Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Treatment
2.2. Methods
2.2.1. Instruments and Program
2.2.2. Design and Execution of Experiments
2.2.3. Detection Indices and Methods
- (1)
- Volume relaxation ratio
- (2)
- Maximum compressive force
- (3)
- Specific energy consumption
2.2.4. Data Analysis
3. Result Analysis and Discussion
3.1. Volume Relaxation Ratio
3.1.1. Effect of Moisture on Volume Relaxation Ratio of Straw Formation
3.1.2. Effect of Fermented Soybean Dregs on Volume Relaxation Ratio of Straw Formation
3.2. Maximum Compressive Force
3.2.1. Effects of Moisture on Maximum Compressive Force of Straws
3.2.2. Effects of Fermented Soybean Dregs on Maximum Compressive Force of Straws
3.3. Specific Energy Consumption of Forming
3.3.1. Effect of Moisture on Specific Energy Consumption of Straw Forming
3.3.2. Effects of Fermented Soybean Dregs on Specific Energy Consumption of Straw Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shinde, R.; Shahi, D.K.; Mahapatra, P.; Singh, C.S.; Naik, S.K.; Thombare, N.; Singh, A.K. Management of crop residues with special reference to the on-farm utilization methods: A review. Ind. Crops Prod. 2022, 181, 114772. [Google Scholar] [CrossRef]
- Huo, L.; Yao, Z.; Zhao, L.; Luo, J.; Zhang, P. Contribution and Potential of Comprehensive Utilization of Straw in GHG Emission Reduction and Carbon Sequestration. Trans. Chin. Soc. Agric. Mach. 2022, 53, 349–359. (In Chinese) [Google Scholar]
- Aguayo, M.M.; Sarin, S.C.; Cundiff, J.S.; Comer, K.; Clark, T. A corn-stover harvest scheduling problem arising in cellulosic ethanol production. Biomass Bioenergy 2017, 107, 102–112. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Y.; Zhao, F.; Liu, X.; Quan, J.; Niu, X.; Han, X. Effects of straw pellets on rumen function and live weight gain of beef cattle. Pratacult. Sci. 2016, 25, 163–170. (In Chinese) [Google Scholar]
- Zhao, F.; Zhang, H.; Hong, J.; Quan, J.; Li, S.; Zhao, Z.; Zuo, Z. Effects of replacement of whole corn silage with straw pellets on finishing steers. Pratacult. Sci. 2020, 37, 2089–2096. (In Chinese) [Google Scholar]
- Shi, Z.; Jia, T.; Wang, Y.; Wang, J.; Sun, R.; Wang, F.; Li, X.; Bi, Y. Comprehensive utilization of crop straw and estimation of carbon from burning in China. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 32–37. (In Chinese) [Google Scholar]
- Gageanu, I.; Persu, C.; Cujbescu, D.; Gheorghe, G.; Voicu, G. Influence of using additives on quality of pelletized fodder. Eng. Rural Dev. 2019, 18, 362–367. [Google Scholar]
- Obidzinski, S.; Piekut, J.; Dec, D. The influence of potato pulp content on the properties of pellets from buckwheat hulls. Renew. Energ. 2016, 87, 289–297. [Google Scholar] [CrossRef]
- Matkowski, P.; Lisowski, A.; Switochowski, A. Pelletising pure wheat straw and blends of straw with calcium carbonate or cassava starch at different moisture, temperature, and die height values: Modelling and optimisation. J. Clean. Prod. 2020, 272, 122955. [Google Scholar] [CrossRef]
- Chojnacki, J.; Zdanowicz, A.; Ondruka, J.; Soos, L.; Smuga-Kogut, M. The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies 2021, 14, 405. [Google Scholar] [CrossRef]
- Miladinovic, D.D.; Storebakken, T.; Lekang, O.I.; Salas-Bringas, C. The effect of feed enzymes phytase, protease and xylanase on pelleting of microalgal biomass. Heliyon 2021, 7, e08598. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Z.; Hou, Z.; Hu, F.; Wang, C.; Qi, W. Parameter analysis and development of fractional calculus model for stress relaxation of cornstalk and potato residues. Trans. Chin. Soc. Agric. Eng. 2021, 37, 284–290. (In Chinese) [Google Scholar]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sust. Energ. Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Tabil, L.G.; Knox, R. Effect of compressive load and particle size on compression characteristics of selected varieties of wheat straw grinds. Biomass Bioenergy 2014, 60, 1–7. [Google Scholar] [CrossRef]
- Xue, D.; Wu, P.; Ma, Y.; Chen, P.; Wang, H. Research Progress on Technologies of Biomass Densification. J. Anhui Agric. Sci. 2018, 46, 32–36. (In Chinese) [Google Scholar]
- Hou, Z.; Tian, X.; Xu, Y. Effect of densification Processing physical Quality and mechanical Properties of Corn stover. Trans. Chin. Soc. Agric. Mach. 2010, 41, 86–89. (In Chinese) [Google Scholar]
- Wang, G.; Jiang, Y.; Li, W.; Yin, X. Optimization of corn stover molding process based on response surface methodology. Trans. Chin. Soc. Agric. Eng. 2016, 32, 223–227. (In Chinese) [Google Scholar]
- Ding, N.; Li, H.; Yan, A.; Liu, P.; Han, L.; Wei, W. Optimization and Experiment on Straw Multi·stage Continuous Cold Roll Forming for Molding Parameters. Trans. Chin. Soc. Agric. Mach. 2021, 52, 196–202. (In Chinese) [Google Scholar]
- Zhao, C.; Ma, G.; Lv, J.; Jiang, X.; Zhang, G. Effects of Adding Lactic Acid Bacteria and Cellulase on Quality of Mixed Silage of Soybean Residue and Mulberry Leaves and Rumen Fermentation Characteristics in Vitro. Chin. J. Anim. Nutr. 2021, 33, 2168–2177. (In Chinese) [Google Scholar]
- Guo, J.; Dou, K.; Wang, F.; Wang, D. Application progress of soybean dregs in food. Cereals Oils 2022, 35, 15–17. (In Chinese) [Google Scholar]
- Jiang, K.; Tang, B.; Wang, Q.; Xu, Z.; Sun, L.; Ma, J.; Li, S.; Xu, H.; Lei, P. The bio-processing of soyben dregs by solid state fermentation using apoly γ-glutamic acid producing strain and its effect as feed additive. Bioresour. Technol. 2019, 291, 121841. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, Y.; Wang, L.; Qiao, Z.; Liu, Y.; Li, L. Overview on Functionality and Application Rsearching Situation of Fermented Soybean Dregs. Food Sci. 2008, 29, 475–478. (In Chinese) [Google Scholar]
- Li, F.; Yu, S.; Xiao, T.; Wang, H.; Qiao, Z.; Liu, Y.; Li, L. Nutritional properities of fermented okara and its application in aquatic feed. Feed Res. 2021, 44, 142–146. (In Chinese) [Google Scholar]
- Chen, T.; Zhang, W.; Liu, Y.; Song, Y.; Wu, L.; Liu, C.; Wang, T. Effects of Wet Fermented Soybean Dregs on Physical and Mechanical Properties of Pellets of Corn Stover. Animals 2022, 12, 2632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Kong, L.; Su, J.; Ma, J.; Feng, B. Optimization of processing parameters of straw and particles feed for fattening lamb. Trans. Chin. Soc. Agric. Eng. 2018, 34, 274–281. (In Chinese) [Google Scholar]
- Tumuluru, J.S.; Tabil, L.G.; Song, Y.; Iroba, K.L.; Meda, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Res. 2015, 8, 388–401. [Google Scholar] [CrossRef]
- Cao, X.Y.; You, M.Y.; Luo, J.X.; Zhang, W.J.; Wang, W.J.; Wu, X.J.; Peng, L.; Tang, H.J.; Jiang, P. Study on feeding value of a new feed source, Bitter soybean dregs. Mod. Anim. Husb. 2010, 2010, 13–16. (In Chinese) [Google Scholar]
- Callegaro, A.M.; Filho, D.; Brondani, I.L.; Silveira, M.; Rodrigues, L. Intake and performance of steers fed with soybean dreg in confinement. Semin. Cienc. Agrar. 2015, 36, 2055–2066. [Google Scholar] [CrossRef][Green Version]
- Zanine, A.M.; Fonseca, A.A.; Ribeiro, M.D.; Leonel, F.P.; Ferreira, D.J.; Souza, A.L.; Silva, F.G.; Correa, R.A.; Negrão, F.M.; Pinho, R. Intake, digestibility and feeding behaviour of grazing dairy cows supplemented with common bean (Phaseolus vulgaris L.) residue. Anim. Prod. Sci. 2020, 60, 1607–1613. [Google Scholar] [CrossRef]
- Durman, T.; Lima, L.S.D.; Rufino, M.O.A.; Gurgel, A.L.C.; Horst, J.A.; Ítavo, L.C.V.; Santos, G.T.D. Feeding okara, a soybean by-product, to dairy cows as partial protein source enhances economic indexes and preserves milk quality, intake, and digestibility of nutrients. Trop. Anim. Health Prod. 2021, 54, 14. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Li, T.; Ma, P.; Hu, Y.; Sun, Y.; Li, H. Experimental study of hot moldling of densified biofuel. Acta Energiae Solaris Sin. 2016, 37, 2660–2667. (In Chinese) [Google Scholar]
- Wang, R.; Wei, K.; Liu, Y.; Chen, Z.; Ma, F.; Liu, D. Optimization of process parameters for multi-frequency rapid compression molding of corn stalk silk used for forage. Trans. Chin. Soc. Agric. Eng. 2016, 32, 277–281. (In Chinese) [Google Scholar]
- Cui, X.; Yang, J.; Deng, L.; Lei, W.; Huang, T.; Bai, C. Effect of different parameters on energy consumption of biomass pellet in single pelletization. Acta Energiae Solaris Sin. 2020, 41, 27–32. (In Chinese) [Google Scholar]
- Said, N.; Abdel Daiem, M.M.; Garcia-Maraver, A.; Zamorano, M. Influence of densifcation parameters on quality properties of rice straw pellets. Fuel Process Technol. 2015, 138, 56–64. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Shang, L.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B. From a single pellet press to a bench scale pellet mill—Pelletizing six different biomass feedstocks. Fuel Process Technol. 2016, 142, 27–33. [Google Scholar] [CrossRef]
- Si, Y. Study on Quality Promotion and Bonding Mechanism of Agricultural Residues Pellets. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2018. [Google Scholar]
- Guo, W.; Wang, Z.; Hu, F.; Hou, Z.; De, X. Parameter optimization study based on co-briquetting tests of corn stover and potato residue. BioResources 2022, 17, 1001–1014. (In Chinese) [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Densification characteristics of corn cobs. Fuel Process Technol. 2010, 91, 559–565. [Google Scholar] [CrossRef]
- Meng, W.; Gao, Y.; Hu, M.; Wen, W.; Zhang, P.; Zhang, F.; Wang, F.; Li, S. High-Value Utilization of Okara: Biotransformation Pathways. Food Sci. 2024, 45, 280–290. (In Chinese) [Google Scholar]
- Gu, Z.; Xu, K.; Zhao, R. Study on specific energy consumption in straw-briquetting process. Control Instrum. Chem. Ind. 2013, 40, 250–253. (In Chinese) [Google Scholar]
- Li, W.; Jiang, Y.; Rao, S.; Yin, X.; Wang, M.; Jiang, E. Optimization parameters of mixture pelleting of eucalyptus sawdust and corn stover. Acta Energiae Solaris Sin. 2020, 41, 332–338. (In Chinese) [Google Scholar]
- Jia, H.; Chen, T.; Zhang, S.; Sun, X.; Yuan, H. Effects of pressure maintenance and strain maintenance during compression on subsequent dimensional stability and density after relaxation of blocks of chopped corn stover. BioResources 2020, 15, 3717–3736. [Google Scholar] [CrossRef]
- Wongsiriamnuay, T.; Tippayawong, N. Effect of densification parameters on the properties of maize residue pellets. Biosyst. Eng. 2015, 139, 111–120. [Google Scholar] [CrossRef]
- Mostafa, M.E.; Hu, S.; Wang, Y.; Su, S.; Hu, X.; Elsayed, S.A.; Xiang, J. The signifcance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renew. Sustain. Eenrgy Rev. 2019, 105, 332–348. [Google Scholar] [CrossRef]
- Li, H.; Jiang, L.; Li, C.; Liang, J.; Yuan, X.; Xiao, Z.; Xiao, Z.; Wang, H. Co-pelletization of sewage sludge and biomass: The energy input and properties of pellets. Fuel Process Technol. 2015, 132, 55–61. [Google Scholar] [CrossRef]
- Naimi, L.J.; Sokhansanj, S. Data-based equation to predict power and energy input for grinding wheat straw, corn stover, switchgrass, miscanthus, and canola straw. Fuel Process Technol. 2018, 73, 81–88. [Google Scholar] [CrossRef]
- Himmel, M.; Tucker, M.; Baker, J.; Rivard, C.; Oh, K.; Grohmann, K. Comminution of biomass: Hammer and knife mills. Biotechnol. Bioeng. Symp. 1985, 15, 39–58. [Google Scholar]
Source of Variance | Freedom | Mean Square | F | Significance |
---|---|---|---|---|
Corrected model | 23 | 0.28 | 55.76 | 0.000 ** |
Intercept | 1 | 307.41 | 60,529.97 | 0.000 ** |
Straw particle size | 1 | 0.22 | 44.20 | 0.000 ** |
Compression displacement | 1 | 0.04 | 7.43 | 0.007 ** |
Water addition mass | 5 | 1.02 | 201.29 | 0.000 ** |
Straw particle size × Compression displacement | 1 | 0.03 | 6.50 | 0.012 * |
Straw particle size × Water addition mass | 5 | 0.19 | 36.61 | 0.000 ** |
Compression displacement × Water addition mass | 5 | 0.02 | 4.36 | 0.001 ** |
Error | 120 | 0.01 | ||
Total | 144 | |||
Revised total | 143 |
Source of Variance | Freedom | Mean Square | F | Significance |
---|---|---|---|---|
Corrected model | 23 | 0.22 | 90.54 | 0.000 ** |
Intercept | 1 | 270.80 | 110,826.72 | 0.000 ** |
Straw particle size | 1 | 0.31 | 125.21 | 0.000 ** |
Compression displacement | 1 | 0.01 | 3.21 | 0.076 ns |
Added mass ratio of soybean dregs | 5 | 0.90 | 368.31 | 0.000 ** |
Straw particle size × Compression displacement | 1 | 0.00 | 1.51 | 0.221 ns |
Straw particle size × Added mass ratio of soybean dregs | 5 | 0.03 | 12.99 | 0.000 ** |
Compression displacement × Added mass ratio of soybean dregs | 5 | 0.02 | 6.18 | 0.000 ** |
Error | 120 | 0.00 | ||
Total | 144 | |||
Revised total | 143 |
Source of Variance | Freedom | Mean Square | F | Significance |
---|---|---|---|---|
Corrected model | 23 | 214,380,049.43 | 274.68 | 0.000 ** |
Intercept | 1 | 14,018,402,133.78 | 17,961.35 | 0.000 ** |
Straw particle size | 1 | 2,575,071,940.03 | 3299.36 | 0.000 ** |
Compression displacement | 1 | 1,659,761,180.03 | 2126.60 | 0.000 ** |
Water addition mass | 5 | 22,017,396.11 | 28.21 | 0.000 ** |
Straw particle size × Compression displacement | 1 | 353,039,047.11 | 452.34 | 0.000 ** |
Straw particle size × Water addition mass | 5 | 17,474,044.59 | 22.39 | 0.000 ** |
Compression displacement × Water addition mass | 5 | 12,402,128.39 | 15.89 | 0.000 ** |
Error | 120 | 780,475.79 | ||
Total | 144 | |||
Revised total | 143 |
Source of Variance | Freedom | Mean Square | F | Significance |
---|---|---|---|---|
Corrected model | 23 | 671,810,222.82 | 175.56 | 0.000 ** |
Intercept | 1 | 26,402,756,365.56 | 6899.66 | 0.000 ** |
Straw particle size | 1 | 5,835,139,275.34 | 1524.86 | 0.000 ** |
Compression displacement | 1 | 4,773,646,887.51 | 1247.47 | 0.000 ** |
Added mass ratio of soybean dregs | 5 | 211,786,065.58 | 55.34 | 0.000 ** |
Straw particle size × Compression displacement | 1 | 1,460,163,312.67 | 381.57 | 0.000 ** |
Straw particle size × Added mass ratio of soybean dregs | 5 | 121,724,789.82 | 31.81 | 0.000 ** |
Compression displacement × Added mass ratio of soybean dregs | 5 | 212,979,577.42 | 55.66 | 0.000 ** |
Error | 120 | 3,826,676.34 | ||
Total | 144 | |||
Revised total | 143 |
Source of Variance | Freedom | Mean Square | F | Significance |
---|---|---|---|---|
Corrected model | 23 | 483.70 | 372.23 | 0.000 ** |
Intercept | 1 | 37,844.84 | 29,123.90 | 0.000 ** |
Straw particle size | 1 | 8651.02 | 6657.48 | 0.000 ** |
Compression displacement | 1 | 1743.69 | 1341.87 | 0.000 ** |
Water addition mass | 5 | 96.30 | 74.11 | 0.000 ** |
Straw particle size × Compression displacement | 1 | 176.56 | 135.87 | 0.000 ** |
Straw particle size × Water addition mass | 5 | 5.71 | 4.39 | 0.001 ** |
Compression displacement × Water addition mass | 5 | 6.77 | 5.21 | 0.000 ** |
Error | 120 | 1.30 | ||
Total | 144 | |||
Revised total | 143 |
Source of Variance | Freedom | Mean Square | F | Significance |
---|---|---|---|---|
Corrected model | 23 | 633.32 | 272.13 | 0.000 ** |
Intercept | 1 | 48,177.69 | 20,701.11 | 0.000 ** |
Straw particle size | 1 | 10,396.35 | 4467.13 | 0.000 ** |
Compression displacement | 1 | 2915.55 | 1252.76 | 0.000 ** |
Added mass ratio of soybean dregs | 5 | 35.58 | 15.29 | 0.000 ** |
Straw particle size × Compression displacement | 1 | 602.91 | 259.06 | 0.000 ** |
Straw particle size × Added mass ratio of soybean dregs | 5 | 15.09 | 6.48 | 0.000 ** |
Compression displacement × Added mass ratio of soybean dregs | 5 | 45.67 | 19.62 | 0.000 ** |
Error | 120 | 2.33 | ||
Total | 144 | |||
Revised total | 143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zhang, W.; Song, Y.; Wang, Y. Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets. Agriculture 2025, 15, 1727. https://doi.org/10.3390/agriculture15161727
Chen T, Zhang W, Song Y, Wang Y. Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets. Agriculture. 2025; 15(16):1727. https://doi.org/10.3390/agriculture15161727
Chicago/Turabian StyleChen, Tianyou, Wenyu Zhang, Yuqiu Song, and Yanlin Wang. 2025. "Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets" Agriculture 15, no. 16: 1727. https://doi.org/10.3390/agriculture15161727
APA StyleChen, T., Zhang, W., Song, Y., & Wang, Y. (2025). Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets. Agriculture, 15(16), 1727. https://doi.org/10.3390/agriculture15161727