Arbuscular Mycorrhizal Fungi in Common Bean Roots: Agricultural Impact and Environmental Influence
Abstract
1. Introduction
2. Materials and Methods
2.1. Bean Genotypes
2.2. Field Trials and Traits Evaluated
2.3. Statistical Analysis
2.4. Molecular Methodology
2.5. Percentage of Colonization by Mycorrhiza-Forming Fungi
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azcón-Aguilar, C.; Jaizme-Vega, M.C.; Calvet, C. The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In Mycorrhiza Technology in Agriculture: From Genes to Bioproducts; Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K., Eds.; Birkhäuser: Basel, Switzerland, 2002; pp. 187–198. [Google Scholar]
- Zhang, J.; Zhao, R.; Li, X.; Zhang, J. Potential of arbuscular mycorrizal fungi for soil health: A review. Pedosphere 2024, 34, 279–288. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Saggin Junior, O.J. The importance of mycorrhizae association in natural low-fertility soils. In International Symposium on Environmental Stress: Maize in Perspective; National Center for Maize and Sorghum Research (CNPMS) Sete Lagoas: Sete Lagoas, Brazil, 1995; pp. 239–280. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Malthus, T. An Essay on the Principle of Population; Cambridge University Press: Cambridge, UK; Paul’s Church-Yard: London, UK, 1806. [Google Scholar]
- Erisman, J.W.; Galloway, J.; Dise, N.; Bleeker, A.; Grizzetti, B.; Leach, A.; Vries, W. Nitrogen; Too Much of a Vital Resource; WWF-NL Science Brief; World Wildlife Fund: Gland, Switzerland, 2015. [Google Scholar] [CrossRef]
- De Ron, A.M.; Papa, R.; Bitocchi, E.; González, A.M.; Debouck, D.G.; Brick, M.A.; Fourie, D.; Marsolais, F.; Beaver, J.; Geffroy, V.; et al. Common Bean. In Grain Legumes; De Ron, A.M., Ed.; Series: Handbook of Plant Breeding; Springer Science + Business Media: New York, NY, USA, 2015; pp. 1–36. [Google Scholar]
- FAO 2020. Available online: https://www.fao.org/news/archive/news-by-date/2020/es/ (accessed on 15 July 2021).
- MAPA 2020. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias (accessed on 15 July 2021).
- Van Jaarsveld, C.M.; Smit, M.A.; Krüger, G.H.J. Interaction amongst soybean [Glycine max (L.) Merrill] genotype; soil type and inoculant strain with regard to N2 fixation. J. Agron. Crop Sci. 2002, 188, 206–211. [Google Scholar] [CrossRef]
- Zhang, H.; Charles, T.; Driscoll, B.; Prithiviraj, B.; Smith, D. Low temperature-tolerant Bradyrhizobium japonicum strains allowing improved soybean yield in short-season areas. Agron. J. 2002, 94, 870–875. [Google Scholar] [CrossRef]
- Obando, M.; Correa-Galeote, D.; Castellano-Hinojosa, A.; Gualpa, J.; Hidalgo, A.; De Dios Alché, J.; Bedmar, E.J.; Cassán, F. Analysis of the denitrification pathway and greenhouse gases emissioins in Bradyrhizobium sp. strains used as biofertilizers in South America. J. Appl. Microbiol. 2019, 127, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczynska, D.; Kozlowicz, K.; Tabor, S. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Baffi, C.; Colla, G. A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Front. Plant Sci. 2018, 9, 472. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition; concept; main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Di Mattia, E.; El-Nakhel, C.; Cardarelli, M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth; yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 2015, 95, 1706–1715. [Google Scholar] [CrossRef]
- Santalla, M.; De Ron, A.M.; Voysest, O. European bean market classes. In Catalogue of Bean Genetic Resources; Amurrio, M., Santalla, M., De Ron, A.M., Eds.; Fundación Pedro Barrié de la Maza/PHASELIEU-FAIR3463/MBG-CSIC: Pontevedra, Spain, 2001; pp. 77–94. [Google Scholar]
- Hidalgo, R. Catálogo de Germoplasma de Frijol Común Phaseolus vulgaris L.; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1984; p. 317. [Google Scholar]
- Kelly, J.D.; Hosfield, G.L.; Varner, G.V.; Uebersax, M.A.; Taylor, J. Registration of ‘Matterhorn’ great northern bean. Crop Sci. 1999, 39, 588–589. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, Y.E.; Park, S.J. Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island. J. Microbiol. 2018, 56, 312–316. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation; two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Badii, M.H.; Castillo, J.; Rodríguez, M.; Wong, A.; Villalpando, P. Diseños experimentales e investigación científica (Experimental designs and scientific research). Innovaciones De Neg. 2007, 4, 283–330. [Google Scholar]
- Jiang, J.; Nguyen, T. Linear and Generalized Linear Mixed Models and Their Applications; Springer: New York, NY, USA, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Van Tuinen, D.; Jacquot, E.; Zhao, B.; Gollotte, A.; Gianinazzi-Pearson, V. Characterisation of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol. Ecol. 1998, 7, 879–887. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Young, J.P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 1999; Volume 41, pp. 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting; position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.M.; Hayman, D.A. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Ambler, J.R.; Young, J.L. Techniques for Determining Root Length Infected by Vesicular-arbuscular Mycorrhizae. Soil Sci. Soc. Am. J. 1977, 41, 551–556. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Agathokleous, E.; Ropokis, A.; Sabatino, L.; Tran, F. Agronomic practices to increase the yield and quality of common bean (Phaseolus vulgaris L.): A systematic review. Agronomy 2022, 12, 271. [Google Scholar] [CrossRef]
- Razakatiana, A.T.E.; Trap, J.; Baohanta, R.H.; Raherimandimby, M.; Le Roux, C.; Duponnois, R.; Ramanankierana, H.; Becquer, T. Benefits of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Phaseolus vulgaris planted in a low-fertility tropical soil. Pedobiol.–J. Soil Ecol. 2020, 83, 150685. [Google Scholar] [CrossRef]
- Keiter, D.L.; Evans, W.R. Oxygen requirement for acetilene reduction by pure cultures of rhozobia. J. Bacteriol. 1976, 127, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Drevon, J.J.; Alkama, N.; Bargaz, A.; Rodiño, A.P.; Sungthongwises, K.; Zaman-Allah, M. The legume-rhizobia symbiosis. In Grain Legumes, De Ron, A.M., Ed.; Springer Science + Business Media: New York, NY, USA, 2015; pp. 267–290. [Google Scholar]
- Mather, S.; Agnihotri, R.; Sharma, M.P.; Reddy, V.R.; Jajoo, A. Effect of High-Temperature Stress on Plant Physiological Traits and Mycorrhizal Symbiosis in Maize Plants. J. Fungi 2021, 7, 867. [Google Scholar] [CrossRef]
- Bağdatli, M.C.; Erdoğan, O. Effects of different irrigation levels and arbuscular mycorrhizal fungi (AMF); photosynthesis activator; traditional fertilizer on yield and growth parameters of dry bean (Phaseolus vulgaris L.) in arid climatic conditions. Commun. Soil Sci. Plant Anal. 2019, 50, 527–537. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 2015, 24, 371–382. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, X.; Zhao, Y.; Zhao, J.; Ding, X.; Zhang, C.; Feng, X. Effect of arbuscular mycorrhizal fungi (Glomus mosseae) and elevated air temperature on Cd migration in the rhizosphere soil of alfalfa. Ecotoxicol. Environ. Saf. 2022, 248, 114342. [Google Scholar] [CrossRef]
- Nazari, M.; Hemati, A.; Backer, R.; Lajayer, B.A.; Astatkie, T. The role of arbuscular mycorrhizal fungi (AMF) in rhizosphere soil and plant growth regulation. In The Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress; Sharma, A., Pandey, S., Bhardwaj, R., Zheng, B., Tripathi, D.K., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 101–111. [Google Scholar]
- Duarte, A.G.; Maherali, H. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecol. Evol. 2022, 24, e8518. [Google Scholar] [CrossRef]
- Rodrigues, K.M.; Rodrigues, B.F. Glomus. In Beneficial miCrobes in Agro-Ecology. Bacteria and Fungi; Amaresan, N., Senthil Kumar, M., Annapurna, K., Kumar, K.K., Sankaranarayanan, A.K., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020; pp. 561–569. [Google Scholar]
- Tajini, F.; Drevon, J.J. Effect of arbuscular mycorrhizas on P use efficiency for growth and N2 fixation in common bean (Phaseolus vulgaris L.). Sci. Res. Essays 2012, 7, 1681–1689. [Google Scholar]
- Tajini, F.; Drevon, J.J. Phosphorous use efficiency in common bean (Phaseolus vulgaris L.) as related to compatibility of association among arbuscular mycorrhizal fungi and rhizobia. Afr. J. Biotech. 2012, 11, 12173–12182. [Google Scholar]
- Neeraj; Singh, K. Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur. J. Soil Biol. 2011, 47, 288–295.
- Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef] [PubMed]
- Fueyo Olmo, M.A. Producción de Judías de Calidad; KRK Ediciones: Oviedo, Spain, 2004; 483p. [Google Scholar]
- Puerta Romero, J. Variedades de Judías Cultivadas en España; Monografías Número 11; Subdirección de Capacitación Agraria: Madrid, Spain, 1961; 798p. [Google Scholar]
- Singh, S.P. (Ed.) Common Bean Improvement in the Twenty-First Century; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; 405p. [Google Scholar]
- Sanz, M.A.; Atienza, J. Análisis sensorial de la faba. In III Jornadas de Análisis Sensorial; IPLA-CIATA: Villaviciosa (Asturias), Spain, 1998; pp. 87–104. [Google Scholar]
- Gelerte, S.H.; Mekbib, F.; Fenta, B.A.; Teamir, M. Genotype-by-environment interaction on canning and cooking quality of advanced large-seeded common bean genotypes. Heliyon 2021, 7, e06936. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 48. [Google Scholar] [CrossRef]
- Vazquez, P.; Holguin, G.; Puente, M.E.; Lopez-Cortes, A.; Bashan, Y. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 2000, 30, 460–468. [Google Scholar] [CrossRef]
Genus/Species | Phylum/Family | Year | |
---|---|---|---|
2021 | 2022 | ||
Bean genotype: Matterhorn | |||
Acaulospora sp. | Glomeromycota/Acaulosporaceae | x | |
Funneliformis mosseae | Glomeromycota/Glomeraceae | x | |
Gigaspora margarita | Glomeromycota/Gigasporaceae | x | x |
Gigaspora sp. | Glomeromycota/Gigasporaceae | x | x |
Glomus sp. | Glomeromycota/Glomeraceae | x | x |
Paraglomus occultum | Glomeromycota/Paraglomeraceae | x | x |
Rhizophagus sp. | Glomeromycota/Glomeraceae | x | |
Rhizophagus clarus | Glomeromycota/Glomeraceae | x | x |
Scuttelospora sp. | Glomeromycota/Gigasporaceae | x | |
Bean genotype: Galaica | |||
Acaulospora sp. | Glomeromycota/Acaulosporaceae | x | |
Acaulospora spinosa | Glomeromycota/Acaulosporaceae | x | |
Gigaspora margarita | Glomeromycota/Gigasporaceae | x | |
Glomus sp. | Glomeromycota/Glomeraceae | x | x |
Rhizophagus sp. | Glomeromycota/Glomeraceae | x | |
Rhizophagus clarus | Glomeromycota/Glomeraceae | x | x |
Rhizophagus irregularis | Glomeromycota/Glomeraceae | x | |
Scuttelospora sp. | Glomeromycota/Gigasporaceae | x |
Plot | Rep | Factors | Bean Genotypes | Mycorrhizal Fungi | MP (%) | NN | FWN | DWA | DWR | PV | PF | DSF | DSP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021:3E01 | 1 | T | MATTERHORN | Glomus sp. | 76 | 59 | 1.97 | 24.1 | 2.7 | 3 | 26.9 | 16.7 | 26.2 |
2021:3E02 | 2 | T | MATTERHORN | Glomus sp. | 77 | 60 | 1.65 | 10.2 | 1.3 | 3 | 10.4 | 4.8 | 35.7 |
2021:3E03 | 1 | T | GALAICA | Acaulospora sp. | 76 | 12 | 0.22 | 29.6 | 1.9 | 3 | 23.1 | 14.3 | 23.8 |
2021:3E04 | 2 | T | GALAICA | Glomus sp. | 60 | 9 | 0.51 | 25.0 | 1.4 | 3 | 32.1 | 9.5 | 21.4 |
2021:3E05 | 1 | T-N | MATTERHORN | Glomus sp. | 39 | 24 | 0.14 | 16.8 | 2.1 | 4 | 47.1 | 21.4 | 35.7 |
2021:3E06 | 2 | T-N | MATTERHORN | Rhizophagus clarus | 46 | 140 | 5.15 | 21.1 | 4.5 | 4 | 33.3 | 33.3 | 42.9 |
2021:3E07 | 1 | T-N | GALAICA | Rhizophagus clarus | 38 | 111 | 5.36 | 39.6 | 3.2 | 3 | 22.2 | 28.6 | 31.0 |
2021:3E08 | 2 | T-N | GALAICA | Rhizophagus clarus | 24 | 18 | 0.71 | 26.2 | 2.6 | 3 | 23.1 | 21.4 | 31.0 |
2021:3E09 | 1 | T-B | MATTERHORN | Glomus sp. | 58 | 127 | 4.26 | 13.8 | 1.8 | 3 | 29.2 | 11.9 | 19.1 |
2021:3E10 | 2 | T-B | MATTERHORN | Gigaspora margarita | 44 | 121 | 2.43 | 14.5 | 1.9 | 3 | 14.3 | 4.8 | 9.5 |
2021:3E11 | 1 | T-B | GALAICA | Rhizophagus clarus | 63 | 92 | 2.08 | 38.2 | 1.5 | 3 | 17.2 | 14.3 | 23.8 |
2021: 3E12 | 2 | T-B | GALAICA | Glomus sp. | 68 | 99 | 3.73 | 28.6 | 2.4 | 3 | 3.7 | 14.3 | 16.7 |
2021:3E13 | 1 | T-N-B | MATTERHORN | Rhizophagus clarus | 56 | 91 | 1.70 | 17.8 | 1.5 | 5 | 42.9 | 7.1 | 47.6 |
2021:3E14 | 2 | T-N-B | MATTERHORN | Paraglomus occultum | 30 | 113 | 3.13 | 37.0 | 4.2 | 5 | 33.3 | 7.1 | 47.6 |
2021:3E15 | 1 | T-N-B | GALAICA | Rhizophagus clarus | 64 | 17 | 0.67 | 35.5 | 4.6 | 5 | 12.5 | 14.3 | 21.4 |
2021:3E16 | 2 | T-N-B | GALAICA | Rhizophagus clarus | 50 | 4 | 0.08 | 45.4 | 2.4 | 5 | 10.7 | 14.3 | 11.9 |
2021:3E17 | 1 | 0 | MATTERHORN | Acaulospora sp. | 70 | 9 | 0.09 | 27.5 | 2.7 | 2 | 44.0 | 9.5 | 88.1 |
2021:3E18 | 2 | 0 | MATTERHORN | Glomus sp. | 74 | 104 | 3.86 | 23.1 | 2.4 | 3 | 18.5 | 4.8 | 92.9 |
2021:3E19 | 1 | 0 | GALAICA | Rhizophagus clarus | 72 | 64 | 1.30 | 29.2 | 0.8 | 3 | 34.6 | 21.4 | 40.5 |
2021:3E20 | 2 | 0 | GALAICA | Acaulospora spinosa | 64 | 29 | 1.13 | 24.9 | 0.2 | 3 | 19.2 | 23.8 | 40.5 |
2021:3E21 | 1 | N | MATTERHORN | Rhizophagus clarus | 57 | 146 | 5.42 | 33.7 | 3.9 | 4 | 32.0 | 9.5 | 100.0 |
2021:3E22 | 2 | N | MATTERHORN | Rhizophagus clarus | 50 | 15 | 0.79 | 38.2 | 4.8 | 4 | 37.5 | 14.3 | 100.0 |
2021:3E23 | 1 | N | GALAICA | Rhizophagus clarus | 61 | 10 | 0.15 | 30.3 | 2.2 | 3 | 22.2 | 35.7 | 54.8 |
2021:3e24 | 2 | N | GALAICA | Rhizophagus clarus | 50 | 12 | 0.24 | 30.0 | 3.2 | 3 | 20.0 | 28.6 | 47.6 |
2021:3E25 | 1 | B | MATTERHORN | Glomus sp. | 28 | 106 | 1.90 | 12.0 | 1.9 | 2 | 14.8 | 35.7 | 73.8 |
2021:3E26 | 2 | B | MATTERHORN | Gigaspora sp. | 22 | 66 | 2.47 | 9.1 | 2.0 | 2 | 25.0 | 16.7 | 81.0 |
2021:3e27 | 1 | B | GALAICA | Glomus sp. | 56 | 62 | 1.08 | 33.1 | 1.6 | 3 | 6.7 | 31.0 | 47.6 |
2021:3E28 | 2 | B | GALAICA | Glomus sp. | 42 | 218 | 4.72 | 25.5 | 2.3 | 3 | 10.0 | 21.4 | 42.9 |
2021:3e29 | 1 | N-B | MATTERHORN | Funneliformis mosseae | 36 | 276 | 7.38 | 58.4 | 7.5 | 4 | 25.0 | 11.9 | 97.6 |
2021:3E30 | 2 | N-B | MATTERHORN | Glomus sp. | 28 | 65 | 1.19 | 18.5 | 1.6 | 4 | 41.4 | 14.3 | 97.6 |
2021:3e31 | 1 | N-B | GALAICA | Glomus sp. | 69 | 357 | 4.88 | 21.4 | 1.3 | 5 | 10.0 | 14.3 | 40.5 |
2021:3E32 | 2 | N-B | GALAICA | Rhizophagus clarus | 65 | 77 | 3.46 | 52.8 | 2.8 | 5 | 6.9 | 14.3 | 42.9 |
Mean | 53.5 | 84.8 | 2.308 | 27.84 | 2.54 | 3.5 | 23.43 | 17.04 | 47.92 | ||||
Minimum | 22 | 4 | 0.08 | 9.1 | 0.2 | 2 | 3.7 | 4.8 | 9.5 | ||||
Maximum | 77 | 357 | 7.38 | 58.4 | 7.5 | 5 | 47.1 | 35.7 | 100.0 | ||||
Standard deviation | 16.5 | 80.1 | 1.971 | 11.62 | 1.41 | 0.9 | 11.93 | 8.95 | 28.14 | ||||
Plot | Rep | Factors | Bean Genotypes | Mycorrhizal Fungi | LNC | LPC | PP | SP | PY | SW a | WA | TP | Y |
2021:3E01 | 1 | T | MATTERHORN | Glomus sp. | 54.9 | 3.62 | 20.3 | 4.4 | 23.8 | 2.97 | 122.5 | 13.9 | 1189 |
2021:3E02 | 2 | T | MATTERHORN | Glomus sp. | 56.6 | 4.04 | 13.8 | 4.8 | 21.8 | 2.74 | 91.0 | 14.1 | 1091 |
2021:3E03 | 1 | T | GALAICA | Acaulospora sp. | 41.0 | 2.79 | 9.5 | 3.2 | 19.1 | 9.78 | 124.3 | 19.8 | 954 |
2021:3E04 | 2 | T | GALAICA | Glomus sp. | 36.3 | 2.59 | 16.3 | 3.6 | 35.9 | 8.51 | 94.2 | 19.0 | 1794 |
2021:3E05 | 1 | T-N | MATTERHORN | Glomus sp. | 61.2 | 3.08 | 28.9 | 4.8 | 33.7 | 2.89 | 140.7 | 13.0 | 1683 |
2021:3E06 | 2 | T-N | MATTERHORN | Rhizophagus clarus | 59.7 | 2.24 | 38.3 | 4.6 | 48.3 | 3.07 | 126.0 | 13.8 | 2414 |
2021:3E07 | 1 | T-N | GALAICA | Rhizophagus clarus | 50.6 | 3.62 | 17.2 | 3.6 | 32.1 | 7.76 | 133.4 | 20.8 | 1606 |
2021:3E08 | 2 | T-N | GALAICA | Rhizophagus clarus | 28.4 | 2.65 | 15.1 | 3.4 | 28.9 | 8.02 | 126.7 | 19.2 | 1445 |
2021:3E09 | 1 | T-B | MATTERHORN | Glomus sp. | 53.4 | 3.52 | 20.3 | 5.6 | 26.8 | 3.44 | 87.3 | 13.5 | 1339 |
2021:3E10 | 2 | T-B | MATTERHORN | Gigaspora margarita | 47.9 | 3.22 | 19.6 | 5.4 | 30.3 | 3.86 | 90.4 | 14.8 | 1516 |
2021:3E11 | 1 | T-B | GALAICA | Rhizophagus clarus | 31.8 | 2.80 | 9.9 | 3.2 | 18.8 | 8.02 | 123.6 | 21.3 | 939 |
2021:3E12 | 2 | T-B | GALAICA | Glomus sp. | 45.7 | 3.06 | 13.0 | 3.0 | 26.1 | 8.65 | 128.4 | 21.2 | 1303 |
2021:3E13 | 1 | T-N-B | MATTERHORN | Rhizophagus clarus | 51.3 | 3.43 | 27.0 | 5.2 | 34.8 | 2.68 | 145.4 | 13.9 | 1740 |
2021:3E14 | 2 | T-N-B | MATTERHORN | Paraglomus occultum | 46.5 | 2.80 | 25.2 | 5.6 | 31.5 | 2.89 | 139.0 | 13.8 | 1576 |
2021:3E15 | 1 | T-N-B | GALAICA | Rhizophagus clarus | 36.2 | 2.94 | 15.9 | 3.2 | 26.4 | 7.80 | 132.8 | 20.0 | 1322 |
2021:3E16 | 2 | T-N-B | GALAICA | Rhizophagus clarus | 27.8 | 2.89 | 19.6 | 3.2 | 50.4 | 8.64 | 130.6 | 18.9 | 2521 |
2021:3E17 | 1 | 0 | MATTERHORN | Acaulospora sp. | 27.6 | 1.93 | 12.2 | 4.0 | 14.1 | 2.62 | 124.5 | 14.8 | 706 |
2021:3E18 | 2 | 0 | MATTERHORN | Glomus sp. | 51.5 | 3.47 | 14.1 | 5.2 | 18.6 | 2.58 | 124.9 | 15.9 | 928 |
2021:3E19 | 1 | 0 | GALAICA | Rhizophagus clarus | 29.5 | 2.33 | 10.6 | 2.6 | 14.5 | 7.80 | 132.2 | 20.6 | 724 |
2021:3E20 | 2 | 0 | GALAICA | Acaulospora spinosa | 35.7 | 2.25 | 10.7 | 2.6 | 18.3 | 8.32 | 131.9 | 21.2 | 915 |
2021:3E21 | 1 | N | MATTERHORN | Rhizophagus clarus | 41.3 | 2.20 | 16.5 | 4.4 | 16.8 | 2.53 | 125.5 | 16.4 | 839 |
2021:3E22 | 2 | N | MATTERHORN | Rhizophagus clarus | 47.7 | 3.12 | 22.2 | 5.2 | 21.2 | 2.43 | 60.3 | 30.2 | 1061 |
2021:3E23 | 1 | N | GALAICA | Rhizophagus clarus | 34.3 | 2.44 | 5.3 | 2.6 | 5.7 | 7.25 | 141.5 | 22.4 | 286 |
2021:3E24 | 2 | N | GALAICA | Rhizophagus clarus | 38.1 | 2.49 | 6.3 | 2.2 | 9.4 | 8.17 | 136.1 | 21.5 | 472 |
2021:3E25 | 1 | B | MATTERHORN | Glomus sp. | 44.9 | 3.74 | 6.9 | 5.2 | 7.6 | 2.56 | 109.2 | 15.7 | 378 |
2021:3E26 | 2 | B | MATTERHORN | Gigaspora sp. | 54.4 | 4.50 | 13.0 | 5.0 | 17.0 | 2.87 | 106.3 | 22.8 | 851 |
2021:3E27 | 1 | B | GALAICA | Glomus sp. | 34.3 | 2.78 | 4.9 | 2.2 | 5.7 | 7.05 | 142.7 | 22.3 | 283 |
2021:3E28 | 2 | B | GALAICA | Glomus sp. | 31.5 | 1.86 | 8.9 | 3.0 | 16.7 | 8.09 | 129.7 | 21.2 | 835 |
2021:3E29 | 1 | N-B | MATTERHORN | Funneliformis mosseae | 42.7 | 2.87 | 17.9 | 5.4 | 17.0 | 2.29 | 145.7 | 15.9 | 851 |
2021:3E30 | 2 | N-B | MATTERHORN | Glomus sp. | 53.1 | 2.96 | 18.8 | 5.4 | 20.8 | 2.18 | 161.2 | 15.8 | 1038 |
2021:3E31 | 1 | N-B | GALAICA | Glomus sp. | 36.0 | 3.05 | 9.8 | 2.8 | 13.0 | 7.69 | 131.6 | 22.3 | 650 |
2021:3E32 | 2 | N-B | GALAICA | Rhizophagus clarus | 29.0 | 2.20 | 14.4 | 2.8 | 20.3 | 7.71 | 134.9 | 19.2 | 1013 |
Mean | 42.52 | 2.922 | 15.70 | 3.98 | 22.66 | 124.20 | 18.41 | 1133.2 | |||||
Minimum | 27.6 | 1.86 | 4.9 | 2.2 | 5.7 | 60.29 | 13 | 283 | |||||
Maximum | 61.2 | 4.50 | 38.3 | 5.6 | 50.4 | 161.2 | 30.2 | 2521 | |||||
Standard deviation | 10.22 | 0.611 | 7.34 | 1.14 | 10.78 | 20.66 | 3.90 | 538.9 |
Plot | Rep | Factors | Bean Genotypes | Mycorrhizal Fungi | MP (%) | NN | FWN | DWA | DWR | PP | SP | PY | SW a | WA | TP | Y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022:2E01 | 1 | T | MATTERHORN | Paraglomus occultum | 24 | 8 | 0.01 | 20.1 | 0.47 | 19.0 | 5.2 | 12.1 | 3.67 | 126.4 | 8.9 | 606 |
2022:2E02 | 2 | T | MATTERHORN | Paraglomus occultum | 45 | 16 | 0.75 | 19.6 | 0.80 | 26.0 | 5.6 | 13.5 | 3.15 | 120.3 | 11.9 | 677 |
2022:2E03 | 1 | T | GALAICA | Rhizophagus clarus | 22 | 29 | 0.52 | 55.7 | 1.91 | 11.0 | 1.2 | 20.9 | 8.25 | 126.4 | 9.6 | 1043 |
2022:2E04 | 2 | T | GALAICA | Glomus sp. | 24 | 57 | 1.37 | 23.5 | 0.84 | 15.0 | 1.4 | 33.6 | 9.09 | 119.3 | 9.3 | 1680 |
2022:2E05 | 1 | B-T | MATTERHORN | Rhizophagus clarus/Glomus sp. | 30 | 0 | 15.5 | 1.03 | 36.0 | 4.4 | 17.8 | 3.15 | 115.9 | 10.2 | 889 | |
2022:2E06 | 2 | B-T | MATTERHORN | Glomus sp. | 25 | 133 | 0.13 | 9.5 | 1.48 | 24.0 | 4.2 | 5.0 | 2.45 | 158.4 | 252 | |
2022:2E07 | 1 | B-T | GALAICA | |||||||||||||
2022:2E08 | 2 | B-T | GALAICA | Glomus sp. | 15 | 64 | 1.08 | 9.1 | 0.87 | 58.0 | 2.2 | 8.55 | 116.5 | 8.1 | ||
2022:2E09 | 1 | N-T | MATTERHORN | Rhizophagus sp. | 20 | 13 | 0.02 | 27.6 | 2.24 | 24.0 | 4 | 16.2 | 4.00 | 102.8 | 9.7 | 811 |
2022:2E10 | 2 | N-T | MATTERHORN | Glomus sp. | 16 | 2 | 0.01 | 21.0 | 1.57 | 32.0 | 5.2 | 21.7 | 3.89 | 104.6 | 1084 | |
2022:2E11 | 1 | N-T | GALAICA | Glomus sp. | 20 | 6 | 0.19 | 28.4 | 2.70 | 15.0 | 2.4 | 9.56 | 116.8 | 10.5 | ||
2022:2E12 | 2 | N-T | GALAICA | Glomus sp. | 21 | 68 | 1.31 | 106.1 | 2.53 | 14.0 | 2.2 | 50.7 | 7.60 | 117.2 | 8.7 | 2534 |
2022:2E13 | 1 | N-B-T | MATTERHORN | Gigaspora margarita/Glomus sp. | 15 | 16 | 0.02 | 13.2 | 0.39 | 28.0 | 5.6 | 18.0 | 3.45 | 102.0 | 8.6 | 901 |
2022:2E14 | 2 | N-B-T | MATTERHORN | Rhizophagus sp. | 25 | 20 | 0.53 | 37.1 | 3.19 | 33.0 | 4.6 | 20.9 | 3.62 | 105.0 | 10.0 | 1047 |
2022:2E15 | 1 | N-B-T | GALAICA | Rhizophagus clarus/Glomus sp. | 18 | 11 | 0.02 | 40.2 | 1.64 | 28.0 | 2 | 26.9 | 8.43 | 116.4 | 8.5 | 1344 |
2022:2E16 | 2 | N-B-T | GALAICA | Rhizophagus clarus/Scuttelospora sp. | 22 | 7 | 0.02 | 64.1 | 1.93 | 18.0 | 2.8 | 73.0 | 6.98 | 128.4 | 10.8 | 3650 |
2022:2E17 | 1 | 0 | MATTERHORN | Glomus sp. | 20 | 14 | 0.00 | 17.7 | 0.68 | 30.0 | 4.2 | 10.9 | 2.94 | 109.9 | 9.7 | 546 |
2022:2E18 | 2 | 0 | MATTERHORN | Glomus sp. | 22 | 11 | 0.03 | 24.1 | 1.09 | 23.0 | 4.2 | 6.6 | 1.73 | 160.1 | 332 | |
2022:2E19 | 1 | 0 | GALAICA | Rhizophagus irregularis | 30 | 0 | 30.2 | 5.0 | 1.6 | 36.2 | 9.68 | 114.0 | 8.3 | 1811 | ||
2022:2E20 | 2 | 0 | GALAICA | 0 | 4 | 0.00 | 7.7 | 16.0 | 2.6 | 42.1 | 9.66 | 121.6 | 8.4 | 2105 | ||
2022:2E21 | 1 | B | MATTERHORN | Rhizophagus clarus/Gigaspora margarita | 22 | 13 | 0.02 | 19.8 | 1.26 | 29.0 | 4.2 | |||||
2022:2E22 | 2 | B | MATTERHORN | 0 | 0 | 14.3 | 1.25 | 25.0 | 3.8 | |||||||
2022:2E23 | 1 | B | GALAICA | Glomus sp. | 22 | 6 | 0.02 | 17.8 | 0.91 | 8.0 | 1.4 | 9.90 | 11.4 | 10.4 | ||
2022:2E24 | 2 | B | GALAICA | |||||||||||||
2022:2E25 | 1 | N | MATTERHORN | Rhizophagus clarus | 25 | 10 | 0.03 | 51.3 | 2.23 | 28.0 | 4.6 | 5.6 | 3.71 | 119.1 | 7.7 | 282 |
2022:2E26 | 2 | N | MATTERHORN | Scutellospora sp./Gigaspora sp. | 22 | 7 | 47.7 | 2.37 | 50.0 | 3.8 | 23.1 | 3.56 | 109.0 | 9.7 | 1154 | |
2022:2E27 | 1 | N | GALAICA | Gigaspora margarita | 20 | 20 | 0.10 | 19.2 | 0.99 | 16.0 | 2 | 43.4 | 8.48 | 115.4 | 8.2 | 2169 |
2022:2E28 | 2 | N | GALAICA | Glomus sp. | 25 | 6 | 0.05 | 29.6 | 2.19 | 33.0 | 2.4 | 69.0 | 9.00 | 122.8 | 8.7 | 3452 |
2022:2E29 | 1 | N-B | MATTERHORN | Gigaspora sp. | 30 | 14 | 0.01 | 21.6 | 1.83 | 21.0 | 5.4 | 8.7 | 3.17 | 122.4 | 10.1 | 434 |
2022:2E30 | 2 | N-B | MATTERHORN | Rhizophagus clarus/Glomus sp. | 28 | 25 | 0.02 | 35.6 | 1.94 | 24.0 | 4.4 | 8.6 | 3.08 | 114.3 | 8.4 | 430 |
2022:2E31 | 1 | N-B | GALAICA | Rhizophagus sp. | 26 | 5 | 0.04 | 24.0 | 0.98 | 20.0 | 2.4 | 17.2 | 7.83 | 113.3 | 9.5 | 861 |
2022:2E32 | 2 | N-B | GALAICA | Rhizophagus clarus/Glomus sp. | 26 | 175 | 2.67 | 23.8 | 1.18 | 30.0 | 2.8 | 68.4 | 8.12 | 121.6 | 9.7 | 3419 |
Mean | 22.0 | 25.3 | 0.345 | 29.17 | 1.516 | 24.63 | 3.43 | 26.81 | 115.40 | 9.35 | 1340.4 | |||||
Minimum | 0 | 0 | 0.00 | 7.7 | 0.39 | 5.0 | 1.2 | 5.0 | 11.4 | 7.7 | 252 | |||||
Maximum | 45 | 175 | 2.67 | 106.1 | 3.19 | 58.0 | 5.6 | 73.0 | 160.1 | 11.9 | 3650 | |||||
Standard deviation | 8.2 | 39.5 | 0.631 | 20.07 | 0.723 | 11.15 | 1.38 | 20.38 | 24.31 | 1.01 | 1018.8 |
Source of Variation | df | MS | df | MS | df | MS | df | MS | df | MS | df | MS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NN | FWN | DWA | DWR | PP | SP | |||||||
T | 62 | 8111.15 *** | 56 | 2.13 | 62 | 331.22 *** | 62 | 2.69 *** | 60 | 191.37 *** | 60 | 0.48 *** |
G | 2995.60 | 1.03 | 449.92 * | 1.91 | 386.66 *** | 53.56 *** | ||||||
Y | 38937.60 *** | 37.70 *** | 45.93 | 18.12 *** | 504.19 *** | 2.30 *** | ||||||
TxG | 2185.30 | 1.15 | 94.56 | 1.02 | 110.60 *** | 0.47 | ||||||
GxY | 0.13 | 0.05 | 7.26 | 0.61 | 91.58 ** | 0.00 | ||||||
TxGxY | 2163.56 | 2.13 | 231.32 * | 0.34 | 84.31 *** | 0.11 | ||||||
PY | SW | WA | TP | Y | ||||||||
T | 55 | 669.18 * | 60 | 0.68 *** | 60 | 1536.07 *** | 55 | 6.68 ** | 55 | 1672937.90 * | ||
G | 1899.02 * | 269.10 *** | 7.13 | 22.41 *** | 4747548.12 ** | |||||||
Y | 14857.21 *** | 4.34 *** | 2073.43 *** | 767.94 *** | 37143034.22 *** | |||||||
TxG | 98.37 | 0.45 *** | 460.03 *** | 5.85 * | 245937.07 | |||||||
GxY | 1842.30 ** | 1.76 *** | 298.89 | 19.75 ** | 4605753.29 ** | |||||||
TxGxY | 166.71 | 0.48 *** | 398.20 *** | 10.28 *** | 416780.63 |
Month | Growing Degree Days | Days with TMAX ≥ 30 °C | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
May | 69.5 | 69.0 | 0 | 2 |
June | 232.5 | 228.5 | 5 | 2 |
July | 260.5 | 363.5 | 4 | 13 |
August | 293.0 | 356.5 | 4 | 14 |
September | 273.5 | 273.0 | 1 | 2 |
TOTAL | 1129.0 | 1290.5 | 14 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodiño, A.P.; Aguín, O.; Tejada-Hinojoza, J.L.; De Ron, A.M. Arbuscular Mycorrhizal Fungi in Common Bean Roots: Agricultural Impact and Environmental Influence. Agriculture 2025, 15, 1452. https://doi.org/10.3390/agriculture15131452
Rodiño AP, Aguín O, Tejada-Hinojoza JL, De Ron AM. Arbuscular Mycorrhizal Fungi in Common Bean Roots: Agricultural Impact and Environmental Influence. Agriculture. 2025; 15(13):1452. https://doi.org/10.3390/agriculture15131452
Chicago/Turabian StyleRodiño, Ana Paula, Olga Aguín, Juan Leonardo Tejada-Hinojoza, and Antonio Miguel De Ron. 2025. "Arbuscular Mycorrhizal Fungi in Common Bean Roots: Agricultural Impact and Environmental Influence" Agriculture 15, no. 13: 1452. https://doi.org/10.3390/agriculture15131452
APA StyleRodiño, A. P., Aguín, O., Tejada-Hinojoza, J. L., & De Ron, A. M. (2025). Arbuscular Mycorrhizal Fungi in Common Bean Roots: Agricultural Impact and Environmental Influence. Agriculture, 15(13), 1452. https://doi.org/10.3390/agriculture15131452