Integrating Multi-Strategy Improvements to Sand Cat Group Optimization and Gradient-Boosting Trees for Accurate Prediction of Microclimate in Solar Greenhouses
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Pre-Processing
2.2.1. Missing Value Processing
2.2.2. Z-Score
2.3. Greenhouse Environmental Prediction Model
2.3.1. CatBoost
2.3.2. Sand Cat Swarm Optimization Algorithm
2.4. Multi-Strategy Improvement
2.4.1. Improvement Point I: Sobol Sequence Population Initialization Function
2.4.2. Improvement Point II: Adaptive T-Distribution Perturbation Strategy
2.4.3. Improvement Point III: Adaptive Gauss–Cauchy Mixed Variation Strategy
2.5. Model Evaluation
3. Results and Discussion
3.1. Different Model Prediction Results and Comparative Analysis
3.2. Prediction Results of Different Models and Comparative Analysis
3.3. Statistical Significance Testing
3.4. Ablation Experiment Analysis
3.5. Comparison of Model Performanc
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, Y.; Bu, H.; Chen, L.; Zhong, Y.; Wu, S. Intelligentization of Facility Vegetables under the Background of Agricultural Modernization: Challenges and Strategy Exploration. China Veg. 2024, 1, 1–7. [Google Scholar] [CrossRef]
- Pu, G.; Liu, S.; Liu, L.; Ren, L. Effects of Different Light Qualities on Growth and Physiological Characteristics of Tomato Seedlings. Acta Hortic. Sin. 2005, 32, 420–425. [Google Scholar] [CrossRef]
- Chen, J.; Yu, R.; Yang, M.; Che, W.; Ning, Y.; Zhan, Y. SN—YOLO: A Rotation Detection Method for Tomato Harvest in Greenhouses. Electronics 2025, 14, 3243. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Zhao, H.; Xu, W. Impact of Light Intensity and CO2 Concentrationon the Microclimateand Yield of Cropsina Daylight Greenhouse. Agriculture 2023, 13, 1352. [Google Scholar]
- Zhang, H.; Li, X.; Wu, P.; Yan, J. Development of a Predictive Model for Environmental Parameters in Solar Greenhouses Using Artificial Neural Networks. Energies 2022, 15, 6390. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Wu, X.; Chen, P.; Liu, J.; Xu, J. LSTM Network: A Deep Learning Approach for Short-Term Traffic Forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Chandra, W.; Suprihatin, B.; Resti, Y. Median-KNN Regressor-SMOTE-Tomek Links for Handling Missing and Imbalanced Data in Air Quality Prediction. Symmetry 2023, 15, 887. [Google Scholar] [CrossRef]
- Eaton, M.; Harbick, K.; Shelford, T.; Mattson, N. Modeling Natural Light Availability in Skyscraper Farms. Agronomy 2021, 11, 1684. [Google Scholar] [CrossRef]
- Winoto, C.; Suprihatin, B.; Resti, Y. Strategies for Imputing Missing Values and Removing Outliers in the Dataset for Machine Learning-Based Construction Cost Prediction. Buildings 2024, 14, 933. [Google Scholar] [CrossRef]
- Yaro, A.S.; Maly, F.; Prazak, P. Outlier Detection in Time-Series Receive Signal Strength Observation Using Z-Score Method with Sn Scale Estimator for Indoor Localization. Appl. Sci. 2023, 13, 3900. [Google Scholar] [CrossRef]
- Bagdonavičius, V.; Petkevičius, L. Multiple Outlier Detection Tests for Parametric Models. Mathematics 2020, 8, 2156. [Google Scholar] [CrossRef]
- Wu, Y.; Bai, Y.; Zhang, W. ReMAHA–CatBoost: Addressing Imbalanced Data in Traffic Accident Prediction Tasks. Appl. Sci. 2023, 13, 13123. [Google Scholar] [CrossRef]
- Jiang, F.; Peng, J. A Semi-Supervised Tri-CatBoost Method for Driving Style Recognition. Symmetry 2020, 12, 336. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Bai, Y. Achieving Personalized Precision Education Using the CatBoost Model during the COVID-19 Lockdown Period in Pakistan. Sustainability 2023, 15, 2714. [Google Scholar] [CrossRef]
- Bai, I.; Ji, U. Outlier Detection and Smoothing Process for Water Level Data Measured by Ultrasonic Sensor in Stream Flows. Water 2019, 11, 951. [Google Scholar] [CrossRef]
- Wu, D.; Rao, H.; Wen, C.; Jia, H.; Abualigah, L. Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 4350. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, X.; Li, Y.; Qi, J.; Kan, Z.; Meng, H. A Modified Sand Cat Swarm Optimization Algorithm Based on Multi-Strategy Fusion and Its Application in Engineering Problems. Mathematics 2024, 12, 2153. [Google Scholar] [CrossRef]
- Wu, D.; Seyyedabbasi, A.; Kiani, F. Improved Multi-Strategy Sand Cat Swarm Optimization for Solving Global Optimization Problems. Mathematics 2021, 10, 3284. [Google Scholar]
- Xia, Q.; Ding, Y.; Zhang, R.; Zhang, H.; Li, S.; Li, X. Optimal Performance and Application for Seagull Optimization Algorithm Using a Hybrid Strategy. Entropy 2022, 24, 973. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Nisar, K.; Ag Ibrahim, A.A.B.; Haque, M.R.; Rodrigues, J.J.; Rawat, D.B. Comparative Analysis of Low Discrepancy Sequence-Based Initialization Approaches Using Population-Based Algorithms for Solving the Global Optimization Problems. Appl. Sci. 2021, 11, 7591. [Google Scholar] [CrossRef]
- Xu, Y.; Sang, B.; Zhang, Y. Application of Improved Sparrow Search Algorithm to Path Planning of Mobile Robots. Biomimetics 2024, 9, 351. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Z.; Fu, B.; Xu, H. Radar Error Correction Method Based on Improved Sparrow Search Algorithm. Appl. Sci. 2024, 14, 3714. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Liu, Y.; Xu, P.; Yu, L.; Zhu, L.; Chen, H.; Deng, W. A Novel Adaptive Sparrow Search Algorithm Based on Chaotic Mapping and T-Distribution Mutation. Appl. Sci. 2021, 11, 11192. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhang, L.; Chen, X. An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy. Mathematics 2023, 11, 4311. [Google Scholar] [CrossRef]
- Guo, Z.; Ji, X.; Wang, H.; Yang, X. Active Distribution Network Fault Diagnosis Based on Improved Northern Goshawk Search Algorithm. Electronics 2024, 13, 1202. [Google Scholar] [CrossRef]
- Huang, J.; Qin, J.; Song, S. A Novel Wind Power Outlier Detection Method with Support Vector Machine Optimized by Improved Harris Hawk. Energies 2023, 16, 7998. [Google Scholar] [CrossRef]
- Yang, J.; Ren, G.; Wang, Y.; Liu, Q.; Zhang, J.; Wang, W.; Li, L.; Zhang, W. Environmental Prediction Model of Solar Greenhouse Based on Improved Harris Hawks Optimization-CatBoost. Sustainability 2024, 16, 2021. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Park, H.-J.; Son, H.-G.; Kim, S. Solar Radiation Forecasting Based on the Hybrid CNN-CatBoost Model. IEEE Access 2023, 11, 13492–13500. [Google Scholar] [CrossRef]
№ | Soil Temperature (°C) | Soil Moisture (%) | Humidity (%) | Carbon Dioxide (ppm) | Light (Lux) | Outdoor Air Temperature (°C) | Wind Speed (m/s) | Outdoor Air Humidity (%) | Carbon Dioxide (ppm) | Outdoor Light (Lux) | Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15.6 | 25 | 72.8 | 843 | 10,199 | 15.22 | 2.1 | 44.5 | 523 | 3103 | 16.75 |
2 | 16.2 | 25.1 | 68.1 | 796 | 20,505 | 15.75 | 1.6 | 43.4 | 521 | 21,651 | 20.16 |
3 | 17.1 | 25.2 | 65.2 | 799 | 14,902 | 15.12 | 1.7 | 45.3 | 534 | 16,192 | 22.26 |
4 | 17.9 | 25.1 | 62.4 | 792 | 33,385 | 16.8 | 2.4 | 42.2 | 5 29 | 32,635 | 24.78 |
5 | 19.2 | 25.2 | 56.9 | 777 | 18,601 | 17.15 | 2.5 | 42.7 | 518 | 36,520 | 28.87 |
6 | 19.5 | 25.2 | 38.5 | 435 | 25,333 | 18.55 | 6.2 | 38.9 | 504 | 50,443 | 25.62 |
7 | 15.6 | 25 | 72.8 | 843 | 10,199 | 15.25 | 2.1 | 44.5 | 523 | 31,003 | 16.25 |
Model | MAE (°C) | RMSE (°C) | R2 |
---|---|---|---|
Baseline | 2.15 | 2.89 | 0.85 |
Variant 1 (w/o Sobol) | 1.78 | 2.36 | 0.88 |
Variant 2 (w/o t-perturbation) | 1.86 | 2.45 | 0.87 |
Variant 3 (w/o Gaussian–Cauchy) | 1.68 | 2.21 | 0.89 |
Full model | 1.50 | 1.98 | 0.94 |
Environmental Factors | Evaluation Metrics | Model | ||||
---|---|---|---|---|---|---|
LSTM | CNN | JAYA–CatBoost | AOA–CatBoost | MSCSO–CatBoost | ||
Temperature | MAE | 2.23 | 2.36 | 1.83 | 1.92 | 1.50 |
MSE | 1.52 | 1.49 | 1.12 | 0.96 | 0.93 | |
R2 | 0.96 | 0.89 | 0.93 | 0.93 | 0.94 | |
Humidity | MAE | 7.35 | 6.98 | 5.92 | 5.57 | 5.07 |
MSE | 60.25 | 55.83 | 46.45 | 43.22 | 41.19 | |
R2 | 0.87 | 0.89 | 0.91 | 0.92 | 0.93 | |
Carbon dioxide | MAE | 18.32 | 16.75 | 13.24 | 12.35 | 11.57 |
MSE | 95.46 | 82.31 | 65.12 | 58.78 | 53.22 | |
R2 | 0.84 | 0.87 | 0.90 | 0.91 | 0.91 | |
Light intensity | MAE | 36.72 | 32.45 | 27.89 | 25.67 | 24.36 |
MSE | 645.4 | 750.8 | 512.3 | 460.1 | 436.6 | |
R2 | 0.88 | 0.85 | 0.91 | 0.92 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Cheng, Y.; Zhang, Z.; Mu, J.; Zhang, W. Integrating Multi-Strategy Improvements to Sand Cat Group Optimization and Gradient-Boosting Trees for Accurate Prediction of Microclimate in Solar Greenhouses. Agriculture 2025, 15, 1849. https://doi.org/10.3390/agriculture15171849
Cui X, Cheng Y, Zhang Z, Mu J, Zhang W. Integrating Multi-Strategy Improvements to Sand Cat Group Optimization and Gradient-Boosting Trees for Accurate Prediction of Microclimate in Solar Greenhouses. Agriculture. 2025; 15(17):1849. https://doi.org/10.3390/agriculture15171849
Chicago/Turabian StyleCui, Xiao, Yuwei Cheng, Zhimin Zhang, Juanjuan Mu, and Wuping Zhang. 2025. "Integrating Multi-Strategy Improvements to Sand Cat Group Optimization and Gradient-Boosting Trees for Accurate Prediction of Microclimate in Solar Greenhouses" Agriculture 15, no. 17: 1849. https://doi.org/10.3390/agriculture15171849
APA StyleCui, X., Cheng, Y., Zhang, Z., Mu, J., & Zhang, W. (2025). Integrating Multi-Strategy Improvements to Sand Cat Group Optimization and Gradient-Boosting Trees for Accurate Prediction of Microclimate in Solar Greenhouses. Agriculture, 15(17), 1849. https://doi.org/10.3390/agriculture15171849