Optimizing Source-Control Systems for Ammonia Mitigation in Swine Manure Pits: Performance Assessment and Modeling
Abstract
1. Introduction
- (1)
- Surface sealing with surfactant-based foam (FOAM SYSTEM): This technique forms a stable foam layer on the manure surface using a surfactant, which physically blocks the transfer of ammonia from the liquid to the gas phase [11].
- (2)
- (3)
- Belt-conveyor-based solid–liquid separator system (BELT SYSTEM): This system rapidly separates feces and urine immediately after excretion, preventing interactions among urea, urease, and proteins that lead to ammonia formation [13].
2. Materials and Methods
2.1. Preparation of Synthetic Swine Manure, Urine, and Urease
2.2. Experimental Setup and Procedures
2.2.1. Surface Sealing with Surfactant-Based Foam System
2.2.2. Swine Manure Wiping and Removing System
2.2.3. Belt-Conveyor-Based Solid–Liquid Separator System
2.2.4. Combined Systems
2.3. Manure Feeding and Gas Collection Procedures
2.4. Performance Indicators and Regression Models
3. Results and Discussion
3.1. Ammonia Mitigation Through Surface Sealing with Surfactant-Based Foam System
3.2. Ammonia Mitigation Through the Swine Manure Wiping and Removing System
3.3. Ammonia Mitigation Through the Belt-Conveyor-Based Solid–Liquid Separator System
3.4. Evaluation of Ammonia Mitigation Performance in Single and Integrated System Configurations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PSSR | Pilot-scale swine pit simulation reactor |
FOAM SYSTEM | Surface sealing with surfactant-based foam system |
WIPING SYSTEM | Swine manure wiping and removing system |
BELT SYSTEM | Belt-conveyor-based solid–liquid separator system |
SLSE | Solid–liquid separation efficiency |
References
- Song, J.M. Emission Characteristics of Odorous Compounds from a Swine Farm on Jeju Island, Korea. Atmosphere 2024, 15, 327. [Google Scholar] [CrossRef]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The Molecular Processes of Urea Hydrolysis in Relation to Ammonia Emissions from Agriculture. Rev. Environ. Sci. Bio/Technol. 2018, 17, 241–258. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia Emissions from Agriculture and Their Contribution to Fine Particulate Matter: A Review of Implications for Human Health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Seedorf, J.; Rutley, D.L.; Pitchford, W.S. Identification of Risk Factors for Sub-Optimal Housing Conditions in Australian Piggeries: Part 1. Study Justification and Design. J. Agric. Saf. Health 2008, 14, 5–20. [Google Scholar] [CrossRef]
- Mielcarek-Bocheńska, P.; Rzeźnik, W. Reducing Ammonia Emissions in Polish Agriculture, the Implementation of the NEC Directive, and the Context of Sustainable Development—Pilot Studies. Sustainability 2024, 16, 7145. [Google Scholar] [CrossRef]
- Hao, C.; Pan, Y.; Zhang, Z.; Zeng, Y. Kinetic Determination of Urease Activity in Fresh Pig Faeces and Slurry and the Effect on Ammonia Production at Different Conditions. Sustainability 2019, 11, 6396. [Google Scholar] [CrossRef]
- Cai, L.; Yu, J.; Zhang, J.; Qi, D. The effects of slatted floors and manure scraper systems on the concentrations and emission rates of ammonia, methane and carbon dioxide in goat buildings. Small Rumin. Res. 2015, 132, 103–110. [Google Scholar] [CrossRef]
- Koger, J.B.; O’Brien, B.K.; Burnette, R.P.; Kai, P.; Van Kempen, M.H.J.G.; Van Heugten, E.; Van Kempen, T.A.T.G. Manure belts for harvesting urine and faeces separately and improving air quality in swine facilities. Livest. Sci. 2014, 162, 214–222. [Google Scholar] [CrossRef]
- Mohankumar Sajeev, E.P.; Winiwarter, W.; Amon, B. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef]
- Lee, J.; Wardhani, R.; Shin, J.; Lee, S.; Lee, Y.; Ahn, H. Effectiveness of Floating Covers in Mitigating Ammonia and Hydrogen Sulfide Emissions from Lab-Scale Swine Slurry Pits. Sustainability 2025, 17, 374. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.R.; Han, J.K.; Nam, K. Mitigation of Ammonia and Hydrogen Sulfide Emissions by Stable Aqueous Foam-Microbial Media. Environ. Sci. Technol. 2006, 40, 3030–3035. [Google Scholar] [CrossRef] [PubMed]
- Predicala, B.Z.; Cortus, E.L.; Lemay, S.P.; Laguë, C. Effectiveness of a Manure Scraper System for Reducing Concentrations of Hydrogen Sulfide and Ammonia in a Swine Grower-Finisher Room. Trans. ASABE 2007, 50, 999–1006. [Google Scholar] [CrossRef]
- Dai, X.; Karring, H. A Determination and Comparison of Urease Activity in Faeces and Fresh Manure from Pig and Cattle in Relation to Ammonia Production and pH Changes. PLoS ONE 2014, 9, e110402. [Google Scholar] [CrossRef] [PubMed]
- Dube, P.J.; Vanotti, M.B.; Szogi, A.A.; García-González, M.C. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology. Waste Manag. 2016, 49, 372–377. [Google Scholar] [CrossRef]
- Canh, T.T.; Verstegen, M.W.A.; Aarnink, A.J.A.; Schrama, J.W. Influence of dietary factors on nitrogen partitioning and composition of urine and faeces of fattening pigs. J. Anim. Sci. 1997, 75, 700–706. [Google Scholar] [CrossRef]
- Hagenkamp-Korth, F.; Haeussermann, A.; Hartung, E. Effect of urease inhibitor application on urease activity in three different cubicle housing systems under practical conditions. Agric. Ecosyst. Environ. 2015, 202, 168–177. [Google Scholar] [CrossRef]
- Tiwari, J.; Barrington, S.; Zhao, X. Effect on Manure Characteristics of Supplementing Grower Hog Ration with Clinoptilolite. Microporous Mesoporous Mater. 2009, 118, 93–99. [Google Scholar] [CrossRef]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of proteins. Cold Spring Harb. Protoc. 2021, 2021, pdb-prot102228. [Google Scholar] [CrossRef]
- Trojeni, M.M.; Samadi-Maybodi, A.; Shafiei, H. Investigating the adsorption of Volatile organic compounds from kerosene using clinoptilolite (natural zeolite) modified by cationic surfactant cetyltrimethylammonium bromide. MethodsX 2025, 14, 103354. [Google Scholar] [CrossRef] [PubMed]
- Ishkhanyan, H.; Rhys, N.H.; Barlow, D.J.; Lawrence, M.J.; Lorenz, C.D. Impact of drug aggregation on the structural and dynamic properties of Triton X-100 micelles. Nanoscale 2022, 14, 5392–5403. [Google Scholar] [CrossRef]
- Vaddella, V.K.; Ndegwa, P.M.; Joo, H.S.; Ullman, J.L. Impact of separating dairy cattle excretions on ammonia emissions. J. Environ. Qual. 2010, 39, 1807–1812. [Google Scholar] [CrossRef]
- Tzollas, N.M.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. A New Approach to Indophenol Blue Method for Determination of Ammonium in Geothermal Waters with High Mineral Content. Int. J. Environ. Anal. Chem. 2010, 90, 115–126. [Google Scholar] [CrossRef]
- Simjoo, M.; Rezaei, T.; Andrianov, A.; Zitha, P.L.J. Foam Stability in the Presence of Oil: Effect of Surfactant Concentration and Oil Type. Colloids Surf. A Physicochem. Eng. Asp. 2013, 438, 148–158. [Google Scholar] [CrossRef]
- Zangeneh, A.; Sabzalipour, S.; Takdatsan, A.; Yengejeh, R.J.; Khafaie, M.A. Ammonia Removal from Municipal Wastewater by Air Stripping Process: An Experimental Study. S. Afr. J. Chem. Eng. 2021, 36, 134–141. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 9th ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–800. [Google Scholar]
- Tevi, T.; Saint Birch, S.W.; Thomas, S.W.; Takshi, A. Effect of Triton X-100 on the Double Layer Capacitance and Conductivity of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Films. Synth. Met. 2014, 191, 59–65. [Google Scholar] [CrossRef]
- Timmer, N.; Gore, D.; Sanders, D.; Gouin, T.; Droge, S.T. Toxicity Mitigation and Bioaccessibility of the Cationic Surfactant Cetyltrimethylammonium Bromide in a Sorbent-Modified Biodegradation Study. Chemosphere 2019, 222, 461–468. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Marena, G.D.; Karnopp, J.C.F.; Jorge, J.; Sábio, R.M.; Martines, M.A.U.; Bauab, T.M.; Chorilli, M. Cetyltrimethylammonium bromide in the synthesis of mesoporous silica nanoparticles: General aspects and in vitro toxicity. Adv. Colloid Interface Sci. 2022, 307, 102746. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.; Wallace, J.; Lansley, A.B.; Roper, C. Evaluation of the Toxicity of Sodium Dodecyl Sulphate (SDS) in the MucilAir™ Human Airway Model In Vitro. Regul. Toxicol. Pharmacol. 2021, 125, 105022. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, W.; Zheng, C.; Wang, D.; Zhan, H. Effect of Temperature on Foaming Ability and Foam Stability of Typical Surfactants Used for Foaming Agent. J. Surfactants Deterg. 2017, 20, 615–622. [Google Scholar] [CrossRef]
- Emami, H.; Ayatizadeh Tanha, A.; Khaksar Manshad, A.; Mohammadi, A.H. Experimental Investigation of Foam Flooding Using Anionic and Nonionic Surfactants: A Screening Scenario to Assess the Effects of Salinity and pH on Foam Stability and Foam Height. ACS Omega 2022, 7, 14832–14847. [Google Scholar] [CrossRef]
- Micheau, C.; Bauduin, P.; Diat, O.; Faure, S. Specific Salt and pH Effects on Foam Film of a pH Sensitive Surfactant. Langmuir 2013, 29, 8472–8481. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lollar, B.S.; Li, H.; Wortmann, U.G.; Lacrampe-Couloume, G. Ammonium Stability and Nitrogen Isotope Fractionations for NH4+–NH3 (aq)–NH3 (gas) Systems at 20–70 °C and pH of 2–13: Applications to Habitability and Nitrogen Cycling in Low-Temperature Hydrothermal Systems. Geochim. Cosmochim. Acta 2012, 84, 280–296. [Google Scholar] [CrossRef]
- Choi, H.L. Changes of Physico–Chemical Properties of Pig Slurry During Storage. Media Peternak. 2011, 34, 179. [Google Scholar] [CrossRef]
- Overmeyer, V.; Kube, A.; Clemens, J.; Büscher, W.; Trimborn, M. One-time acidification of slurry: What is the most effective acid and treatment strategy? Agronomy 2021, 11, 1319. [Google Scholar] [CrossRef]
Swine Manure * | Urine * | Feces * | ||
---|---|---|---|---|
Concentration of NH4+-N (mg/L) | Concentration of Urea-N (mg/L) | Urease Activity (unit/L) |
Viscosity (mPa·s) | |
Synthetic | 3000 ± 80 | 3000 ± 60 | ≥250 ± 10 | 1300 ± 100 |
Actual | 1907–3086 | 1400–2800 | 156–1104 | 1200–1500 |
Experimental Step | Sample No. | Surfactant | Concentration (g/L) | pH | Temperature (°C) | Foam Stability (%) |
---|---|---|---|---|---|---|
I (surfactant screening) | 1 | Triton X-100 | 1 ± 0.05 | 8.0 ± 0.1 | 25 | 23.4 ± 0.4 |
2 | CTAB 1 | 1 ± 0.05 | 8.0 ± 0.1 | 25 | 33.8 ± 0.6 | |
3 | SDS 2 | 1 ± 0.05 | 8.0 ± 0.1 | 25 | 35.1 ± 0.5 | |
II (dose variation) | 4 | SDS 2 | 2 ± 0.05 | 8.0 ± 0.1 | 25 | 65.4 ± 0.3 |
5 | SDS 2 | 3 ± 0.05 | 8.0 ± 0.1 | 25 | 66.2 ± 0.2 | |
6 | SDS 2 | 4 ± 0.05 | 8.0 ± 0.1 | 25 | 66.4 ± 0.4 | |
7 | SDS 2 | 5 ± 0.05 | 8.0 ± 0.1 | 25 | 64.6 ± 0.4 | |
III (temperature variation) | 8 | SDS 2 | 2 ± 0.05 | 8.0 ± 0.1 | 20 | 67.7 ± 0.4 |
9 | SDS 2 | 2 ± 0.05 | 8.0 ± 0.1 | 25 | 65.4 ± 0.3 | |
10 | SDS 2 | 2 ± 0.05 | 8.0 ± 0.1 | 30 | 61.2 ± 0.5 | |
IV (pH variation) | 11 | SDS 2 | 2 ± 0.05 | 6.0 ± 0.1 | 25 | 73.9 ± 0.4 |
12 | SDS 2 | 2 ± 0.05 | 7.0 ± 0.1 | 25 | 67.9 ± 0.5 | |
13 | SDS 2 | 2 ± 0.05 | 8.0 ± 0.1 | 25 | 65.4 ± 0.3 | |
14 | SDS 2 | 2 ± 0.05 | 9.0 ± 0.1 | 25 | 75.7 ± 0.3 | |
15 | SDS 2 | 2 ± 0.05 | 10.0 ± 0.1 | 25 | 72.2 ± 0.5 |
Control | Single | Combined | ||||
---|---|---|---|---|---|---|
FOAM SYSTEM 1 | WIPING SYSTEM 2 |
BELT
SYSTEM 3 | FOAM SYSTEM + WIPING SYSTEM | FOAM SYSTEM + BELT SYSTEM | ||
Ammonia Concentration (mg/L) | 82.1 ± 1.0 | 21.7 ± 0.5 | 29.2 ± 0.6 | 6.8 ± 0.1 | 24.5 ± 0.2 | 4.6 ± 0.1 |
Experimental Step | Sample No. | Wiping Plate Angle (°) | Temperature (°C) | pH | NH3 Concentration (mg/L) |
---|---|---|---|---|---|
I (slope variation) | 1 | 0 | 25 | 8 ± 0.1 | 40.3 ± 1.2 |
2 | 2 | 25 | 8 ± 0.1 | 32.7 ± 2.5 | |
3 | 4 | 25 | 8 ± 0.1 | 29.2 ± 0.6 | |
4 | 6 | 25 | 8 ± 0.1 | 29.5 ± 2.5 | |
II (temperature variation) | 5 | 4 | 20 | 8 ± 0.1 | 18.1 ± 2.0 |
6 | 4 | 25 | 8 ± 0.1 | 29.2 ± 0.6 | |
7 | 4 | 30 | 8 ± 0.1 | 33.4 ± 1.3 | |
III (pH variation) | 8 | 4 | 25 | 6 ± 0.1 | 2.9 ± 0.5 |
9 | 4 | 25 | 7 ± 0.1 | 5.8 ± 0.7 | |
10 | 4 | 25 | 8 ± 0.1 | 29.2 ± 0.6 | |
11 | 4 | 25 | 9 ± 0.1 | 145.2 ± 5.8 | |
12 | 4 | 25 | 10 ± 0.1 | 689.5 ± 13.5 |
Experimental Step | Sample No. | Belt Velocity (m/h) | Inclined Plate Angle (°) | Belt Slope Angle (°) | Solid–Liquid Separation Ratio (%) |
---|---|---|---|---|---|
I (belt velocity) | 1 | 2.7 | 30 | 10.5 | 22.2 ± 1.2 |
2 | 6.2 | 30 | 10.5 | 43.0 ± 2.3 | |
3 | 13.2 | 30 | 10.5 | 62.4 ± 3.8 | |
4 | 20.3 | 30 | 10.5 | 80.1 ± 2.1 | |
5 | 41.3 | 30 | 10.5 | 99.5 ± 1.5 | |
II (inclined plate variation) | 6 | 31.4 | 20 | 10.5 | 32.8 ± 1.5 |
7 | 31.4 | 25 | 10.5 | 43.1 ± 2.3 | |
8 | 31.4 | 30 | 10.5 | 90.0 ± 7.3 | |
III (belt slope variation) | 9 | 31.4 | 30 | 7 | 77.1 ± 5.2 |
10 | 31.4 | 30 | 10.5 | 90.0 ± 7.3 | |
11 | 31.4 | 30 | 14 | 61.9 ± 3.7 |
Experimental Step | Sample No. | Belt Velocity (m/h) | Inclined Slope Angle (°) | Belt Slope Angle (°) | Temperature (°C) | pH | NH3 Concentration (mg/L) |
---|---|---|---|---|---|---|---|
I (temperature variation) | 5 | 31.4 | 30 | 10.5 | 20 | 8 ± 0.1 | 5.7 ± 0.3 |
6 | 31.4 | 30 | 10.5 | 25 | 8 ± 0.1 | 6.8 ± 0.1 | |
7 | 31.4 | 30 | 10.5 | 30 | 8 ± 0.1 | 9.0 ± 0.5 | |
II (pH variation) | 8 | 31.4 | 30 | 10.5 | 25 | 6 ± 0.1 | 2.1 ± 0.2 |
9 | 31.4 | 30 | 10.5 | 25 | 7 ± 0.1 | 3.4 ± 0.8 | |
10 | 31.4 | 30 | 10.5 | 25 | 8 ± 0.1 | 6.8 ± 0.1 | |
11 | 31.4 | 30 | 10.5 | 25 | 9 ± 0.1 | 9.0 ± 0.4 | |
12 | 31.4 | 30 | 10.5 | 25 | 10 ± 0.1 | 12.3 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, B.-k.; Kim, T.-H.; Lee, J.-S.; Lee, C.-K.; Yun, Y.-M. Optimizing Source-Control Systems for Ammonia Mitigation in Swine Manure Pits: Performance Assessment and Modeling. Agriculture 2025, 15, 1847. https://doi.org/10.3390/agriculture15171847
Ahn B-k, Kim T-H, Lee J-S, Lee C-K, Yun Y-M. Optimizing Source-Control Systems for Ammonia Mitigation in Swine Manure Pits: Performance Assessment and Modeling. Agriculture. 2025; 15(17):1847. https://doi.org/10.3390/agriculture15171847
Chicago/Turabian StyleAhn, Byung-kyu, Tae-Hoon Kim, Jung-Sup Lee, Chang-Kyu Lee, and Yeo-Myeong Yun. 2025. "Optimizing Source-Control Systems for Ammonia Mitigation in Swine Manure Pits: Performance Assessment and Modeling" Agriculture 15, no. 17: 1847. https://doi.org/10.3390/agriculture15171847
APA StyleAhn, B.-k., Kim, T.-H., Lee, J.-S., Lee, C.-K., & Yun, Y.-M. (2025). Optimizing Source-Control Systems for Ammonia Mitigation in Swine Manure Pits: Performance Assessment and Modeling. Agriculture, 15(17), 1847. https://doi.org/10.3390/agriculture15171847