Response of Phaseolus vulgaris to the Use of Growth-Promoting Microorganisms Associated with the Reduction of NPK Fertilization in Tropical Soils: Clayey Oxisol and Sandy Ultisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization and Location of the Experimental Area
2.2. Treatments and Experimental Design
2.3. Installation and Conduct of the Experiment
2.4. Statistical Analysis of Data
3. Results
3.1. Analysis for Unidirectional Statistics in Clayey and Sandy Soils
3.2. Evaluation of the Outcomes of Experiments Conducted in Clayey and Sandy Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amani Machiani, M.; Rezaei-Chiyaneh, E.; Javanmard, A.; Maggi, F.; Morshedloo, M.R. Evaluation of common bean (Phaseolus vulgaris L.) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare Mill.) and dragonhead (Dracocephalum moldavica L.) in intercropping system under humic acid application. J. Clean. Prod. 2019, 235, 112–122. [Google Scholar] [CrossRef]
- Araujo, J.; Urbano, B.; González-Andrés, F. Comparative environmental life cycle and agronomic performance assessments of nitrogen fixing rhizobia and mineral nitrogen fertiliser applications for pulses in the Caribbean region. J. Clean. Prod. 2020, 267, 122065. [Google Scholar] [CrossRef]
- Tosto, S.G.; Wander, A.E.; Pereira, L.C.; Mangabeira, J.D.C.; Coelho, G.C. Diagnóstico Socioeconômico da Cultura do Feijão no Brasil; Embrapa Monitoramento por Satélite. Documentos 2012, 94; 2012; 24p. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/959522/1/DC94.pdf (accessed on 17 September 2024).
- da Eira Aguiar, A.T.; Gonçalves, C.; Paterniani, M.E.A.G.Z.; Tucci, M.L.S.A.; de Castro, C.E.F. Boletim 200. Instruções Agrícolas Para Princ. Cult. Econômicas 2014, 7, 170–173. [Google Scholar]
- De Ron, A.; Papa, R.; Bitocchi, E.; Gónzález, M.A.; Debouck, G.D.; Tijolo, A.M.; Fourie, D.; Marsolais, F.; Castor, J.; Geffroy, V.; et al. Common Bean. In Grain Legumes, Handbook of Plant Breeding; De Ron, A., Ed.; Springer: New York, NY, USA, 2015; Volume 10. [Google Scholar] [CrossRef]
- Conab. Companhia Nacional de Abastecimento Acompanhamento de Safra Brasileiro–Grãos: Quinto Levantamento, Janeiro 2023–Safra 2022/2023. 2023. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/905-feijao (accessed on 15 August 2024).
- Crusciol, C.A.C.; Soratto, R.P.; Silva, L.M.D.; Lemos, L.B. Fontes e doses de nitrogênio para o feijoeiro em sucessão a gramíneas no sistema plantio direto. Rev. Bras. Ciênc. Solo 2007, 31, 1545–1552. [Google Scholar] [CrossRef]
- Oliveira, M.G.d.C.; Oliveira, L.F.C.d.; Wendland, A.; Guimarães, C.M.; Quintela, E.D.; Barbosa, F.R.; Carvalho, M.C.S.; Lobo Junior, M.; Silveira, P.M. Conhecendo a Fenologia do Feijoeiro e Seus Aspectos Fitotécnicos; EMBRAPA: Brasília, Brazil, 2018. [Google Scholar]
- Grant, C.A.; Flaten, D.N.; Tomasiewicz, D.J.; Sheppard, S.C. The importance of early season phosphorus nutrition. Can. J. Plant Sci. 2001, 81, 211–224. [Google Scholar] [CrossRef]
- Souto, J.S.; de Oliveira, F.T.; Gomes MM, S.; do Nascimento, J.P.; Souto, P.C. Efeito da aplicação de fósforo no desenvolvimento de plantas de feijão guandu: Cajanus cajan L. Mill sp. Rev. Verde Agroecol. Desenvolv. Sustentável 2009, 4, 135–140. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Absorção e transporte. Fisiologia e desenvolvimento vegetal. Bras. Artmed Ed. 2017, 6, 59–63. [Google Scholar]
- Maia, S.C.M.; Soratto, R.P.; Liebe, S.M.; Almeida, A.Q.D. Criteria for topdressing nitrogen application to common bean using chlorophyll meter. Pesq. Agropec. Bras. 2017, 52, 512–520. [Google Scholar] [CrossRef]
- Silva, E.M.D.; Santos, M.M.; Lopes, M.B.S.; Fidelis, R.R.; Rocha, W.S.; Rocha, W.S.; Chagas Júnior, A.F. Eficiência de rizóbios sob doses de fósforo na cultura do feijão-caupi. RBAS 2019, 9. [Google Scholar] [CrossRef]
- Wutke, B.E.; Chiorato, F.A.; Esteves, F.A.J.; Carbonell, M.A.S.; Ambrosano, J.E.; Lemos, B.L.; Soratto, P.R.; Arf, O.; Cantarella, H. Boletim 100: Recomendações de Adubação e Calagem Para o Estado de São Paulo; Instituto Agronômico de Campinas (IAC) Campinas: Campinas, Brazil, 2022; pp. 86–94. [Google Scholar]
- Hungria, M.; Campo, R.J.; Mendes, I.C. A Importância do Processo de Fixação Biológica do Nitrogênio para a Cultura da Soja: Componente Essencial Para a Competitividade do Produto Brasileiro; Documentos, 283; Embrapa-Soja: Londrina, Brazil, 2007; 80p. [Google Scholar]
- Reetz, H.F. Fertilizers and Their Efficient Use; International Fertilizer industry Association, IFA: Paris, France, 2016. [Google Scholar]
- Stewart, B.A.; Lal, R. The Nitrogen Dilemma: Food or the Environment. J. Soil Water Conserv. 2017, 72, 124A–128A. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A. Tecnologias de Inoculação da Cultura da Soja: Mitos, Verdades e Desafios; Boletim; Fundação MT: Rondonópolis, Brazil, 2019; Volume 19, pp. 50–62. [Google Scholar]
- Silva, C.A.R.d. Produção Integrada do Feijão Comum; Ministério da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 2022. [Google Scholar]
- Ministério da Agricultura e Pecuária The National Plan of Fertilizer. 2022. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/plano-nacional-de-fertilizantes/o-plano-nacional-de-fertilizantes (accessed on 11 September 2024).
- Hungria, M.; Campo, R.J.; Mendes, I.C. Fixação Biológica do Nitrogênio na Cultura da Soja; Circular Técnica: Londrina, Brazil, 2001; pp. 11–17. [Google Scholar]
- Meyer, M.C. Bioinsumos na Cultura da Soja; Embrapa: Brasília, Brazil, 2022; pp. 142–158. [Google Scholar]
- Hungria, M.; Mendes, I.C.; Mercante, F.M. A Fixação Biológica do Nitrogênio como Tecnologia de Baixa Emissão de Carbono para as culturas do Feijoeiro e da Soja; Documentos, 337; Embrapa-Soja: Londrina, Brazil, 2013; 24p. [Google Scholar]
- Pankievicz, V.C.S.; Amaral, F.P.D.; Santos, K.F.D.N.; Agtuca, B.; Xu, Y.; Schueller, M.J.; Arisi, A.C.M.; Steffens, M.B.R.; de Souza, E.M.; Pedrosa, F.O.; et al. Robust biological nitrogen fixation in a model grass–bacterial association. Plant J. 2015, 81, 907–919. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Ludkiewicz, M.G.Z.; Rosa, P.A.L.; Tritapepe, C.A. Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 51–56. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Expr. 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Mortinho, E.S.; Jalal, A.; da Silva Oliveira, C.E.; Fernandes, G.C.; Pereira, N.C.M.; Rosa, P.A.L.; do Nascimento, V.; de Sá, M.E.; Teixeira Filho, M.C.M. Co-Inoculations with Plant Growth-Promoting Bacteria in the Common Bean to Increase Efficiency of NPK Fertilization. Agronomy 2022, 12, 1325. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy; Natural Resources Conservation Service and Agriculture Department: Washington, DC, USA, 2014. [Google Scholar]
- van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico de Campinas: Campinas, Brazil, 2001; 285p. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 1, pp. 545–566. [Google Scholar] [CrossRef]
- Pimentel Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos e Florestais: Exposição com Exemplos e Orientações Para uso de Aplicativos; FEALQ: Piracicaba, Brazil, 2002; 309p. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Systat Software Incorporation. Scientific Graphing, Software: Versão 15.0; Systat Software Incorporation: San Jose, CA, USA, 2023. [Google Scholar]
- Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Springer: New York, NY, USA, 2012; pp. 369–388. [Google Scholar]
- Liliana, M.-B.; Ángel, R.-L.M.; Manuel, M.-A.N.; Ramiro, R.-N.; Manuel, S.-Y.J. Respuesta de Phaseolus vulgaris a la inoculación de diferentes dosis de Trichoderma harzianum con el fertilizante nitrogenado reducido al 50% Response of Phaseolus vulgaris to inoculation to different dose of Trichoderma harzianum with nitrogen fertilizer reduced at 50%. J. Selva Andin. Res. Soc. 2017, 8, 135–144. [Google Scholar]
- Yadegari, M. Inoculation of bean (Phaseolus vulgaris) seeds with Rizobium phaseoli and plant growth promoting rhizobacteria. Adv. Environ. Biol. 2014, 8, 419–424. [Google Scholar]
- Baset Mia, M.A.; Shamsuddin, Z.H.; Wahab, Z.; Marziah, M. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured musa plantlets under nitrogen-free hydroponics condition. Aust. J. Crop Sci. 2010, 4, 85–90. [Google Scholar]
- Soratto, R.P.; Carvalho, M.A.C.D.; Arf, O. Nitrogênio em cobertura no feijoeiro cultivado em plantio direto. Rev. Bras. Ciênc. Solo 2006, 30, 259–266. [Google Scholar] [CrossRef]
- Chibeba, A.M.; Guimarães, M.F.; Brito, O.R.; Nogueira, M.A.; Araujo, R.S.; Hungria, M. Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am. J. Plant Sci. 2015, 6, 1641–1649. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. Soils and soil management. In Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 37–62. [Google Scholar] [CrossRef]
- Steinbeck, J. Architecture and physical properties of soil. In Elements of Nature and Soil Properties; Brady, N.C., Weil, R.R., Eds.; Bookman: Porto Alegre, Brazil, 2013; pp. 106–145. [Google Scholar]
- Viana Lima, A.Y.; Pereira, A. Mapping soil health research in the Brazilian Semiarid region: A bibliometric approach. Exp. Agric. 2024, 60, e29. [Google Scholar] [CrossRef]
- Tocheto, G.H.G.; Boiago, N.P. Formas de aplicação de Rhizobium tropici e Azospirillum brasiliense coinoculados na cultura do feijão. Rev. Cultiv. Saber 2020, 13, 122–133. [Google Scholar]
- Yadegari, M.; Rahmani, H.A.; Noormohamm, G.; Ayneband, A. Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak. J. Biol. Sci. 2008, 11, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.B.; Andreotti, M.; Souza, I.M.D.; Souza, P.T.D.; Mateus, M.P.D.B.; Silva, I.P.D.F.E. Inoculation and co-inoculation of the winter bean and chemical treatment of the seeds. Rev. Ciência Agronômica 2025, 56, 01–10. [Google Scholar] [CrossRef]
- Oliveira, A.G.d.; Chagas Junior, A.F.; Santos, G.R.d.; Miller, L.O.; Chagas, L.F.B. Potencial de solubilização de fosfato e produção de AIA por Trichoderma spp. Rev. Verde Agroecol. Desenvolv. Sustentável 2012, 7, 149–155. [Google Scholar] [CrossRef]
- Kapri, A.; Tewari, L. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz. J. Microbiol. 2010, 41, 787–795. [Google Scholar] [CrossRef]
ICF | MSP | NP | NDM | NGP | NPP | M100G | GP | |
---|---|---|---|---|---|---|---|---|
g plant−1 | g plant−1 | g | kg ha−1 | |||||
F values | ||||||||
CI | 0.000 * | 0.633 ns | 0.247 ns | 0.642 ns | 0.004 * | 0.000 * | 0.447 ns | 0.079 ns |
NPK | 0.000 * | 0.601 ns | 0.000 * | 0.927 ns | 0.000 * | 0.002 * | 0.000 * | 0.000 * |
CI × NPK | 0.000 * | 0.006 * | 0.032 * | 0.134 ns | 0.000 * | 0.001 * | 0.294 ns | 0.000 * |
Least Significant Difference (LSD 5%) | ||||||||
CI | 5.09 | 2.58 | 5.96 | 0.08 | 16.50 | 2.94 | 0.85 | 310.22 |
CV (%) | 15.12 | 23.50 | 35.80 | 31.65 | 17.06 | 24.29 | 3.74 | 11.70 |
Overall average | 35.75 | 11.64 | 17.64 | 0.16 | 102.64 | 12.86 | 24.17 | 2.810 |
Standard error | 1.35 | 0.68 | 1.57 | 0.02 | 4.37 | 0.78 | 0.22 | 82.20 |
Co-inoculation of microrganisms (CI) | ||||||||
R. tropici | 41.3 | 12.4 | 16.3 | 0.16 | 110.6 | 15.4 | 24.1 | 2.900 |
R. tropici + A. brasilense | 33.8 | 11.5 | 18.1 | 0.16 | 92.2 | 10.7 | 23.9 | 2.789 |
R. tropici + B. subtilis | 34.6 | 11.3 | 16.0 | 0.14 | 96.6 | 11.8 | 24.5 | 2.914 |
R. tropici + T. harzianum | 33.2 | 11.4 | 20.1 | 1.18 | 111.2 | 13.5 | 24.1 | 2.638 |
NPK doses (%) | ||||||||
Zero | 41.1 | 11.4 | 12.3 | 0.17 | 87.3 | 12.5 | 24.8 (1) | 2.725 |
33% | 37.8 | 11.4 | 14.7 | 0.15 | 112.1 | 14.6 | 24.3 | 2.887 |
66% | 28.2 | 11.8 | 22.6 | 0.16 | 100.2 | 10.4 | 23.9 | 2.893 |
100% | 35.7 | 12.1 | 21.0 | 0.16 | 110.8 | 13.9 | 23.6 | 2.736 |
ICF | MSP | NP | NDM | NGP | NPP | M100G | GP | |
---|---|---|---|---|---|---|---|---|
g plant−1 | g plant−1 | g | kg ha−1 | |||||
F values | ||||||||
CI | 0.983 ns | 0.425 ns | 0.240 ns | 0.401 ns | 0.032 * | 0.045 * | 0.865 ns | 0.909 ns |
NPK | 0.000 * | 0.009 * | 0.014 * | 0.402 ns | 0.000 * | 0.006 * | 0.000 * | 0.268 ns |
CI × NPK | 0.165 ns | 0.039 * | 0.033 * | 0.454 ns | 0.432 ns | 0.030 * | 0.106 ns | 0.000 * |
Least Significant Difference (LSD 5%) | ||||||||
CI | 4.44 | 1.66 | 3.39 | 0.07 | 14.40 | 2.39 | 1.22 | 541.12 |
CV (%) | 10.12 | 25.42 | 34.30 | 37.30 | 31.25 | 21.84 | 5.23 | 24.55 |
Overall average | 46.54 | 6.92 | 8.12 | 0.80 | 48.90 | 11.63 | 24.85 | 2.336 |
Standard error | 1.17 | 0.44 | 0.89 | 7.36 | 3.81 | 0.63 | 0.32 | 143.38 |
Co-inoculation of microrganisms (CI) | ||||||||
R. tropici | 46.4 | 7.4 | 7.8 | 0.80 | 40.6 b | 12.8 | 24.6 | 2.315 |
R. tropici + A. brasilense | 46.7 | 7.1 | 7.3 | 0.78 | 46.2 ab | 12.2 | 24.9 | 2.293 |
R. tropici + B. subtilis | 46.2 | 6.4 | 7.6 | 0.79 | 55.2 a | 11.2 | 24.9 | 2.426 |
R. tropici + T. harzianum | 46.8 | 6.7 | 9.7 | 0.80 | 53.6 a | 10.3 | 24.9 | 2.310 |
NPK doses (%) | ||||||||
Zero | 57.9 (2) | 5.6 | 6.5 | 0.80 | 53.4 (3) | 10.1 | 23.4 (4) | 2.109 |
33% | 48.0 | 7.3 | 10.3 | 0.80 | 57.2 | 11.0 | 25.3 | 2.380 |
66% | 41.6 | 7.2 | 8.7 | 0.81 | 50.6 | 12.0 | 25.8 | 2.473 |
100% | 38.6 | 7.5 | 6.9 | 0.77 | 34.4 | 13.3 | 24.9 | 2.383 |
Dry mass of plants (g planta−1)—Selvíria, Mato Grosso do Sul | |||||
Clayey Oxisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 14.3 a | 13.4 a | 11.2 | 10.8 | n.s |
R. tropici + A. brasilense | 11.5 ab | 12.8 ab | 9.0 | 12.8 | n.s |
R. tropici + B. subtilis | 11.9 ab | 7.7 b | 12.9 | 12.6 | QR (1) |
R. tropici + T. harzianum | 7.8 b | 77.8 ab | 12.3 | 13.6 | QR (2) |
LSD (5%) Co-inoculation within NPK-5.16 | |||||
Relative chlorophyll content—Selvíria, Mato Grosso do Sul | |||||
Clayey Oxisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 58.9 a | 40.1 | 33.6 | 32.4 ab | QR (3) |
R. tropici + A. brasilense | 30.8 b | 38.3 | 27.0 | 38.9 ab | QR (4) |
R. tropici + B. subtilis | 39.1 b | 34.1 | 24.1 | 41.3 a | QR (5) |
R. tropici + T. harzianum | 35.7 b | 38.8 | 28.1 | 30.3 b | QR (6) |
LSD (5%) Co-inoculation within NPK-10.19 | |||||
Dry mass of plants (g planta−1)—Dracena, São Paulo | |||||
Sandy Ultisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 5.4 | 8.6 | 9.1 | 6.5 | QR (7) |
R. tropici + A. brasilense | 6.5 | 7.3 | 5.9 | 8.9 | n.s |
R. tropici + B. subtilis | 6.5 | 5.6 | 6.7 | 6.9 | n.s |
R. tropici + T. harzianum | 4.1 | 7.9 | 7.1 | 7.8 | QR (8) |
LSD (5%) Co-inoculation within NPK—3.32 |
Number of nodules per plant—Selvíria, Mato Grosso do Sul | |||||
Clayey Oxisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 12.0 | 17.1 | 17.8 | 18.2 ab | n.s |
R. tropici + A. brasilense | 12.7 | 10.7 | 25.9 | 23.2 ab | QR (9) |
R. tropici + B. subtilis | 10.6 | 11.7 | 27.7 | 14.0 b | QR (10) |
R. tropici + T. harzianum | 13.8 | 19.2 | 18.8 | 28.5 a | QR(11) |
MSD (5%) Co-inoculation within NPK-11.92 | |||||
Number of nodules per plant—Dracena, São Paulo | |||||
Sandy Ultisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 5.8 | 9.2 b | 10.4 | 6.0 | n.s |
R. tropici + A. brasilense | 6.0 | 6.8 b | 8.0 | 8.3 | n.s |
R. tropici + B. subtilis | 6.7 | 7.9 b | 8.8 | 7.0 | n.s |
R. tropici + T. harzianum | 7.5 | 17.5 a | 7.6 | 6.2 | QR (12) |
MSD (5%) Co-inoculation within NPK-6.78 |
Number of pods per plants—Selvíria, Mato Grosso do Sul | |||||
Clayey Oxisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 15.7 | 17.3 | 16.3 a | 12.5 ab | n.s |
R. tropici + A. brasilense | 10.0 | 13.1 | 4.1 c | 15.6 ab | QR (13) |
R. tropici + B. subtilis | 13.6 | 13.4 | 9.6 bc | 10.5 b | n.s |
R. tropici + T. harzianum | 10.8 | 14.6 | 11.6 ab | 16.9 a | QR (14) |
MSD (5%) Co-inoculation within NPK—5.89 | |||||
Number of pods per plants—Dracena, São Paulo | |||||
Sandy Ultisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 12.2 a | 13.5 a | 13.1 | 12.2 | n.s |
R. tropici + A. brasilense | 12.4 a | 10.8 ab | 10.3 | 15.1 | QR (15) |
R. tropici + B. subtilis | 6.9 ab | 8.6 b | 13.0 | 13.5 | QR (16) |
R. tropici + T. harzianum | 6.3 b | 10.9 ab | 11.8 | 12.3 | QR (17) |
MSD (5%) Co-inoculation within NPK—4.80 | |||||
Number of grains per plant—Selvíria, Mato Grosso do Sul g planta−1 | |||||
Clayey Oxisol | NPK Dose | ||||
Co-inoculation | 0% | 33% | 66% | 100% | Regression analysis |
R. tropici | 85.2 | 153.2 a | 111.5 | 92.5 | QR (18) |
R. tropici + A. brasilense | 88.7 | 85.0 b | 85.5 | 109.5 | n.s |
R. tropici + B. subtilis | 78.2 | 102.7 b | 88.2 | 116.5 | QR (19) |
R. tropici + T. harzianum | 96.7 | 107.5 b | 115.7 | 124.7 | n.s |
MSD (5%) Co-inoculation within NPK—33.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, L.F.R.; de Souza Júnior, N.C.; Fernandes, G.C.; Ito, W.C.N.; Barbosa, M.C.; Freitas, L.B.; da Silva Souza, K.; Alexandre, L.d.S.; Silva, M.B.; da Silva, E.C.; et al. Response of Phaseolus vulgaris to the Use of Growth-Promoting Microorganisms Associated with the Reduction of NPK Fertilization in Tropical Soils: Clayey Oxisol and Sandy Ultisol. Agriculture 2025, 15, 63. https://doi.org/10.3390/agriculture15010063
de Souza LFR, de Souza Júnior NC, Fernandes GC, Ito WCN, Barbosa MC, Freitas LB, da Silva Souza K, Alexandre LdS, Silva MB, da Silva EC, et al. Response of Phaseolus vulgaris to the Use of Growth-Promoting Microorganisms Associated with the Reduction of NPK Fertilization in Tropical Soils: Clayey Oxisol and Sandy Ultisol. Agriculture. 2025; 15(1):63. https://doi.org/10.3390/agriculture15010063
Chicago/Turabian Stylede Souza, Loiane Fernanda Romão, Nelson Câmara de Souza Júnior, Guilherme Carlos Fernandes, William Cesar Nishimoto Ito, Mariana Cristina Barbosa, Leilane Bernardes Freitas, Karina da Silva Souza, Lidiane dos Santos Alexandre, Mariana Bonini Silva, Edson Cabral da Silva, and et al. 2025. "Response of Phaseolus vulgaris to the Use of Growth-Promoting Microorganisms Associated with the Reduction of NPK Fertilization in Tropical Soils: Clayey Oxisol and Sandy Ultisol" Agriculture 15, no. 1: 63. https://doi.org/10.3390/agriculture15010063
APA Stylede Souza, L. F. R., de Souza Júnior, N. C., Fernandes, G. C., Ito, W. C. N., Barbosa, M. C., Freitas, L. B., da Silva Souza, K., Alexandre, L. d. S., Silva, M. B., da Silva, E. C., Arf, O., Alves, M. C., Teixeira Filho, M. C. M., & do Nascimento, V. (2025). Response of Phaseolus vulgaris to the Use of Growth-Promoting Microorganisms Associated with the Reduction of NPK Fertilization in Tropical Soils: Clayey Oxisol and Sandy Ultisol. Agriculture, 15(1), 63. https://doi.org/10.3390/agriculture15010063