Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe
Abstract
:1. Introduction
- Increased water infiltration and improved soil structure due to crop residues on the surface;
- Reduced surface water runoff and soil erosion (water and soil retention by crop residues);
- Reduced evaporation and increased soil surface protection from solar radiation due to crop residues on the surface;
- Reduced crop stress intensity due to lack or excess of soil moisture (increased infiltration and reduced evaporation), due to day–night temperature oscillations, as well as due to high air temperatures;
- Less requirements for mechanization and human labor in soil tillage;
- Lower input costs (price) of fuel and human labor.
- Increased soil organic matter (SOM) content results in better soil structure, higher cation exchange capacity (CEC), better nutrient availability, and greater soil water capacity;
- Increased and stabilized crop yield levels;
- Reduction in production costs (lower capital investments);
- Increased biological activity in the soil and environment (better biological pest control);
- Reduced weed infestation.
2. Perspectives of Conservation Soil Tillage from Southern to Northern Europe
2.1. Croatia Case Study
2.2. Serbia Case Study
- The period 1980–2000—first meaningful experiments and demo trials positioning CST among cropping systems, critical judgments, and the identification of advantages and limitations [51]. The beginning of judicious expansion of CST, mainly driven by the intention of lowering production cost and improving tillage effectiveness (energy consumption, testing the equipment, and lowering labor costs) and efficiency compared with plowing tillage. During this period, conservation tillage methods served as a learning example and scientific platform for research of alternatives to plowing [56,57,58].
- Expansion phase 2000–2020—Began when the first evidence of climate change became apparent. Thus, in the 21st century, the main requirement for the change from CT to CST comes to the fore with decreasing soil quality, extreme climatic events, and adaptation of a new crop variety suitable for novel machinery. It has also been observed that intensive tillage is the main driver of accelerated mineralization and loss of organic matter and, thus, loss of carbon and nitrogen [59]. During this period, there was considerable progress in the availability of the machinery.
- In the period after 2020, significant advances related to information and communication technology became broadly available for agriculture, and the demand for adaptation of CST practices comes from the circumstance of increased use of precision farming and GPS tracking, which are fully compatible with the new approach to tillage. The wide availability and diversity of CST machinery as well as the digital solution in agriculture become inseparable settings to farmers and largely supported by national and European funds [60,61].
- Re-establish the connection between academia, the extension service, machine dealers, and farmers by organizing field days, focus groups, or interactive workshops on the selected topic;
- Establish long-term trials with CST systems vs. CT systems;
- Introduce special incentives for those applying the selected types of CST adaptable to the regional level;
- Create a national strategy for adaptation of tillage technologies for mitigation of CC including the carbon-farming agenda,
- Provide a dedicated ICT (Information and communication technology) solution to support conservation practices, with specific guidance to demonstrate their benefits.
2.3. Hungary Case Study
- Ecological aspects come to the fore, and the environmental load can be significantly reduced;
- The soil structure and fertility improve, the soil organic carbon stock increases, and soil degradation can be minimized;
- With the introduction of mulching, the soil surface is protected from erosion, and the absorption and retention of precipitation improves;
- In addition to the crop being placed at the center of production, soil protection and economy receive similar attention;
- Much less fossil fuel is used than in conventional cultivation systems.
2.4. Slovakia Case Study
- 1a. The Research Institute of Plant Production (RIPP), an important entity within the National Agricultural and Food Center (NPPC), serves as a leading center for agricultural research. It focuses on investigating soil tillage practices and the agroecological dynamics of cropping systems. A major component of its work includes conducting long-term field trials, with particular emphasis on CST methods and their impact on promoting sustainable agricultural practices (RIPP–NPPC [129].
- 1b. The Research Institute of Soil Science and Conservation (SSCRI) as a body of NPCC plays a pivotal role in pedological, agricultural, and environmental research (RIPP–NPPC [130]). The institute is responsible for conducting soil surveys and pedological research, and it manages the Register of Slovak Soils, which is part of a comprehensive Soil Information System. SSCRI also administers the publicly accessible soil and landscape information system, available through the Soil Information Portal [131]. This platform provides farmers with spatial mapping data, enabling them to identify soil blocks suitable for minimal tillage, thus, supporting the application of conservation tillage. The relevance of this information was previously highlighted by Vilček et al. [119].
2.5. Czech Republic Case Study
- large fields (on an average 20 ha, but there are even parcels of 200 ha);
- reduction in the dense network of linear elements and spot elements in the landscape (such as paths, grass belts, groves, ties, etc.), which could potentially prevent or reduce surface runoff;
- extensive soil amelioration with the introduction of dense networks of tile drains and straightening and deepening of streams;
- drainage of inundation areas, leading to more arable land but to lower water retention capacity of the landscape in the same time;
- transformation of grasslands and pastures into arable areas in morphologically unfavorable landscape areas (foothills and slope areas);
- usage of heavy machinery, which has resulted in soil compaction and reduced soil infiltration capacity;
- planting of wide row crops with higher sensitivity to water erosion (e.g., maize, sunflower, potatoes, sugar beet) on slopes;
- a drastic reduction in organic matter inputs, due to reduced livestock production since the 1990s;
- increased application of mineral fertilizers since the 1970s;
- insufficient use of modern CST technologies and a lack of political support for soil protective cultivation of the land.
2.6. Poland Case Study
3. Farmer’s Relation to Conservation Soil Tillage
- -
- “Conservation Soil Tillage is a new technique or technology and sounds like a novelty created by someone (usually scientists), provided by the government to bother farmers and complicate the process of crop production”, or opposite;
- -
- “Conservation Soil Tillage is not a new technique or technology, and its application can help my farm, my financials, and the environment”.
- What is the basic difference between Conservation Agriculture and Conservation Tillage?
- On which types of soil CST can be implemented?
- What types of tools are allowed in the CST system?
- Which crops can be grown in the CST system?
- What is the minimum, maximum and optimal coverage of the soil surface with crop residues in CST?
- Does the CST system allow the use of plowing if the soil surface is mulched afterward?
- How many years should pass in the CST system to re-plow the soil?
- What is the allowed (minimum, maximum, optimal) depth of tillage in the CST system?
- Can CST be applied for just one year, or must it be carried out continuously?
- What is the simplest way to measure/estimate the coverage (amount) of crop residues on the soil surface in the CST system?
- How important is it to finely chop crop residues, and does it affect the quality of CST performance?
- How to apply mineral fertilizers in the CST system?
- How to “deal” with an excessive amount of crop residues on the soil surface (can the crop residues be burned) in the CST system?
- What yields can be expected in a CST system?
- How are other agronomic practices (protection, fertilization, irrigation) carried out in the CST system?
- And maybe the most frequent questions: what are the risks, benefits, and support?
- Agriculture without plowing actually is not agriculture!
- My soil type * is not suitable for application of CST (* soil texture, field on a slope or in a hilly region, dry region, or region with precipitation in surplus)!
- Only plowing can accumulate enough moisture in the soil—not the CST system!
- There is no efficient system of mineral fertilizer application in the CST system!
- High and stable yields can only be achieved by plowing!
- Inadequate and expensive machinery/tools, primarily seed drills,
- Difficulties in handling a large amount of crop residues on the soil surface,
- Problems with the application of mineral and organic fertilizers at higher depths, especially in a direct seeding/planting system,
- Increased soil compaction,
- Poorer root development,
- Insufficiently effective crop protection from weeds, diseases, and pests,
- Increased surface accumulation of nutrients (primarily phosphorus and potassium),
- Challenges in implementing ameliorative measures for soil conditioning (e.g., liming),
- Lower soil temperature (in spring, it may delay sowing/planting),
- Slower soil drying (due to cover from crop residues on the soil surface).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- SARE. Available online: https://www.sare.org/publications/conservation-tillage-systems-in-the-southeast/chapter-1-introduction-to-conservation-tillage-systems/what-is-conservation-tillage/ (accessed on 21 November 2024).
- Jug, I.; Jug, D.; Brozović, B.; Vukadinović, V.; Đurđević, B. Basic of Soil Science and Plant Production; Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek: Osijek, Croatia, 2022; pp. 303–395. (In Croatian) [Google Scholar]
- European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 20 November 2024).
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Ogieriakhi, M.O.; Woodward, R.T. Understanding why farmers adopt soil conservation tillage: A systematic review. Soil Secur. 2022, 9, 100077. [Google Scholar] [CrossRef]
- WCRP Report: 3/2019. Available online: https://www.wcrp-climate.org/WCRP-publications/2019/WCRP-Report-No3-2019-PannEx-WB.pdf (accessed on 21 November 2024).
- Jug, D.; Jug, I.; Brozović, B.; Vukadinović, V.; Stipešević, B.; Ðurđević, B. The Role of Conservation Agriculture in Mitigation and Adaptation to Climate Change. Poljoprivreda 2018, 24, 35–44. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American Soil Degradation: Processes, Practices, and Mitigating Strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Ceglar, A.; Croitoru, A.E.; Cuxart, J.; Djurdjevic, V.; Güttler, I.; Ivančan-Picek, B.; Jug, D.; Lakatos, M.; Weidinger, T. PannEx: The Pannonian Basin Experiment. Clim. Serv. 2018, 11, 78–85. [Google Scholar] [CrossRef]
- Birkas, M.; Jug, D.; Kende, Z.; Kisic, I.; Szemok, A. Soil Tillage Responses to the Climate Threats–Revaluation of the Classic Theories. Agric. Conspec. Sci. 2018, 83, 1–9. [Google Scholar]
- Rodríguez, B.C.; Durán-Zuazo, V.H.; Rodríguez, M.S.; García-Tejero, I.F.; Ruiz, B.G.; Tavira, S.C. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Bognar, A. Geomorphological regionalisation of Croatia. Acta Geogr. Croat. 2001, 34, 7–29. [Google Scholar]
- Bašić, F.; Bogunović, M.; Božić, M.; Husnjak, S.; Jurić, I.; Kisić, I.; Mesić, M.; Mirošević, N.; Romić, D.; Žugec, I. Regionalisation of Croatian Agriculture. Agric. Conspec. Sci. 2007, 72, 27–38. [Google Scholar]
- Hadelan, L.; Šakić Bobić, B.; Mikuš, O.; Zrakić Sušac, M. The relationship between farm diversification and socio-economic indicators in agriculture. Ekon. Misao Praksa 2019, 28, 515–531. [Google Scholar]
- Mihalić, V.; Butorac, A.; Bišof, R. Izvještaj o Utvrđivanju Optimalne Dubine i Produžnog Djelovanja Duboke Obrade na Glavnim Tipovima Tla u Hrvatskoj za Godinu, 1962; Faculty of Agriculture: Zagreb, Croatia, 1962. [Google Scholar]
- Mihalić, V.; Butorac, A.; Bišof, R. Izvještaj o Utvrđivanju Optimalne Dubine i Produžnog Djelovanja Duboke Obrade na Glavnim Tipovima Tla u Hrvatskoj za Godinu, 1963; Faculty of Agriculture: Zagreb, Croatia, 1963. [Google Scholar]
- Radić, L.; Mušac, I. Utjecaj Reducirane Obrade Kukuruza na Prinos i Troškove Proizvodnje; Poljoprivredni Institut: Osijek, Croatia, 1967; p. 31. [Google Scholar]
- Mihalić, V. Razvojne tendencije u obradi tla. Suvremena Poljopr. 1968, 1, 1–15. [Google Scholar]
- Mihalić, V. Istraživački rad u oblasti obrade tla u Hrvatskoj. Agron. Glas. 1969, 8–9, 25–36. [Google Scholar]
- Radić, L. Utjecaj Izostavljanja Međurednih Kultivacija na Prinose Kukuruza na Degradiranom Černozemu; Poljoprivredni Institut: Osijek, Croatia, 1968. [Google Scholar]
- Radić, L. Reduciranje Operacija u Pripremi Tla; Poljoprivredni Institut: Osijek, Croatia, 1969; p. 48. [Google Scholar]
- Butorac, A.; Lacković, L.; Beštak, T. Comparation studies of different ways of seedbed preparation for maize (Zea mays L.) in combination with mineral fertilizers. In Proceedings of the 7th of ISTRO Conference, Uppsala, Sweden, 15–18 June 1976. [Google Scholar]
- Mihalić, V. Uloga obrade tla u intenzivnoj proizvodnji ratarskih kultura. Agron. Glas. 1978, 3, 587–596. [Google Scholar]
- Mihalić, V. Opća Proizvodnja Bilja, 3rd ed.; Školska knjiga: Zagreb, Croatia, 1988; pp. 152–158. [Google Scholar]
- ISTRO. Available online: https://www.istro.org/index.php/istro-organisation/constitution (accessed on 20 November 2024).
- Butorac, A.; Lacković, L.; Beštak, T.; Đurđica, V.; Seiwerth, V. Interrelationship of soil tillage and fertilizing in growing main field crops on hypogley. In Proceedings of the 8th Conference of ISTRO, Stuttgart-Hohenheim, Germany, 10–14 September 1979. [Google Scholar]
- Butorac, A.; Lacković, L.; Beštak, T.; Đurđica, V.; Seiwerth, V. Istraživanje sistema reducirane i konvencionalne obrade tla u kombinaciji s mineralnom gnojidbom za glavne oranične kulture na hipogleju srednje Podravine. In Zbornik Radova sa Savjetovanja “Aktualni Problemi Poljoprivredne Mehanizacije”; Hrvatsko društvo agrarnih inženjera: Poreč, Croatia, 1981. [Google Scholar]
- Butorac, A.; Lacković, L.; Beštak, T.; Đurđica, V.; Seiwerth, V. Proučavanje uzajamnog djelovanja minimalizacije obrade tla i mineralne gnojidbe na lesiviranom smeđem tlu. Poljopr. Znan. Smotra 1981, 55, 137–156. [Google Scholar]
- Butorac, A.; Lacković, L.; Beštak, T.; Đurđica, V.; Seiwerth, V. Efikasnost reducirane i konvencionalne obrade tla u interakciji s mineralnom gnojidbom u plodosmjeni ozima pšenica–šećerna repa–kukuruz na lessivé pseudogleju. Poljopr. Znan. Smotra 1981, 54, 5–30. [Google Scholar]
- Žugec, I. The Influence of Reduced Tillage on the Yield of Maize in the Ecological Conditions of Slavonia. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 1984. (In Croatian). [Google Scholar]
- Žugec, I. The effect of reduced soil tillage on maize (Zea mays L.) grain yield in eastern Croatia. Soil Tillage Res. 1984, 7, 19–28. [Google Scholar] [CrossRef]
- ISTRO Conference. Available online: https://www.istro.org/index.php/publications/proceedings (accessed on 20 November 2024).
- Butorac, A.; Žugec, I.; Bašić, F. The status and perspectives of reduced tillage in the world and our country. Poljopr. Aktual. 1986, 1–2, 159–262. (In Croatian) [Google Scholar]
- Košutić, S.; Ivančan, S.; Štefanek, E. Iskustvo s reduciranom obradom tla u proizvodnji kukuruza i jarog ječma u Posavini. In Zbornik Radova sa Savjetovanja; Aktualni zadaci mehanizacije poljoprivrede; Hrvatsko društvo agrarnih inženjera: Opatija, Croatia, 1994; pp. 376–381. [Google Scholar]
- Košutić, S.; Filipović, D.; Gospodarić, Z. Utrošak energije različitih načina obrade tla u proizvodnji kukuruza i jare pšenice. In Zbornik Radova sa Savjetovanja; Aktualni zadaci mehanizacije poljoprivrede; Hrvatsko društvo agrarnih inženjera: Opatija, Croatia, 1996; pp. 121–128. [Google Scholar]
- Žugec, I.; Jurić, I.; Josipović, M. Neke mogućnosti reduciranja obrade tla u uzgoju soje na području istočne Hrvatske. Poljoprivreda 1995, 1, 105–114. [Google Scholar]
- Stipešević, B. Impact of Reduced Tillage on Winter Wheat Yield and Soil Resistance on Hydromeliorated Clay Soil in Northeastern Croatia. Master’s Thesis, University of Zagreb, Croatia, 1997. (In Croatian). [Google Scholar]
- Butorac, A. (Agronomski Fakultet Sveučilišta u Zagrebu. Zavod za opću Proizvodnju Bilja, Zagreb, Croatia). Uređenje zemljišta u ratarskoj proizvodnji—Sistemi konzervacijske obrade tla u Europi. Personal communication, 1992.
- Butorac, A. Opća Agronomija, 1st ed.; Školska knjiga: Zagreb, Croatia, 1999; pp. 278–305. [Google Scholar]
- Kisić, I.; Bašić, F.; Mesić, M.; Butorac, A.; Sabolić, M. Influence of Different Tillage Systems on Yield of Maize on Stagnic Luvisols of Central Croatia. Agric. Conspec. Sci. 2002, 67, 81–89. [Google Scholar]
- Butorac, A.; Butorac, J.; Kisić, I. Soil conservation tillage systems in Europe. Agron. Glas. 2006, 1, 43–57. (In Croatian) [Google Scholar]
- Regulation on Agrotechnical Measures (In Croatian: Pravilnik o Agrotehničkim Mjerama). Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2013_11_142_3051.html (accessed on 20 November 2024).
- Bašić, F.; Herceg, N. Principles in Agronomy, 1st ed.; Synopsis: Zagreb, Croatia, 2010; pp. 192–237. (In Croatian) [Google Scholar]
- Jug, D.; Birkás, M.; Kisić, I. Soil Tillage in Agroecology Framework, 1st ed.; Croatian Soil Tillage Research Organization: Osijek, Croatia, 2015; pp. 1–275. (In Croatian) [Google Scholar]
- Jug, D.; Grubišić Ćurić, I. Multilingual Soil Tillage Dictionary–Croatian-English-German, English-Croatian-German, German-Croatian-English Dictionary; University of Josip Juraj Strossmayer in Osijek, Faculty of Agrobiotechnical Sciences Osijek: Osijek, Croatia, 2024; pp. 1–173. [Google Scholar]
- Jug, D.; Jug, I.; Vukadinović, V.; Đurđević, B.; Stipešević, B.; Brozović, B. Conservation Soil Tillage as a Measure for Climate Change Mitigation, 1st ed.; Croatian Soil Tillage Research Organization: Osijek, Croatia, 2017; pp. 1–176. (In Croatian) [Google Scholar]
- Eco-Scheme. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/income-support/eco-schemes_en (accessed on 20 November 2024).
- Nyakudya, I.W.; Stroosnijder, L. Conservation Tillage of Rainfed Maize in Semi-Arid Zimbabwe: A Review. Soil Tillage Res. 2015, 145, 184–197. [Google Scholar] [CrossRef]
- Bregaglio, S.; Mongiano, G.; Ferrara, R.M.; Ginaldi, F.; Lagomarsino, A.; Rana, G. Which are the most favourable conditions for reducing soil CO2 emissions with no-tillage? Results from a meta-analysis. Int. Soil Water Conserv. Res. 2022, 10, 497–506. [Google Scholar] [CrossRef]
- RZS. Survey on the Structure of Agricultural Holdings—Soil. 2018. Available online: https://www.stat.gov.rs/sr-latn/oblasti/poljoprivreda-sumarstvo-i-ribarstvo/anketaostrukturipopgazdinstava/ (accessed on 26 April 2024).
- Konstantinović, J.B. Soil Tillage in Field Crop Production; Institute of Field and Vegetable Crops: Novi Sad, Serbia, 1997; pp. 1–762. [Google Scholar]
- Harper, J.K.; Roth, G.W.; Garalejić, B.; Škrbić, N. Programs to promote adoption of conservation tillage: A Serbian case study. Land Use Policy 2018, 78, 295–302. [Google Scholar] [CrossRef]
- Dolijanović, Ž.; Nikolić, S.R.; Dragicevic, V.; Mutić, J.; Šeremešić, S.; Jovović, Z.; Popović Djordjević, J. Mineral Composition of Soil and the Wheat Grain in Intensive and Conservation Cropping Systems. Agronomy 2022, 12, 1321. [Google Scholar] [CrossRef]
- Milojić, B. Prilog proučavanju redukovane obrade za kukuruz. J. Agric. Sci. 1964, 12, 369–386. [Google Scholar]
- Drezgić, P. Uticaj redukovane obrade na prinos kukuruza na čenozemu. Cont. Agri. 1968, 21, 1–7. (In Serbian) [Google Scholar]
- Momirović, N.; Đević, M.; Dumanović, Z. Konzervacijska obrada zemljišta u konceptu održive poljoprivrede. Mehanizacija 1995, 3–4, 56–61. [Google Scholar]
- Kovačević, D.; Oljača, S.; Radošević, Ž.; Birkas, M.; Schmidt, R. Konvencionalni i konzervacijski sistemi obrade zemljišta u glavnim ratarskim usevima. Poljopr. Teh. 1999, 23, 83–93. [Google Scholar]
- Molnar, I.; Đević, M.; Marković, D.; Martinov, M.; Momirović, N.; Lazić, V.; Škrbić, N.; Turan, J.; Kurjački, J. Terminologija i klasifikacija konzervacijske obrade zemljišta. Savrem. Poljopr. Teh. 1999, 25, 139–153. [Google Scholar]
- Šeremešić, S.; Ćirić, V.; Djalović, I.; Vasin, J.; Zeremski, T.; Siddique, K.H.; Farooq, M. Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Arch. Agron. Soil Sci. 2020, 66, 2055–2066. [Google Scholar] [CrossRef]
- Sedlar, A.; Višacki, V.; Bugarin, R.; Turan, J.; Ponjičan, O. Implementation of precision agriculture systems in the production of oil and other field crops. Savrem. Poljopr. Teh. 2019, 45, 143–150. [Google Scholar] [CrossRef]
- Ivošević, B.; Kostić, M.; Ljubičić, N.; Grbović, Ž.; Panić, M. Application of unmanned aerial systems to address real-world issues in precision agriculture. In Unmanned Aerial Systems in Agriculture; Academic Press: Cambridge, MA, USA, 2023; pp. 51–69. [Google Scholar] [CrossRef]
- Kovačević, D.; Oljača, S.; Dolijanović, Ž.; Oljača, M. Uticaj savremenih sistema obrade zemljišta na prinos važnijih ratarskih useva. Poljopr. Teh. 2008, 33, 73–80. [Google Scholar]
- Meši, M.; Malinović, N.; Kostić, M.; Anđelković, S. Proizvodnja šećerne repe u uslovima konvencijalne i konzervacijske obrade zemljišta. Savrem. Poljopr. Teh. 2010, 36, 129–137. [Google Scholar]
- Malinović, N.; Meši, M. Pravci razvoja mehanizacije za racionalniju i ekološku proizvodnju hrane. Savrem. Poljopr. Teh. 2008, 34, 171–180. [Google Scholar]
- Videnović, Ž.; Simić, M.; Srdić, J.; Dumanović, Z. Long term effects of different soil tillage systems on maize (Zea mays L.) yields. Plant Soil Environ. 2011, 57, 186–192. [Google Scholar] [CrossRef]
- Mileusnić, I.Z.; Petrović, V.D.; Ðević, S.M. Comparison of tillage systems according to fuel consumption. Energy 2010, 35, 221–228. [Google Scholar] [CrossRef]
- Mileusnić, Z.I.; Saljnikov, E.; Radojević, R.L.; Petrović, D.V. Soil compaction due to agricultural machinery impact. J. Terramech. 2022, 100, 51–60. [Google Scholar] [CrossRef]
- Momirović, N.; Dolijanović, Ž.; Oljača, M.V.; Videnović, Ž. Višegodišnji uticaj različitih sistema obrade zemljišta na energetsku efikasnost i prinos kukuruza. Poljopr. Teh. 2011, 36, 97–104. [Google Scholar]
- Jaćimović, G.; Aćin, V.; Crnobarac, J.; Latković, D.; Manojlović, M. Effects of crop residue incorporation on the wheat yield in a long-term experiment. Ann. Agron. 2017, 41, 1–8. [Google Scholar]
- Šeremešić, S.; Ćirić, V.; Jaćimović, G.; Milošev, D.; Belić, M.; Vojnov, B.; Živanov, M. Uticaj konvencionalne i redukovane obrade zemljišta na sadržaj ukupne i lakopristupačne organske materije. Zemlj Biljka 2016, 65, 7–18. [Google Scholar]
- Gajić, B. Physical properties and organic matter of Fluvisols under forest, grassland, and 100 years of conventional tillage. Geoderma 2013, 200, 114–119. [Google Scholar] [CrossRef]
- Kovačević, D.; Oljača, S.; Dolijanović, Ž. Uticaj sistema obrade zemljišta na korovsku sinuziju ozime pšenice. Poljopr. Teh. 2006, 31, 107–112. [Google Scholar]
- Simić, M.; Dragičević, V.; Mladenović Drinić, S.; Vukadinović, J.; Kresović, B.; Tabaković, M.; Brankov, M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy 2020, 10, 976. [Google Scholar] [CrossRef]
- Kovács, G.P.; Simon, B.; Balla, I.; Bozóki, B.; Dekemati, I.; Gyuricza, C.; Percze, A.; Birkás, M. Conservation Tillage Improves Soil Quality and Crop Yield in Hungary. Agronomy 2023, 13, 894. [Google Scholar] [CrossRef]
- Birkás, M.; Antos, G.; Neményi, M.; Szemők, A. Environmentally-Sound Adaptable Tillage; Akadémiai Kiadó: Budapest, Hungary, 2008; 354p, ISBN 9789630586313. [Google Scholar]
- Birkás, M.; Dekemati, I.; Kende, Z.; Pósa, B. Review of soil tillage history and new challenges in Hungary. Hung. Geogr. Bull. 2017, 66, 55–64. [Google Scholar] [CrossRef]
- Birkás, M.; Balla, I.; Gyuricza, C.; Kende, Z.; Kovács, G.P.; Percze, A. Hátráltató és előrevivő tényezők a hazai talajművelésben. Agrokémia Talajt. 2021, 70, 155–170. [Google Scholar] [CrossRef]
- Cherháti, S. A Talajnak Mélyművelése Hazánkban (Deep Tillage of the Soil in Hungary); Könyvnyomda: Magyar-Óvár, Hungary, 1891. [Google Scholar]
- Campbell, H.W. Campbell’s Soil Culture Manual, 3rd ed.; Woodruff-Collins Press Printers and Binders: Lincoln, NE, USA, 1907. [Google Scholar]
- Kerpely, K. Az Okszerű Talajmívelés Szerepe a Szárazság Elleni Küzdelemben; Pátria Nyomda: Budapest, Hungary, 1910. [Google Scholar]
- Gyárfás, J. Sikeres Gazdálkodás Szárazságban; A Magyar Dry Farming; Pátria Nyomda: Budapest, Hungary, 1925. [Google Scholar]
- Baross, L. Tárcsásborona és szuperfoszfát. Köztelek 1909, 19, 2108–2110. [Google Scholar]
- Manninger, G.A. A Talaj Sekély Művelése; Mezőgazdasági Kiadó: Budapest, Hungary, 1957. [Google Scholar]
- Beke, L. Az eke alkonya. Gazdasági Lapok 1922, 74, 137–138. [Google Scholar]
- Manninger, G.A. A Kultivátor, Mint Egyetemes Művelő-Szerszám. In A Tarlótól a Magágyig; Marschall, F., Ed.; Révai Nyomda: Budapest, Hungary, 1938; pp. 84–90. [Google Scholar]
- Koltay, Á. Talajművelés nélküli búzatermesztés monokultúrában. Talajtermékenység 1974, 5, 11–17. [Google Scholar]
- Győrffy, B.; Szabó, J.L. A zero, minimum és normál tillage vizsgálata tartamkísérletekben. In Kukoricatermesztési Kísérletek 1965–1968; I’só, I., Ed.; Akadémiai Kiadó: Budapest, Hungary, 1969; pp. 143–155. [Google Scholar]
- Kapocsi, I. A nehézkultivátorok alkalmazásának jelentősége az őŐszi vetésű növények talajának energiatakarékosabb előkészítésében. In Tessedik Sámuel Tiszántúli Mezőgazdasági Tudományos Nap; Agrártudományi Egyetem: Debreceni, Hungary, 1982; pp. 185–187. [Google Scholar]
- Kapocsi, I.; Andrási, I.; Bene, S. Energiatakarékos talajművelés. Korszerű technológiák a gabonatermesztésben. Magyar. Mezőgazdaság 1987, 42, 32. [Google Scholar]
- Birkás, M.; Antal, J.; Dorogi, I. Conventional and reduced tillage in Hungary—A review. Soil Tillage Res. 1989, 13, 233–252. [Google Scholar] [CrossRef]
- Rátonyi, T.; Megyes, A.; Nagy, J. Talajvédő termesztéstechnológiai rendszerek értékelése. In Kukorica Hibridek Adaptációs Képességének és Termésbiztonságának Javítása; Nagy, J., Ed.; Debreceni Egyetem Agrártudományi Centrum: Debrecen, Hungary, 2003; pp. 141–149. [Google Scholar]
- Sulyok, D.; Rátonyi, T.; Huzsvai, L. Alternatív Talajművelési Rendszerek Vizsgálata Kötött Réti Talajon. In Agrárinformatika; Debreceni Egyetem Agrártudományi Centrum: Debrecen, Hungary, 2006; pp. 150–165. [Google Scholar]
- Zsembeli, J.; Kovács, G. Dynamics of CO2-emission of the Soil in Conventional and Reduced Tillage Systems. Cereal Res. Commun. 2007, 35, 1337–1340. [Google Scholar] [CrossRef]
- Kovács, G.; Őri, N.; Tuba, G. Effects of soil cultivation systems on the factors of the soil carbon cycle. Növénytermelés 2010, 59, 37–40. [Google Scholar]
- Birkás, M.; Kende, Z.; Pósa, A. Környezetkímélő talajművelés szerepe a klímakár-enyhítésben In Környezetkímélő Talajművelési rendszerek Magyarországon: Elmélet és Gyakorlat; Madarász, B., Ed.; MTA CSFK Földrajztudományi Intézet: Budapest, Hungary, 2015; pp. 32–40. [Google Scholar]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Vinogradov, S.; Modiba, M.M.; Gyuricza, C.; Birkás, M. Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia. Agronomy 2021, 11, 825. [Google Scholar] [CrossRef]
- Ibrahim, H.T.M.; Modiba, M.M.; Dekemati, I.; Gelybó, G.; Birkás, M.; Simon, B. Status of soil health indicators after 18 years of systematic tillage in a long-term experiment. Agronomy 2024, 14, 278. [Google Scholar] [CrossRef]
- Domonkos, M.; Horváth, Z.; Madarász, B.; Biró, B. Művelési módok összehasonlító értékelése mikrobiológiai és mikromorfológiai vizsgálatokkal. In Környezetkímélő Talajművelési Rendszerek Magyarországon: Elmélet és Gyakorlat; Madarász, B., Ed.; MTA CSFK Földrajztudományi Intézet: Budapest, Hungary, 2015; pp. 63–76. [Google Scholar]
- Forgács, L.; Zsembeli, J.; Tuba, G. Examination of a soil protective cultivation method in the Research Institute of Karcag. In Implementation of Science and Research Knowledge Toward Sustainable Agriculture: Proceeding from International Scientific Conference; RIPP-IAE: Michalovce, Slovakia, 2005; pp. 64–68. ISBN 80-88790-40-9. [Google Scholar]
- Czimbalmos, R. Helyspecifikus gazdálkodás alkalmazásának tapasztalatai a forgatás nélküli művelésben Karcagon. In Az Elmélet és a Gyakorlat Találkozása a Térinformatikában VIII. = Theory Meets Practice in GIS; Balázs, B., Ed.; Debreceni Egyetemi Kiadó: Debrecen, Hungary, 2017; Volume 462, pp. 73–80. [Google Scholar]
- Zsembeli, J.; Szűcs, L.; Tuba, G.; Czimbalmos, R. Nedvességtakarékos talajművelési rendszer fejlesztése Karcagon. In Környezetkímélő Talajművelési Rendszerek Magyarországon: Elmélet és Gyakorlat; Madarász, B., Ed.; MTA CSFK Földrajztudományi Intézet: Budapest, Hungary, 2015; pp. 122–133. [Google Scholar]
- Tuba, G.; Nagy, P.; Kovács, G.; Sinka, L.; Arzu, R.G.; Zsembeli, J. A redukált talajművelési rendszer alkalmazása a Nagykunság kötött talajain. In 75 Éves a Karcagi Kutatóintézet 1947-2022: Válogatás a MATE Karcagi Kutatóintézet Kutató-Fejlesztő Munkájának Eredményeiből; József, Z., Ed.; Magyar Agrárés Élettudományi Egyetem: Gödöllő, Hungary, 2022; Volume 164, pp. 17–25. [Google Scholar]
- Bádonyi, K.A. Hagyományos és a kímélő talajművelés hatása a talajerózióra és az élővilágra. Tájökológiai Lapok/J. Landsc. Ecol. 2006, 4, 1–16. [Google Scholar]
- Birkás, M. Tennivalók a talajvédő művelésben. In Talajjavítás–Talajvédelem; Pepó, P., Jávor, A., Eds.; Debreceni Egyetem Agrártudományi Centrum: Debrecen, Hungary, 2003; pp. 139–144. [Google Scholar]
- ECAF. European Conservation Agriculture Federation. Available online: https://ecaf.org/adoption-of-conservation-agriculture-in-europe/ (accessed on 10 October 2024).
- Gaal, M.; Peter, K.; Takacsne, G.K.; Illes, I.; Kiss, A.; Sulyok, D.; Doman, C.; Kemenyne, H.Z. A precíziós és a talajkímélő gazdálkodás elterjedtsége, alkalmazásának színvonala és termelői megítélése. In A Precíziós Szántóföldi Növénytermesztés Összehasonlító Vizsgálata; Agrárgazdasági Kutató Intézet: Budapest, Hungary, 2017. [Google Scholar] [CrossRef]
- Ilavská, B.; Jambor, P.; Lazúr, R. Identification of Soil Quality Degradation by Water and Wind Erosion and Proposals of Actions (Identifikácia Ohrozenia Kvality Pôdy Vodnou a Veternou Eróziou a Návrhy Opatrení), 1st ed.; Soil Science and Conservation Research Institute: Bratislava, Slovakia, 2005; p. 60. Available online: https://www.vupop.sk/dokumenty/rozne_identifikacia_ohrozenia_kvality.pdf (accessed on 10 October 2024).
- Macák, M.; Galambošová, J.; Kumhála, F.; Barát, M.; Kroulík, M.; Šinka, K.; Novák, P.; Rataj, V.; Misiewicz, P.A. Reduction in Water Erosion and Soil Loss on Steep Land Managed by Controlled Traffic Farming. Land 2023, 12, 239. [Google Scholar] [CrossRef]
- Tobiašová, E.; Lemanowicz, J.; Dębska, B.; Kunkelová, M.; Sakáč, J. The Effect of Reduced and Conventional Tillage Systems on Soil Aggregates and Organic Carbon Parameters of Different Soil Types. Agriculture 2023, 13, 818. [Google Scholar] [CrossRef]
- Kováč, K.; Macák, M.; Švančárková, M. The effect of soil conservation tillage on soil moisture dynamics under single cropping and crop rotation. Plant Soil Environ. 2005, 51, 124–130. [Google Scholar] [CrossRef]
- Smatana, J.; Macák, M.; Demjanová, E. The Influence of Different Tillage Practices on Soil Physical Characteristics. Res. J. Agric. Sci. 2010, 42, 315–319. [Google Scholar]
- Smatana, J.; Macák, M.; Demjanová, E.; Smatanová, N. Tillage Practices and Their Influence on Soil Physical Characteristics in South-West of Slovakia. Res. J. Agric. Sci. 2011, 43, 206–211. [Google Scholar]
- Pospišil, R. Pôdoochranné Technológie Obrábania Pôdy/Technologies of Conservation Tillage. Zivotn. Prostr. 2020, 54, 83–89. Available online: http://147.213.211.222/sites/default/files/ZP_2020_02_83_89_pospisil.pdf (accessed on 12 September 2024).
- Polláková, N.; Šimanský, V.; Jonczak, J.; Parzych, A. Effects of conventional and reduced tillage technologies on basic soil chemical properties. J. Elem. 2020, 25, 1101–1114. [Google Scholar] [CrossRef]
- Polláková, N.; Wójcik-Gront, E.; Jonczak, J.; Juriga, M. Effect of tillage systems on the quality of different soil types. Acta Fytotechn Zootech. 2023, 26, 332–341. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/nuts (accessed on 9 November 2024).
- Kováč, K.; Antal, J.; Lehocká, Z.; Macák, M.; Horák, J.; Nozdrovický, L.; Špánik, F.; Vilček, J.; Žák, Š. Minimisation and Soil-protective Technologies (In Slovak: Minimalizačné a Pôdoochranné Technológie); Agroinstitut Nitra: Nitra, Slovakia, 2010; 142p, ISBN 978-80-7139-139-5. [Google Scholar]
- Vilček, J.; Kováč, K. Sites Availability for Minimalizing and Soil-Conservation Tillage of Soils in Slovakia. Agriculture 2011, 57, 68–75. [Google Scholar] [CrossRef]
- Vilček, J.; Koco, Š.; Torma, S.; Lošák, T.; Antonkiewicz, J. Identifying Soils for Reduced Tillage and No-Till Farming Using GIS. Pol. J. Environ. Stud. 2019, 28, 2407–2413. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2006, 2nd ed.; World Soil Resources Reports No. 103; FAO Publishing: Rome, Italy, 2006; ISBN 92-5-105511-4. [Google Scholar]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef]
- Macák, M.; Galambošová, J.; Ernst, D.; Bušo, R.; Hašana, R. Súčasné technológie obrábania pôdy a zakladania porastu (Current soil cultivation and crop establishment technologies). Naše Pole 2023, 11, 22–28. [Google Scholar]
- CTIC. Tillage Type Definitions; Conservation Technology Information Center. 2011. Available online: https://www.sare.org/publications/conservation-tillage-systems-in-the-southeast/references-10/ (accessed on 10 October 2024).
- KTBL. Bodenbearbeitung und Bestellung (Definition von Bodenbearbeitungs-und Bestellsystemen); KTBL. 2015. Available online: https://www.ktbl.de/fileadmin/user_upload/Artikel/Pflanzenbau/Bodenbearbeitung/Bodenbearbeitung_und_Bestellung_2015.pdf (accessed on 10 October 2024).
- ASAE EP291.3 Standard FEB2005 (R2018); Terminology and Definitions for Soil Tillage and Soil-Tool Relationships. ASABE: St. Joseph, MI, USA, 2018.
- ECAF. What Is Conservation Agriculture? Available online: https://ecaf.org/what-is-conservation-agriculture/ (accessed on 10 October 2024).
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/ef_mp_prac/default/table?lang=en (accessed on 9 November 2024).
- NPCC. Available online: https://www.era-learn.eu/network-information/organisations/national-agricultural-and-food-centre (accessed on 9 November 2024).
- RIPP. Available online: https://www.nppc.sk/VURV%20-%20historia/ (accessed on 9 November 2024).
- SSCRI. Available online: https://www.nppc.sk/vyskumny-ustav-podoznalectva-a-ochrany-pody/ (accessed on 9 November 2024).
- Soil Information Portal. Available online: http://www.podnemapy.sk/default.aspx (accessed on 9 November 2024).
- Slovak University of Agriculture in Nitra. Available online: https://www.uniag.sk/en/main-page (accessed on 9 November 2024).
- Agricultural Knowledge and Innovation Institute. Available online: https://izpi.sk/en (accessed on 9 November 2024).
- Slovakia–CAP Strategic Plan. Available online: https://agriculture.ec.europa.eu/cap-my-country/cap-strategic-plans/slovakia_en (accessed on 9 November 2024).
- Zumr, D. Correction to: Agricultural Land Degradation in the Czech Republic. In Impact of Agriculture on Soil Degradation II. The Handbook of Environmental Chemistry, 1st ed.; Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 121, pp. 35–58. [Google Scholar] [CrossRef]
- Gebeltová, Z.; Malec, K.; Maitah, M.; Smutka, L.; Appiah-Kubi, S.N.K.; Maitah, K.; Sahatqija, J.; Sirohi, J. The impact of crop mix on decreasing soil price and soil degradation: A case study of selected regions in Czechia (2002–2019). Sustainability 2020, 12, 444. [Google Scholar] [CrossRef]
- EUROSTAT. Farm Structure Survey. National Methodological Report Czech Republic. 2007. Available online: https://ec.europa.eu/eurostat/documents/749240/749316/CZ_NMR_FSS_2007.pdf/1a377c48-2af2-4fa2-8219-58687710323c (accessed on 2 October 2024).
- Bičík, I.; Kupková, L.; Jeleček, L.; Kabrda, J.; Štych, P.; Janoušek, Z.; Winklerová, J. Land Use Changes in the Czech Republic 1845–2010: Socio-Economic Driving Forces, 1st ed.; Springer Nature: Berlin/Heidelberg, Germany, 2015; pp. 1–215. [Google Scholar] [CrossRef]
- Szturc, J.; Karásek, P.; Podhrázská, J. Historical changes in the land use connected with appropriation of agricultural land—Case study of Cadastral Areas Dolní Věstonice and Modřice (Czech Republic). Eur. Countrys. 2017, 9, 658–678. [Google Scholar] [CrossRef]
- Podhrázská, J.; Kučera, J.; Karásek, P.; Konečná, J. Land degradation by erosion and its economic consequences for the region of South Moravia (Czech Republic). Soil Water Res. 2016, 10, 105–113. [Google Scholar] [CrossRef]
- Novák, P.; Hůla, J.; Kumhálová, J. Translocation of soil particles ad different speed of tillers. In Proceedings of the 6th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, 7–9 September 2016; pp. 433–437. [Google Scholar]
- Žížala, D.; Juřicová, A.; Kapička, J.; Novotný, I. The potential risk of combined effects of water and tillage erosion on the agricultural landscape in Czechia. J. Maps 2021, 17, 428–438. [Google Scholar] [CrossRef]
- Dostál, T.; Janecek, M.; Kliment, Z.; Krása, J.; Langhammer, J.; Váška, J.; Vrana, K. Czech Republic. In Soil Erosion in Europe, 1st ed.; Boardman, J., Poesen, J., Eds.; Wiley: Chichester, UK, 2006; pp. 107–116. [Google Scholar]
- Hofman, J.; Dušek, L.; Klánová, J.; Bezchlebová, J.; Holoubek, I. Monitoring microbial biomass and respiration in different soils from the Czech Republic—A summary of results. Environ. Int. 2004, 30, 19–30. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Kunzová, E. The state of the soil organic matter and nutrients in the long-term field experiments with application of organic and mineral fertilizers in different soil-climate conditions in the view of expecting climate change. In Organic Fertilizers—History, Production and Applications, 1st ed.; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Bednář, M.; Šarapatka, B. Relationships between physical–geographical factors and soil degradation on agricultural land. Environ. Res. 2018, 164, 660–668. [Google Scholar] [CrossRef]
- Novotný, I.; Žížala, D.; Kapička, J.; Beitlerová, H.; Mistr, M.; Kristenová, H.; Papaj, V. Adjusting the CPmax factor in the Universal Soil Loss Equation (USLE): Areas in need of soil erosion protection in the Czech Republic. J Maps. 2016, 12, 58–62. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the Czech Republic. Available online: https://geoportal.vumop.cz/ (accessed on 2 October 2024).
- Zumr, D.; Dostál, T.; Devátý, J.; Valenta, P.; Rosendorf, P.; Eder, A.; Strauss, P. Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment. Hydrol. Earth Syst. Sci. 2017, 21, 5681–5691. [Google Scholar] [CrossRef]
- Menšík, L.; Kincl, D.; Nerušil, P.; Srbek, J.; Hlisnikovský, L.; Smutný, V. Water erosion reduction using different soil tillage approaches for maize (Zea mays L.) in the Czech Republic. Land 2020, 9, 358. [Google Scholar] [CrossRef]
- Procházková, E.; Kincl, D.; Kabelka, D.; Vopravil, J.; Nerušil, P.; Menšík, L.; Barták, V. The impact of the conservation tillage “maize into grass cover” on reducing the soil loss due to erosion. Soil Water Res. 2020, 15, 158–165. [Google Scholar] [CrossRef]
- Brant, V.; Kroulík, M.; Pivec, J.; Zábranský, P.; Hakl, J.; Holec, J.; Kvíz, Z.; Procházka, L. Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing. Soil Water Res. 2017, 12, 106–116. [Google Scholar] [CrossRef]
- Kincl, D.; Formánek, P.; Vopravil, J.; Nerušil, P.; Menšík, L.; Janků, J. Soil-conservation effect of intercrops in silage maize. Soil Water Res. 2022, 17, 180–190. [Google Scholar] [CrossRef]
- Kroulík, M.; Kvíz, Z.; Kumhála, F.; Hůla, J.; Loch, T. Procedures of soil farming allowing reduction of compaction. Precis. Agric. 2011, 12, 317–333. [Google Scholar] [CrossRef]
- Dumbrovský, M. Pásové Střídání Plodin Jako Protierozní a Adaptační Opatření v Pozemkových Úpravách: Certifikovaná Metodika; Univerzita Palackého v Olomouci: Olomouc, Czech Republic, 2023; ISBN 978-80-244-6377-3. [Google Scholar]
- Smagacz, J. Znaczenie konserwującej uprawy roli w kształtowaniu żyzności gleby. Stud. I Rap. IUNG-PIB 2023, 71, 87–103. [Google Scholar] [CrossRef]
- Ball, B.C. Minimum tillage technology as an alternative to traditional systems: Environmental implications and their relevance to Poland and other CEES. In Soil Quality, Sustainable Agriculture and Environmental Security in Central and Eastern Europe; Wilson, M.J., Maliszewska-Kordybach, B., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 139–151. [Google Scholar]
- Khursheed, S.; Simmons, C.; Wani, S.A.; Ali, T.; Raina, S.K.; Najar, G.R. Conservation tillage: Impacts on soil physical conditions–an overview. Adv. Plants Agric. Res. 2019, 9, 342–346. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems? In Advances in Soil Science: Food Security and Soil Quality; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. [Google Scholar]
- Smagacz, J.; Martyniuk, S. Soil properties and crop yields as influenced by the frequency of straw incorporation in rape-wheat-triticale rotation. J. Water Land Dev. 2023, 56, 1–6. [Google Scholar] [CrossRef]
- Minhas, W.A.; Mumtaz, N.; Ur-Rehman, H.; Farooq, S.; Farooq, M.; Ali, H.M.; Hussain, M. Weed infestation and productivity of wheat crop sown in various cropping systems under conventional and conservation tillage. Front. Plant Sci. 2023, 14, 1176738. [Google Scholar] [CrossRef]
- Kotwica, K.; Gałęzewski, L.; Wilczewski, E.; Kubiak, W. Reduced Tillage, Application of Straw and Effective Microorganisms as Factors of Sustainable Agrotechnology in Winter Wheat Monoculture. Agronomy 2024, 14, 738. [Google Scholar] [CrossRef]
- Breza-Boruta, B.; Kotwica, K.; Bauza-Kaszewska, J. Effect of Tillage System and Organic Matter Management Interactions on Soil Chemical Properties and Biological Activity in a Spring Wheat Short-Time Cultivation. Energies 2021, 14, 7451. [Google Scholar] [CrossRef]
- Woźniak, A.; Rachoń, L. Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Białczyk, W.; Cudzik, A.; Koryło, S. Evaluation of the cultivation simplifications in the aspect of their energy and time consumption, and crop yield. Inżynieria Rol. 2008, 12, 75–80. [Google Scholar]
- Jaskulska, I.; Jaskulski, D. Strip-till one-pass technology in central and eastern Europe: A Mzuri Pro-Til Hybrid machine case study. Agronomy 2020, 10, 925. [Google Scholar] [CrossRef]
- Orzech, K.; Rychcik, B.; Stępień, A. Wpływ sposobów uprawy roli na zachwaszczenie i plonowanie jęczmienia jarego. Fragm. Agron. 2011, 28, 63–70. [Google Scholar]
- Andruszczak, S. The influence of tillage and chemical plant protection on weed infestation of winter spelt wheat cul-tivars (Triticum aestivum ssp. spelta) growing in continuous crop. Agron. Sci. 2017, 72, 77–87. [Google Scholar] [CrossRef]
- Andruszczak, S. Reaction of winter spelt cultivars to reduced tillage system and chemical plant protection. Zemdir-Byste-Agric. 2017, 104, 15–22. [Google Scholar] [CrossRef]
- Seitz, S.; Goebes, P.; Puerta, V.L.; Pereira, E.I.P.; Wittwer, R.; Six, J.; van der Heijden, M.G.A.; Scholten, T. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 2019, 39, 4. [Google Scholar] [CrossRef]
- Lahmar, R.; Bationo, B.A.; Lamso, N.D.; Guéro, Y.; Tittonell, P. Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration. Field Crops Res. 2012, 132, 158–167. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Qingping, Z. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Różewicz, M. Review of current knowledge on strip-till cultivation and possibilities of its popularization in Poland. Pol. J. Agron. 2022, 49, 20–30. [Google Scholar] [CrossRef]
- Jaskulska, I.; Lemanowicz, J.; Dębska, B.; Jaskulski, D.; Breza-Boruta, B. Changes in Soil Organic Matter and Biological Parameters as a Result of Long-Term Strip-Till Cultivation. Agriculture 2023, 13, 2188. [Google Scholar] [CrossRef]
- Górski, D.; Gaj, R.; Ulatowska, A.; Miziniak, W. Effect of Strip-Till and Variety on Yield and Quality of Sugar Beet against Conventional Tillage. Agriculture 2022, 12, 166. [Google Scholar] [CrossRef]
- Tyrakowski, Ł. Oferta Maszyn do Uprawy w Strip Tillu Coraz Szersza (The Offer of Tillage Machines in Strip-Till is Getting More and More Wider). Wieści Rolnicze, Maszyny. 2023. Available online: https://wiescirolnicze.pl/maszyny/oferta-maszyn-do-uprawy-w-strip-tillu-coraz-szersza/ (accessed on 21 October 2024).
- Jarecki, M.K.; Lal, R. Crop management for soil carbon sequestration. Crit. Rev. Plant Sci. 2003, 22, 471–502. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Wilczewski, E. Influences of catch crop and its incorporation time on soil carbon and carbon-related enzymes. Pedosphere 2015, 25, 569–579. [Google Scholar] [CrossRef]
- Wilczewski, E.; Piotrowska-Długosz, A.; Lemańczyk, G. Properties of Alfisol and yield of spring barley as affected by catch crop. Zemdirb.-Agric. 2015, 102, 23–30. [Google Scholar] [CrossRef]
- Jug, I.; Brozovič, B.; Ðurdevič, B.; Wilczewski, E.; Vukadinovič, V.; Stipeševič, B.; Jug, D. Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions. Agronomy 2021, 11, 2156. [Google Scholar] [CrossRef]
- Wilczewski, E.; Sadkiewicz, J.; Piotrowska-Długosz, A.; Gałęzewski, L. Change of Plant Nutrients in Soil and Spring Barley Depending on the Field Pea Management as a Catch Crop. Agriculture 2021, 11, 394. [Google Scholar] [CrossRef]
- Vogeler, I.; Matthias Böldt, M.; Taube, F. Mineralisation of catch crop residues and N transfer to the subsequent crop. Sci. Total Environ. 2022, 810, 152142. [Google Scholar] [CrossRef]
Year 1 | Area (ha)—CA | Total Area | Proportion of CA (%) | Number of Users—CA | Total Number of Users | Proportion —CA (%) |
---|---|---|---|---|---|---|
2023 | 126,059 | 1,117,204 | 11 | 4066 | 107,393 | 4 |
2024 | 177,325 | 1,109,947 | 16 | 5599 | 100,946 | 6 |
NUTS 2 | NUTS 3 | Arable Land ha−1 |
---|---|---|
Bratislava Region | Bratislava Region | 36,803 |
Bratislava Region Total | 36,803 | |
Western Slovakia | Trnava Region | 184,934 |
Trenčín Region | 34,522 | |
Nitra Region | 300,510 | |
Western Slovakia Total | 519,966 | |
Central Slovakia | Žilina Region | 0 |
Banská Bystrica Region | 64,903 | |
Central Slovakia Total | 64,903 | |
Eastern Slovakia | Prešov Region | 7166 |
Košice Region | 64,682 | |
Eastern Slovakia Total | 71,848 | |
NUTS 1 Slovakia | 693,520 | |
NUTS 1 Slovakia | Arable land | 1,417,983 |
NUTS 1 Slovakia | Total agricultural land | 2,417,932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jug, D.; Jug, I.; Brozović, B.; Šeremešić, S.; Dolijanović, Ž.; Zsembeli, J.; Ujj, A.; Marjanovic, J.; Smutny, V.; Dušková, S.; et al. Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe. Agriculture 2025, 15, 260. https://doi.org/10.3390/agriculture15030260
Jug D, Jug I, Brozović B, Šeremešić S, Dolijanović Ž, Zsembeli J, Ujj A, Marjanovic J, Smutny V, Dušková S, et al. Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe. Agriculture. 2025; 15(3):260. https://doi.org/10.3390/agriculture15030260
Chicago/Turabian StyleJug, Danijel, Irena Jug, Bojana Brozović, Srdjan Šeremešić, Željko Dolijanović, Jozsef Zsembeli, Apolka Ujj, Jana Marjanovic, Vladimir Smutny, Soňa Dušková, and et al. 2025. "Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe" Agriculture 15, no. 3: 260. https://doi.org/10.3390/agriculture15030260
APA StyleJug, D., Jug, I., Brozović, B., Šeremešić, S., Dolijanović, Ž., Zsembeli, J., Ujj, A., Marjanovic, J., Smutny, V., Dušková, S., Neudert, L., Macák, M., Wilczewski, E., & Đurđević, B. (2025). Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe. Agriculture, 15(3), 260. https://doi.org/10.3390/agriculture15030260