Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review
Abstract
1. Introduction
2. Methodology
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria, and the Selection Process
2.3. Limitation of the Methodological Framework
3. Findings on Heavy Metal Contamination: Sources, Environmental Pathways, and Impact on the Ecosystem and Agriculture
3.1. Impact of Heavy Metal Contamination on Soil Microbial Communities
3.2. Agroecological Importance and Genetic Origin of B. juncea
3.3. Tolerance Mechanisms of B. juncea Under Heavy Metal Stress
3.4. Use of Si-Based Biostimulants as a Bioremediation Strategy for Contaminated Mine Soil and Water
3.4.1. Mechanisms of Si-Mediated Heavy Metal Toxicity Alleviation
3.4.2. Physiological and Biochemical Plant Responses to Si
4. Conclusions and Future Perspectives
- Decreasing heavy metal bioavailability through changes in soil chemistry and metal immobilization;
- Boosting the antioxidative capacity and overall health of plants;
- Promoting better plant growth and yield even in contaminated environments.
Future Directions
- Field validation of Si-enhanced phytoremediation under real-world conditions.
- Optimization of Si application methods and rates for different soil types and contamination levels.
- Economic assessments, which are required to determine the commercial viability of this approach.
- Exploration of synergistic effects with other biostimulants or soil amendments.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMD | Acid Mine Drainage |
APX | Ascorbate Peroxidase |
CAT | Catalase |
GDP | Gross Domestic Product |
GR | Glutathione Reductase |
GSH | Glutathione |
GST | Glutathione-S-Transferases |
MDA | Malondialdehyde |
PCs | Phytochelatins |
POD | Peroxidase |
ROS | Reactive Oxygen Species |
Si | Silicon |
SiNPs | Silicon Nanoparticles |
SOD | Superoxide Dismutase |
γ-ECS | Gamma-Glutamylcysteine Synthetase |
BAF | Bioaccumulation Factor |
References
- Gabarrón, M.; Zornoza, R.; Acosta, J.A.; Faz, Á.; Martínez-Martínez, S. Mining environments. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2019; Volume 4, pp. 157–205. [Google Scholar]
- Parra, C.; Lewis, B.; Ali, S.H. Mining, Materials, and the Sustainable Development Goals (SDGs): 2030 and Beyond, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 232. [Google Scholar]
- Warlonya, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 279, 111623. [Google Scholar]
- Teku, D. Geo-environmental and socio-economic impacts of artisanal and small-scale mining in Ethiopia: Challenges, opportunities, and sustainable solutions. Front. Environ. Sci. 2025, 13, 1505202. [Google Scholar] [CrossRef]
- Candeias, C.; Da Silva, E.F.; Ávila, P.F.; Teixeira, J.P. Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal) as an Example. Geosciences 2014, 4, 240–268. [Google Scholar] [CrossRef]
- Han, W.; Zhao, R.; Liu, W.; Wang, Y.; Zhang, S.; Zhao, K.; Nie, J. Environmental contamination characteristics of heavy metals from abandoned lead–zinc mine tailings in China. Front. Earth Sci. 2023, 11, 1082714. [Google Scholar] [CrossRef]
- Festin, R.; Tigabu, M.; Chileshe, M.N.; Sithole, B.; Odén, P.C.; Geldenhuys, C.J. Regeneration potential and plant species diversity in the naturally colonized post-mining landscapes. Land Degrad. Dev. 2019, 30, 1418–1432. [Google Scholar]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed]
- Sandeep, S.; Singh, P.; Meena, S.; Sharma, D. Heavy metal stress in plants: Physiological aspects and management strategies. Indian J. Plant Physiol. 2019, 24, 756120. [Google Scholar]
- Ansari, M.K.A.; Ahmad, A.; Umar, S.; Iqbal, M.; Zia, M.H.; Husen, A.; Owens, G. Suitability of Indian mustard genotypes for phytoremediation of mercury-contaminated sites. S. Afr. J. Bot. 2021, 142, 12–18. [Google Scholar] [CrossRef]
- Chaudhry, H.; Nisar, N.; Mehmood, S.; Iqbal, M.; Nazir, A.; Yasir, M. Indian mustard (Brassica juncea) efficiency for the accumulation, tolerance and translocation of zinc from metal-contaminated soil. Biocatal. Agric. Biotechnol. 2020, 23, 101489. [Google Scholar] [CrossRef]
- Fattahi, B.; Ghorbanli, M.; Ghanati, F. Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Ind. Crops Prod. 2019, 138, 111584. [Google Scholar] [CrossRef]
- Shehzad, J.; Mustafa, G.; Arshad, H.; Ali, A.; Naveed, N.H.; Riaz, Z.; Khan, I. Morpho-physiological and biochemical responses of Brassica species toward lead (Pb) stress. Acta Physiol. Plant. 2023, 45, 8. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Motsau, B.; van Wyk, D. Report on the Jagersfontein Tailings Disaster; Bench Marks Foundation: Marshalltown, South Africa, 2022; pp. 1–32. [Google Scholar]
- Motha, S. Rural community at the mercy of mine after spillage of dangerous toxins. Sunday World. 31 January 2022. Available online: https://sundayworld.co.za/news/rural-community-at-the-mercy-of-mine-after-spillage-of-dangerous-toxins/ (accessed on 6 June 2025).
- Carmo, F.F.; Lanchotti, A.O.; Kamino, L.H. Mining waste challenges: Environmental risks of gigatons of mud, dust and sediment in megadiverse regions in Brazil. Sustainability 2020, 12, 8466. [Google Scholar] [CrossRef]
- Kütter, V.T.; Martins, G.S.; Brandini, N.; Cordeiro, R.C.; Almeida, J.P.A.; Marques, E.D. Impacts of a tailings dam failure on water quality in the Doce River: The largest environmental disaster in Brazil. J. Trace Elem. Miner. 2023, 5, 100084. [Google Scholar] [CrossRef]
- Garcia, F.F.; Camilo Cotrim, C.F.; Caramori, S.S.; Bailão, E.F.L.C.; Nabout, J.C.; de Farias Neves Gitirana Junior, G.; Almeida, L.M. Mine tailings dams’ failures: Serious environmental impacts, remote solutions. Environ. Dev. Sustain. 2024, 1–23. [Google Scholar] [CrossRef]
- Tatu, G.L.A.; Vladut, N.V.; Voicea, I.; Vanghele, N.A.; Pruteanu, M.A. Removal of heavy metals from a contaminated soil using phytoremediation. In MATEC Web of Conferences, Proceedings of the 9th International Symposium on Occupational Health and Safety (SESAM 2019), Petrosani, Romania, 3 October 2019; EDP Sciences: Les Ulis, France, 2020; Volume 305, pp. 1–7. [Google Scholar]
- Rodríguez-Vila, A.; Forján, R.; Covelo, E.F.; Asensio, V. The potential of Brassica plants for heavy metal phytoremediation. Environ. Sci. Pollut. Res. 2014, 21, 7863–7876. [Google Scholar]
- Nepal, A.; Antonious, G.F.; Bebe, F.N.; Webster, T.C.; Gyawali, B.R.; Neupane, B. Heavy metal accumulation in three varieties of mustard grown under five soil management practices. Environments 2024, 11, 77. [Google Scholar] [CrossRef]
- Ali, I.; Khan, M.J.; Shah, A.; Deeba, F.; Hussain, H.; Yazdan, F.; Khan, M.U.; Khan, M.D. Screening of various Brassica species for phytoremediation of heavy metals-contaminated soil of Lakki Marwat, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 37765–37776. [Google Scholar] [CrossRef] [PubMed]
- Ojha, R.K.; Mani, D.; Shukla, D.P.; Vishwakarma, H.; Verma, J.; Kumar, M.; Patel, S. Phytoremediation potential of Brassica juncea L. grown in different Cd and Pb polluted sewage irrigated soils. Ann. Plant Soil Res. 2024, 26, 700–707. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Basalah, M.O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 2020, 248, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil contamination with cadmium: Consequences for remediation strategies. Environ. Pollut. 2017, 230, 1045–1054. [Google Scholar]
- Wijekoon, W.; Priyashantha, H.; Gajanayake, P.; Manage, P.; Liyanage, C.; Jayarathna, S.; Kumarasinghe, U. Review and Prospects of Phytoremediation: Harnessing Biofuel-Producing Plants for Environmental Remediation. Sustainability 2025, 17, 822. [Google Scholar] [CrossRef]
- Ngugi, M.M.; Gitari, H.I.; Muii, C.; Gweyi-Onyango, J.P. Cadmium mobility, uptake, and accumulation in spinach, kale, and amaranths vegetables as influenced by silicon fertilization. Bioremediat. J. 2022, 26, 113–127. [Google Scholar] [CrossRef]
- Praveen, A.; Pandey, C.; Panthri, M.; Gupta, M. Silicon-mediated genotoxic alterations in Brassica juncea under arsenic stress: A comparative study of biochemical and molecular markers. Pedosphere 2020, 30, 517–527. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Xie, Y.; Sangari, S. Silicon mechanisms to ameliorate heavy metal stress in plants. Biomed Res. Int. 2018, 2018, 8492898. [Google Scholar] [CrossRef] [PubMed]
- Hellequin, E.; Monard, C.; Chorin, M.; Reversat, G.; Dequiedt, S.; Roux, C.L.; Maron, P.-A.; Saby, N.P.A. Responses of active soil microorganisms facing to a soil biostimulant input compared to plant legacy effects. Sci. Rep. 2020, 10, 13727. [Google Scholar] [CrossRef] [PubMed]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling biometric traits, yield and nutritional and antioxidant properties of seeds of three soybean cultivars through the application of biostimulant containing seaweed and amino acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Valencia, R.T.; Acosta, L.S.; Hernández, M.F.; Robles, M.Á.G. The effect of silicon-based biostimulants on crop productivity. J. Agric. Sci. 2018, 7, 110–120. [Google Scholar]
- Fusar-Poli, P.; de Pablo, G.S.; De Micheli, A.; Nieman, D.H.; Correll, C.U.; Kessing, L.V.; Pfennig, A.; Bechdolf, A.; Borgwardt, S.; Arango, C.; et al. What is good mental health? A scoping review. Eur. Neuropsychopharmacol. 2020, 31, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Shengo, L.M. Review of practices in the managements of mineral wastes: The case of waste rocks and mine tailings. Water Air Soil Pollut. 2021, 232, 273. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Sci. Rep. 2022, 12, 3552. [Google Scholar] [CrossRef] [PubMed]
- Donald, A.N.; Raphael, P.B.; Olumide, O.J.; Amarachukwu, O.F. The synopsis of environmental heavy metal pollution. Am J Environ. Sci. 2022, 18, 125–134. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, H.; He, L.; Li, R. Hydrochemical characteristics of abandoned coal mines derived acid mine drainage in a typical karst basin (Wuma River Basin, Guizhou, China). Heliyon 2024, 10, e31963. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Liu, Y.; Wang, W.; Li, Y.; Chang, W.; Zhou, A.; Mu, R. Heavy metal distribution characteristics, water quality evaluation, and health risk evaluation of surface water in abandoned multi-year pyrite mine area. Water 2023, 15, 3138. [Google Scholar] [CrossRef]
- Wibowo, Y.G.; Fadhilah, R.; Syarifuddin, H.; Maryani, A.T.; Putri, I.A. A critical review of acid mine drainage treatment. J. Presipitasi Media Komun. Pengemb. Tek. Lingkung. 2021, 18, 524–535. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Adadzi, P.; Allwright, A.; Fourie, F. Multivariate and geostatistical analyses of groundwater quality for acid rock drainage at waste rock and tailings storage site. J. Ecol. Eng. 2022, 23, 203–216. [Google Scholar] [CrossRef]
- Gómez-Arias, A.; Yesares, L.; Caraballo, M.A.; Maleke, M.; Vermeulen, D.; Nieto, J.M.; Van Heerden, E.; Castillo, J. Environmental and geochemical characterization of alkaline mine wastes from Phalaborwa (Palabora) Complex, South Africa. J. Geochem. Explor. 2021, 224, 106757. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Sikdar, A.; Hossain, M.S.; Feng, S. Heavy metal pollution of environment by mine tailings and the potential reclamation techniques: A review. J. Biol. Agric. Health 2020, 10, 33–47. [Google Scholar]
- Tahir, I.; Alkheraije, K.A. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front. Vet. Sci. 2023, 10, 1149720. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Chauhan, D.; Shahane, S.; Rai, D.; Khan, M.Z.A.; Mishra, U.; Chaudhary, V.K. Contamination and Health Impact of Heavy Metals. In Water Pollution and Remediation: Heavy Metals; Inamuddin, Ahamed, M.I., Lichtfouse, E., Eds.; Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2021; Volume 53, pp. 259–280. [Google Scholar]
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef] [PubMed]
- Atta, M.I.; Zehra, S.S.; Dai, D.Q.; Ali, H.; Naveed, K.; Ali, I.; Sarwar, M.; Ali, B.; Iqbal, R.; Bawazeer, S.; et al. Amassing of heavy metals in soils, vegetables and crop plants irrigated with wastewater: Health risk assessment of heavy metals in Dera Ghazi Khan, Punjab, Pakistan. Front. Plant Sci. 2023, 13, 1080635. [Google Scholar] [CrossRef] [PubMed]
- Oyugi, A.M.; Kibet, J.K.; Adongo, J.O. A review of the health implications of heavy metals and pesticide residues on khat users. Bull. Natl. Res. Cent. 2021, 45, 158. [Google Scholar] [CrossRef]
- Punia, A.; Singh, S.K.; Bharti, R. Source, assessment, and remediation of metals in groundwater. In Groundwater Geochemistry: Pollution and Remediation Methods; Ghosh, N.C., Das, D., Eds.; Springer: Cham, Switzerland, 2021; pp. 79–104. [Google Scholar]
- Kumar, R. Emerging challenges of water scarcity in India: The way ahead. Int. J. Innov. Stud. Sociol. Humanit. 2019, 4, 6–28. [Google Scholar]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef] [PubMed]
- Nyiramigisha, P. Harmful impacts of heavy metal contamination in the soil and crops grown around dumpsites. Rev. Agric. Sci. 2021, 9, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Jorjani, S.; Karakaş, F.P. Physiological and biochemical responses to heavy metals stress in plants. Int. J. Second. Metab. 2024, 11, 169–190. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; Alamri, S.A. Harmful impacts of heavy metal contamination in the soil on plants and bioremediation strategies: A review. Res. Agric. Soil Sci. 2021, 9, 271–288. [Google Scholar]
- Villiers, F.; Kwak, J.M.; Leonhardt, N. Plant physiological responses to heavy metal stress: Ultrastructural, bio-chemical and molecular changes. Plant Arch. 2011, 18, 1229–1238. [Google Scholar]
- Saleem, M.H.; Mfarrej, M.F.B.; Alatawi, A.; Mumtaz, S.; Imran, M.; Ashraf, M.A.; Rizwan, M.; Usman, K.; Ahmad, P.; Ali, S. Silicon enhances morpho–physio–biochemical responses in arsenic-stressed spinach (Spinacia oleracea L.) by minimizing its uptake. J. Plant Growth Regul. 2023, 42, 2053–2072. [Google Scholar] [CrossRef]
- Waheed, A.; Haxim, Y.; Islam, W.; Ahmad, M.; Ali, S.; Wen, X.; Khan, K.A.; Ghramh, H.A.; Zhang, Z.; Zhang, D. Impact of cadmium stress on growth and physio-biochemical attributes of Eruca sativa Mill. Plants 2022, 11, 2981. [Google Scholar] [CrossRef] [PubMed]
- Adamski, J.M.; Danieloski, R.; Deuner, S.; Braga, E.J.; de Castro, L.A.; Peters, J.A. Responses to excess iron in sweet potato: Impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiol. Plant. 2012, 34, 1827–1836. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, P.K.; Kant, S.; Shikha, A.R.; Kumar, A. Organic amendments influence mustard (Brassica juncea) growth in chromium-contaminated soils. J. Pharmacogn. Phytochem. 2018, 7, 2026–2038. [Google Scholar]
- Chowardhara, B.; Borgohain, P.; Saha, B.; Awasthi, J.P.; Panda, S.K. Differential oxidative stress responses in Brassica juncea (L.) Czern and Coss cultivars induced by cadmium at germination and early seedling stage. Acta Physiol. Plant. 2020, 42, 122. [Google Scholar] [CrossRef]
- Siddiqui, H.; Ahmed, K.B.M.; Sami, F.; Hayat, S. Phytoremediation of cadmium contaminated soil using Brassica juncea: Influence on PSII activity, leaf gaseous exchange, carbohydrate metabolism, redox and elemental status. Bull. Environ. Contam. Toxicol. 2020, 105, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Wang, X.; Cui, Z. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol. Environ. Saf. 2019, 180, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Arthur, G.D.; Aremu, A.O.; Kulkarni, M.G.; Okem, A.; Stirk, W.A.; Davies, T.C.; Van Staden, J. Can the Use of Natural Biostimulants Be a Potential Means of Phytoremediating Contaminated Soils from Goldmines in South Africa? Int. J. Phytoremediat. 2016, 18, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Cai, P.; Liang, E.; Chen, Q.; Sun, W.; Wang, J. Distinct adaptive strategies and microbial interactions of soil viruses under different metal(loid) contaminations. J. Hazard. Mater. 2023, 460, 132347. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.T.; Petrovich, M.L.; Chaudhary, A.; Wright, D.; Murphy, B.; Wells, G.; Poretsky, R. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Appl. Environ. Microbiol. 2018, 84, e02168-17. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Liang, C.M.; Yang, T.I.; Chen, J.L.; Wang, W.K. Shift of bacterial communities in heavy metal-contaminated agricultural land during a remediation process. PLoS ONE 2021, 16, e0255137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, Y.; Huang, J.; Wang, H.; Tang, D. Effects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areas. Environ. Sci. Pollut. Res. 2020, 27, 20215–20226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K.; et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, M.; Roșca, M.; Cozma, P.; Minuț, M.; Smaranda, C.; Hlihor, R.M.; Gavrilescu, M. Toxicity and microbial bioremediation of chromium contaminated effluents. In Proceedings of the 2020 International Conference on e-Health and Bioengineering (EHB), Iași, Romania, 29–30 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Abbas, A.; Azeem, M.; Naveed, M.; Latif, A.; Bashir, S.; Ali, A.; Bilal, M.; Ali, L. Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int. J. Phytoremediat. 2020, 22, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, J.; Xiao, X.; Chen, C.; Wang, L.; Gao, X.; Liu, L.; Zhang, X. The genomics of Brassica juncea and insights into polyploid evolution. Nat. Genet. 2021, 53, 632–641. [Google Scholar]
- Chen, S.; Nelson, M.N.; Ghamkhar, K.; Fu, T.D.; Cowling, W.A. Divergent patterns of allelic diversity from similar origins: The case of oilseed rape (Brassica napus L.) in China and Australia. Genome 2008, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Deng, F. Phytochemistry and biological activity of mustard (Brassica juncea): A review. CyTA J. Food 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency (CFIA). The Biology of Brassica juncea (Canola/Mustard); Government of Canada; 2007. Available online: https://inspection.canada.ca/en/plant-varieties/plants-novel-traits/applicants/directive-94-08/biology-documents/brassica-juncea (accessed on 6 June 2025).
- Seetseng, K.A.; Gerrano, A.S.; Mavengahama, S.; Araya, H.T.; Du Plooy, C.P. Influence of fertilizer application on biomass yield and nutritional quality of mustard spinach (Florida Broadleaf) in South Africa. Agron. Res. 2020, 18, 256–266. [Google Scholar]
- Maboko, M.M.; Du Plooy, C.P. Yield response of hydroponically grown mustard spinach and non-heading Chinese cabbage to frequency of leaf harvest and flower removal. Int. J. Veg. Sci. 2019, 25, 185–195. [Google Scholar] [CrossRef]
- Zeremski, T.; Ranđelović, D.; Jakovljević, K.; Marjanović Jeromela, A.; Milić, S. Brassica Species in Phytoextractions: Real Potentials and Challenges. Plants 2021, 10, 2340. [Google Scholar] [CrossRef] [PubMed]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Louro Martins, L. Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [PubMed]
- Małecka, A.; Konkolewska, A.; Hanć, A.; Ciszewska, L.; Staszak, A.M.; Jarmuszkiewicz, W.; Ratajczak, E. Activation of antioxidative and detoxificative systems in Brassica juncea L. plants against the toxicity of heavy metals. Sci. Rep. 2021, 11, 22345. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bhardwaj, R.; Thukral, A.K.; Al-Huqail, A.A.; Siddiqui, M.H.; Ahmad, P. Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress. Ecotoxicol. Environ. Saf. 2019, 182, 109436. [Google Scholar] [CrossRef] [PubMed]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2021, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Zeng, C.; Wan, C.; Liu, Z.; Dong, X.; Peng, J.; Lin, H.; Li, M.; Liu, Z.; Yan, M. Metabolic profiles of Brassica juncea roots in response to cadmium stress. Metabolites 2021, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.A.; Perveen, K.; Khan, F.; Sayyed, R.Z.; Hock, O.G.; Bhatt, S.C.; Singh, J.; Qamar, M.O. Effect of different levels of EDTA on phytoextraction of heavy metal and growth of Brassica juncea L. Front. Microbiol. 2023, 14, 1228117. [Google Scholar]
- Vaculík, M.; Lukačová, Z.; Bokor, B.; Martinka, M.; Tripathi, D.K.; Lux, A. Alleviation mechanisms of metal(loid) stress in plants by silicon: A review. J. Exp. Bot. 2020, 71, 6744–6757. [Google Scholar] [CrossRef] [PubMed]
- Naz, T.; Iqbal, M.M.; Raza, B.; Mubeen, M.A.; Nadeem, M.A.; Al-Ghamdi, A.A.; Elshikh, M.S.; Rizwan, M.; Iqbal, R. Green remediation of lead (Pb) from Pb-toxic soil by combined use of silicon nanomaterials and leguminous Lens culinaris L. plants. Sci. Rep. 2025, 15, 4366. [Google Scholar] [CrossRef] [PubMed]
- David, O.A.; Labulo, A.H.; Hassan, I.; Olawuni, I.; Oseghale, C.O.; Terna, A.D.; Ajayi, O.O.; Ayegbusi, S.A.; Owolabi, M.O. Complexation and immobilization of arsenic in maize using green synthesized silicon nanoparticles (SiNPs). Sci. Rep. 2024, 14, 6176. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-W.; Shi, Y.; Zhu, Y.-X.; Wang, Y.-C.; Gong, H.-J. Mechanisms of enhanced heavy metal tolerance in plants by silicon: A review. Pedosphere 2013, 23, 815–825. [Google Scholar] [CrossRef]
- Rachappanavar, V.; Gupta, S.K.; Jayaprakash, G.K.; Abbas, M. Silicon mediated heavy metal stress amelioration in fruit crops. Heliyon 2024, 10, e037425. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.; Sher, A.; Abourehab, M.A.; Ijaz, M.; Nawaz, M.; Ul-Allah, S.; Abbas, T.; Shah, A.N.; Imam, M.S.; Abdelsalam, N.R.; et al. Application of silicon and biochar alleviates the adversities of arsenic stress in maize by triggering the morpho-physiological and antioxidant defense mechanisms. Front. Environ. Sci. 2022, 10, 979049. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Stein, M.; Schaller, J. Silicon in plants: Alleviation of metal(loid) toxicity and consequential perspectives for phytoremediation. Plants 2023, 12, 2407. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, S.; Cai, K.; Huang, F.; Pan, B.; Wang, W. Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 2020, 242, 125128. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumar, V.; Sharma, A. Interaction of Silicon with Cell Wall Components in Plants: A Review. J. Appl. Nat. Sci. 2023, 15, 480–497. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Xiang, L.; Su, Q.; Liu, Z.; Wu, W.; Huang, Y.; Tu, S. Silicon-rich biochar detoxify multiple heavy metals in wheat by regulating oxidative stress and subcellular distribution of heavy metal. Sustainability 2022, 14, 16417. [Google Scholar] [CrossRef]
- González-Moscoso, M.; Juárez-Maldonado, A.; Cadenas-Pliego, G.; Meza-Figueroa, D.; SenGupta, B.; Martínez-Villegas, N. Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environ. Sci. Pollut. Res. 2022, 29, 34147–34163. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.; Leishman, M.R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol. 2016, 30, 1340–1357. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Liang, Y.; Guo, J.; Gong, H.; Xu, Z. Silicon alleviates mercury toxicity in garlic plants. J. Plant Nutr. 2020, 43, 2508–2517. [Google Scholar] [CrossRef]
- Zubair, M.; Shafqat, A.; Jabben, N.; Shafiq, M.; Balal, R.M.; Tahir, M.A.; Hashmi, M.M.; Naqvi, S.A.A.; Ali, N.; Abbas, S.M.; et al. Enhancing cabbage resilience against heavy metal stress through silicon amendments and melatonin: A depth investigation. Sci. Hortic. 2024, 324, 112571. [Google Scholar] [CrossRef]
- Balal, R.M.; Javed, S.A.; Jaffar, M.T.; Sadaf, A.; Paray, B.A.; Singh, R. Heavy metal toxicity induced by sewage water treatment in three different vegetables (lettuce, spinach and cabbage) was alleviated by brassinosteroid and silicon supplementation. J. King Saud Univ. Sci. 2024, 36, 103310. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, X.; Shi, A.; Yu, Y.; Rensing, C.; Zhang, T.; Xing, S.; Yang, W. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum alfredii Hance by enhancing Cd uptake and alleviating Cd toxicity. Front. Plant Sci. 2023, 14, 1134370. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hu, Y.; Liu, J.; Rao, X.; Huang, X.; Guo, X.; Zhang, J.; Rensing, C.; Xing, S.; Zhang, L. Physiology and transcriptomic analysis revealed the mechanism of silicon promoting cadmium accumulation in Sedum alfredii Hance. Chemosphere 2024, 360, 142417. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.; Khan, E.; Panthri, M.; Tripathi, R.D.; Gupta, M. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol. Biochem. 2016, 104, 216–225. [Google Scholar] [CrossRef] [PubMed]
Crop | Heavy Metal | Mode of Application | Concentrations | Regions | Results | Citation |
---|---|---|---|---|---|---|
Indian mustard (B. juncea) | Hg | Hydroponics/nutrient solution | 0, 25, 50, 100, 200, 400 µM (HgCl2) | India | Inhibited growth: plant height ↓3–54%, fresh/dry weight ↓4–65%, yield attributes ↓20–33%, seed germination ↓4–76% (significant at ≥100 µM) | Ansari et al. [11] |
Indian Mustard | Zn | Artificially contaminated soil | 20, 40, 80, and 160 mg/L (ZnSO4) | Pakistan | Reduced root length, shoot length, root biomass, and shoot biomass (significant at ≥100 mg/L) | Chaudhry et al. [12] |
Spinach (Spinacia oleracea) | Arsenic (As) | Hydroponics/nutrient solution | 0, 50, 100 µM (Na2HAsO4·7H2O) | Pakistan | Dry root weight ↓21.1–58%, stem length ↓18.7%, leaf area ↓22.1–61%; photosynthetic pigments and gaseous exchange parameters ↓29–66% (significant at 50 and 100 µM) | Saleem et al. [59] |
Rapeseed (Brassica napas) Indian Mustard (B. juncea) B. campretris | Pb | Hydroponics/nutrient solution | 0, 50, 100, 150 mM (as Pb(NO3)2) | Pakistan | Plant growth ↓, biomass ↓, photosynthetic pigments ↓, shoot length ↓(up to 34%), root length ↓, number of leaves ↓, plant biomass ↓(significant at ≥100 and 150 mM) | Shehzad et al. [14] |
Basil (Ocimum basilicum) | Cd | Irrigation | 0, 50, 100, 200 mg/L | Iran | Reduced seed germination (↓up to 50% at 200 mg/L), reduced shoot/root length, altered oil composition | Fettahi et al. [13] |
Rucola (Eruca sativa) | Cd | Irrigation | 30 µmol/L Cd | Not specified | Reduced shoot length ↓19–44%, and root length ↓36–52%, reduced photosynthetic pigment (Chl-a: ↓25–53%; Chl-b: ↓18–63%), increased oxidative stress (↑53–96%) | Waheed et al. [60] |
Sweet potato (Ipomoea batatas) | Fe | Hydroponics/nutrient solution | 0.45, 0.9, 4.5, 9.0 mmol/L Fe (as Fe-EDTA) | Not specified | Reduced stomatal density, mitochondrial impairment in radicle cells, decreased nutrient uptake (Significant at 4.5 and 9.0 mmol/L) | Adamski et al. [61] |
Indian Mustard | Cr | Artificially contaminated soil | 0, 20, 40, 60, 80 ppm (K2Cr2O7) | India | Reduced plant height (↓56% at seedling and 3% harvest), reduced biomass, impaired root/shoot growth, number of leaves ↓51%, germination percentage ↓36% (Significant at ≥40 and ppm) | Kumar et al. [62] |
Indian mustard | Cd | hydroponic/solution exposure | 0, 50, 100, 200 µM (as CdCl2) | Kenya | Reduced plant length, shoot/root length ↓, dry biomass ↓(significant at higher concentrations ≥ 100 µM) | Chowardhara et al. [63] |
Indian mustard | Cd | Artificially contaminated soil | 0, 25, 50 or 100 mg Cd/kg | India | Reduced photosynthesis, nutrient uptake, photolysis of water, sugar accumulation, and stunted growth | Siddiqui et al. [64] |
Solanum nigrum L. | Cu, Zn, Pb, Cd, Mn and Hg | Mine Tailings | - | China | Shoot length ↓72.7% Root length ↓69.1% Shoot fresh weight ↓74.5% Root fresh weight ↓67.6% | Li et al. [65] |
Brassica juncea | As, Fe, and Zn | Mine Tailings | - | South Africa | Reduced growth Poor leaf development | Arthur et al. [66] |
Crop | Heavy Metal | Si Concentrations Used | Regions | Mode of Application | Results | Citation |
---|---|---|---|---|---|---|
Spinach (Giant Forkhook), Kale (Holland variety), White amaranth (Dubia Giant variety) | Cd and Pb | - | Kenya | Soil amendment | In the greenhouse, Si reduced root Cd uptake by 33% (spinach) and 45% (kale). Si reduced shoot uptake by 32% in spinach (greenhouse) In the field, Si reduced root uptake by 42% (spinach), 30% (kale), and 24% (amaranths). | Ngugi et al. [29] |
Cabbage (B. oleraceae) | Ni, Cd and As | 1 mM, 2 mM, 3 mM Si | Pakistan | Foliar application | Increased photosynthetic rate by 71% (Ni), 59% (As), and (Cd) 75%. Increased chlorophyll by 78% (Ni), 82% (As), and 103% (Cd). SOD: Increased by 79% (Ni), 81% (As), 112% (Cd) with Si at 2 mM. POD: Increased by 43% (Ni), 41% (As), 58% (Cd). CAT: Increased by 94% (Ni), 135% (As), 115% (Cd). APX: Increased by 47% (Ni), 69% (As), 85% (Cd). | Zubair et al. [101] |
Lettuce (Lettuca sativa), spinach (S. oleraceae) and cabbage | Cd and Pb | Brassinosteroid 3.5 µM + Silicon 2 mM; Brassinosteroid 3.5 µM + Silicon 3 mM | Pakistan | Foliar application | ↑Root length, root fresh weight, root dry weight, shoot fresh weight, shoot dry weight, and leaf area. ↑SOD activity, POD activity, CAT activity and APX activity. ↓Cadmium (Cd) accumulation in edible parts. ↓Lead (Pb) accumulation in edible parts. | Balal et al. [102] |
Sedum alfredii | Cd | 0, 0.5, 1, 1.5, and 2 mM (Na2SiO3·9H2O) | China | Nutrient solution | Shoot fresh weight ↑22.67–52%. Shoot dry weight ↑21.74–52.17%. Root fresh weight ↑10.71–28.57%. Root dry weight ↑40–80%. Plant height ↑10.75–23.26%. Root length ↑11.90–31.44%. (Significant at 2 mM Si concentration) | Hu et al. [103] |
S. alfredii | Cd | 0.15, 1, and 2 mM Si | China | Nutrient solution | Shoot biomass ↑33.1–63.6%. Root biomass ↑28.3–55.1%. Enhanced Cd accumulation ↑31.9–96.6%. Improved Cd translocation 1.38 times higher than control. Chlorophyll a and b: Increased by up to 17.1% and 22.7%, respectively. Antioxidant enzymes: Activities of SOD ↑2.47, CAT ↑2.69, and POD ↑2.57 times. Upregulated genes for catalase (CAT), superoxide dismutase (CSD), and peroxidases (PER) were upregulated, boosting ROS detoxification. | Yang et al. [104] |
Indian mustard (B. juncea) | As | 1.5 mM Si | Not specified | Reduced root length inhibition 27%. Root tissue density ↑64.7%. Root fineness ↑40.1%. Increased As accumulation. Reduced H2O2 ↓8%. SOD ↓30%, CAT ↓32%, and APX ↓19%. | Pendey et al. [105] | |
B. juncea | As | 1.5 mM | India | hydroponic/solution exposure | Plant growth ↑109%, fresh weight ↑35%, and dry weight ↑50%. Chlorophyll ↑55% and carotenoid content ↑76%. As concentration in shoots ↓30%. Enzymatic antioxidants: SOD ↑14% and CAT ↑15%. | Praven et al. [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motshumi, K.K.; Mbangi, A.; Van Der Watt, E.; Khetsha, Z.P. Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review. Agriculture 2025, 15, 1582. https://doi.org/10.3390/agriculture15151582
Motshumi KK, Mbangi A, Van Der Watt E, Khetsha ZP. Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review. Agriculture. 2025; 15(15):1582. https://doi.org/10.3390/agriculture15151582
Chicago/Turabian StyleMotshumi, Kamogelo Katlego, Awonke Mbangi, Elmarie Van Der Watt, and Zenzile Peter Khetsha. 2025. "Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review" Agriculture 15, no. 15: 1582. https://doi.org/10.3390/agriculture15151582
APA StyleMotshumi, K. K., Mbangi, A., Van Der Watt, E., & Khetsha, Z. P. (2025). Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review. Agriculture, 15(15), 1582. https://doi.org/10.3390/agriculture15151582