Livest. Stud. 2020, 60, 32–36. [Google Scholar] [CrossRef]
- Drobik, W.; Martyniuk, E. Factors affecting prolificacy and lambs rearing results in Olkuska sheep population. Ann. Warsaw Univ. Life Sci. 2014, 53, 85–94. [Google Scholar]
- Bartlewski, P.M.; Baby, T.E.; Giffin, J.L. Reproductive cycles in sheep. Anim. Reprod. Sci. 2011, 124, 259–268. [Google Scholar] [CrossRef]
- Gómez-Brunet, A.; Santiago-Moreno, J.; Toledano-Diaz, A.; López-Sebastián, A. Reproductive seasonality and its control in Spanish sheep and goats. Trop. Subtrop. Agroecosystems 2012, 15 (Suppl. 1), S47–S70. [Google Scholar]
- Zapasnikienė, B. The effect of age of ewes and lambing season on litter size and weight of lambs. Vet. Med. Zoot. 2002, 19, 112–115. [Google Scholar]
- Zapasnikienė, B. Effects of lambing season on ewe fertility and progeny weight. Gyvulininkystė 2009, 53, 17–29. [Google Scholar]
- Wilke, E. Breeding aims and development of the German Blackheaded Mutton sheep. Tierzuchter 1978, 30, 284–285. [Google Scholar]
- Notter, D.R. Genetic aspects of reproduction in sheep. Reprod. Dom. Anim. 2008, 43 (Suppl. S2), 122–128. [Google Scholar] [CrossRef]
- Casas, E.; Freking, B.A.; Leymaster, K.A. Evaluation of Dorset, Finnsheep, Romanov, Texel, and Montadale breeds of sheep: V. Reproduction of F1 ewes in spring mating seasons. J. Anim. Sci. 2005, 83, 2743–2751. [Google Scholar] [CrossRef]
- Đuričić, D.; Benić, M.; Žura Žaja, I.; Valpotić, H.; Samardžija, M. Influence of season, rainfall and air temperature on the reproductive efficiency in Romanov sheep in Croatia. Int. J. Biometeorol. 2019, 63, 817–824. [Google Scholar] [CrossRef]
Genotype | Litter Size | N | % | Birth Weight | ||
---|---|---|---|---|---|---|
Mean ± SE | Min | Max | ||||
LBF | 1 | 2866 | 51.62 | 4.32 ± 0.02 | 4.29 | 4.35 |
2 | 2575 | 47.64 | 3.90 ± 0.02 | 3.86 | 3.93 | |
3 | 36 | 0.73 | 3.58 ± 0.15 | 3.29 | 3.87 | |
6.25 GBM | 1 | 62 | 80.45 | 4.50 ± 0.11 | 4.27 | 4.72 |
2 | 23 | 19.55 | 3.88 ± 0.19 | 3.52 | 4.25 | |
3 | - | - | - | - | - | |
12.5 GBM | 1 | 142 | 62.3 | 4.28 ± 0.08 | 4.14 | 4.43 |
2 | 86 | 37.7 | 3.82 ± 0.10 | 3.63 | 4.01 | |
3 | - | - | - | - | - | |
25 GBM | 1 | 90 | 63.83 | 3.95 ± 0.09 | 3.76 | 4.13 |
2 | 51 | 36.17 | 3.65 ± 0.13 | 3.41 | 3.90 | |
3 | - | - | ||||
50 GBM | 1 | 38 | 61.29 | 4.04 ± 0.15 | 3.76 | 4.33 |
2 | 24 | 38.71 | 3.93 ± 0.18 | 3.57 | 4.29 | |
3 | - | - | - | - | - |
Weight | Genotype | Litter Size | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
LBF (n = 4925) | 6.25%GBM (n = 85) | 12.5% GBM (n = 227) | 25% GBM (n = 141) | 50% GBM (n = 62) | 1 (n = 2866) | 2 (n = 2574) | G | LS | |
At birth | 4.0 ± 0.10 | 4.3 c ± 0.16 | 4.0 d,a ± 0.09 | 3.7 b ± 0.14 | 4.00 ± 0.16 | 4.2 ± 0.08 | 3.8 ± 0.08 | 0.155 | <0.001 |
2 months | 16.7 e ± 0.30 | 16.5 e ± 0.91 | 15.1 e ± 0.56 | 11.6 f ± 0.63 | 13.7 ± 2.50 | 15.9 ± 0.48 | 13.9 ± 0.42 | <0.001 | 0.041 |
3 months | 19.4 ± 0.59 | 20.1 ± 0.59 | 20.4 ± 0.47 | 19.0 ± 1.15 | 21.5 ± 1.25 | 20.7 ± 0.41 | 19.0 ± 0.47 | 0.630 | 0.141 |
4 months | 22.4 c ± 0.66 | 22.5 ± 1.97 | 25.1 a,d ± 0.74 | 22.0 b ± 0.99 | 20.1 b ± 2.27 | 23.5 ± 0.67 | 21.9 ± 0.64 | 0.013 | 0.206 |
8 months | 37.8 a ± 0.84 | 40.0 ± 3.42 | 39.7 d,a ± 0.85 | 41.7 b ± 1.25 | 41.5 ± 2.34 | 40.3 ± 0.84 | 39.0 ± 0.81 | 0.033 | 0.683 |
12 months | 41.2 f ± 0.72 | 53.8 e ± 1.58 | 45.8 f ± 0.71 | 44.6 f ± 1.39 | 40.8 f ± 2.90 | 45.7 ± 0.57 | 43.2 b ± 0.80 | <0.001 | 0.108 |
Weight | Season | Sex | p-Value | ||||
---|---|---|---|---|---|---|---|
Winter (n = 3892) | Spring (n = 1484) | Summer (n = 62) | Male (n = 2647) | Female (n = 2793) | Season | Sex | |
At birth | 4.0 ± 0.05 | 4.1 ± 0.09 | 4.1 ± 0.25 | 4.1 ± 0.12 | 3.9 ± 0.12 | 0.901 | 0.521 |
At 2 months | 14.6 ± 0.49 | 14.6 ± 0.48 | 17.1 ± 0.93 | 15.1 ± 0.44 | 15.1 ± 0.44 | 0.174 | 0.556 |
At 3 months | 20.9 e ± 0.29 | 19.1 f ± 0.38 | 18.9 ± 1.53 | 20.2 ± 0.40 | 19.6 ± 0.47 | 0.014 | 0.776 |
At 4 months | 22.3 ± 0.61 | 22.9 ± 0.76 | 23.2 ± 1.34 | 22.5 ± 0.73 | 23.1 ± 0.56 | 0.687 | 0.582 |
At 8 months | 40.9 ± 0.67 | 37.7 ± 1.10 | 41.8 ± 2.34 | 41.5 ± 0.80 | 37.9 ± 0.92 | 0.182 | <0.001 |
At 12 months | 44.9 ± 0.67 | 44.3 ± 0.67 | 42.4 ± 2.41 | 46.7 ± 0.74 | 42.5 ± 0.66 | 0.135 | 0.147 |
Weight | Genotype × Litter Size | Genotype × Sex | Genotype × Season | Season × Litter Size | Season × Sex |
---|---|---|---|---|---|
At birth | 0.612 | 0.905 | 0.701 | 0.469 | 0.731 |
At 2 months | 0.863 | 0.187 | 0.301 | 0.861 | 0.970 |
At 3 months | 0.458 | 0.948 | 0.107 | 0.023 | 0.710 |
At 4 months | 0.137 | 0.422 | 0.032 | 0.788 | 0.703 |
At 8 months | 0.230 | 0.010 | 0.105 | 0.580 | 0.008 |
At 12 months | 0.488 | 0.189 | 0.020 | 0.229 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šveistienė, R.; Razmaitė, V. Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality. Agriculture 2025, 15, 31. https://doi.org/10.3390/agriculture15010031
Šveistienė R, Razmaitė V. Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality. Agriculture. 2025; 15(1):31. https://doi.org/10.3390/agriculture15010031
Chicago/Turabian StyleŠveistienė, Rūta, and Violeta Razmaitė. 2025. "Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality" Agriculture 15, no. 1: 31. https://doi.org/10.3390/agriculture15010031
APA StyleŠveistienė, R., & Razmaitė, V. (2025). Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality. Agriculture, 15(1), 31. https://doi.org/10.3390/agriculture15010031