Bio-Adsorbents Derived from Allium cepa var. aggregatum Waste for Effective Cd Removal and Immobilization in Black Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Adsorbents
2.2. Investigation of Adsorption Capacity and Mechanism of Cd2+
2.3. Preparation of Cd-Contaminated Soil
2.4. Transport of Cd2+ Between Soil and Adsorbents Under Wet–Dry–Freeze Conditions
2.5. Transformation of Cd in Soil and Pot Experiments
3. Results and Discussion
3.1. Properties and Adsorption Capacity of Adsorbents
3.2. Adsorption Mechanism of Cd2+ by Adsorbents
3.3. Removal of Cd from Soil Under Wet–Dry–Freeze Conditions
3.4. Immobilization of Cd Under Dry–Wet–Freeze Conditions
3.5. Fractions of Cd in Soil After Immobilization
3.6. Change of Available Cd in the Soil After Immobilization
3.7. Cd Uptake from Soil by Plants After Remediation
3.8. Biochar in Conjunction with Hyperaccumulators Remediation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarry, S.E.; Ogunleye, O.O.; Ajani, O.A. Biosorptive Removal of Cadmium(II) Ions from Aqueous Solution by Chemically Modified Onion Skin: Batch Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. Commun. 2015, 202, 655–673. [Google Scholar] [CrossRef]
- Cruz, C.C.V.; da Costa, A.C.A.; Henriques, C.A.; Luna, A.S. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp biomass. Bioresour. Technol. 2004, 91, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Zheng, W.W. Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. Toxics 2024, 12, 388. [Google Scholar] [CrossRef]
- FAO. Global Assessment of Soil Pollution; FAO: Rome, Italy, 2021; p. 84. [Google Scholar]
- Liu, B.Y.; Zhang, G.L.; Xie, Y.; Shen, B.; Gu, Z.J.; Ding, Y.Y. Delineating the black soil region and typical black soil region of northeastern China. Chin. Sci. Bull.-Chin. 2021, 66, 96–106. [Google Scholar] [CrossRef]
- Fang, H.Y. Impacts of land use and soil conservation measures on runoff and soil loss from two contrasted soils in the black soil region, northeastern China. Hydrol. Process. 2023, 37, e14886. [Google Scholar] [CrossRef]
- Gong, H.L.; Meng, D.; Li, X.J.; Zhu, F. Soil degradation and food security coupled with global climate change in northeastern China. Chin. Geogr. Sci. 2013, 23, 562–573. [Google Scholar] [CrossRef]
- Gu, Z.J.; Xie, Y.; Gao, Y.; Ren, X.Y.; Cheng, C.C.; Wang, S.C. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637, 706–716. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Deng, B.L.; Wu, M.X.; Qiu, G.K.; Sun, Z.H.; Wang, T.Y.; Zhang, S.Q.; Yang, X.T.; Song, N.N.; Zeng, Y.; et al. Impacts of natural field freeze-thaw process on the release kinetics of cadmium in black soil: Soil aggregate turnover perspective. Geoderma 2024, 447, 116932. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T.; Zhang, Q.; Zhu, Q.H.; Huang, D.Y.; Zhu, H.H.; Xu, C.; Su, S.M.; Zeng, X.B. Influence of straw-derived humic acid-like substance on the availability of Cd/As in paddy soil and their accumulation in rice grain. Chemosphere 2022, 300, 134368. [Google Scholar] [CrossRef]
- Ren, H.R.; Ren, J.; Tao, L.; Ren, X.C.; Li, Y.M.; Jiang, Y.C.; Lv, M.R. Potential of Attapulgite/Humic Acid Composites for Remediation of Cd-Contaminated Soil. Sustainability 2024, 16, 5266. [Google Scholar] [CrossRef]
- Li, L.H.; Ma, J.C.; Xu, M.; Li, X.; Tao, J.H.; Wang, G.Z.; Yu, J.T.; Guo, P. The Adsorption and Desorption of Pb2+ and Cd2+ in Freeze-Thaw Treated Soils. Bull. Environ. Contam. Toxicol. 2016, 96, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.L.; Du, W.; Wang, L.P.; Cao, Y.; Lv, J.L. Effects of freeze-thaw leaching on physicochemical properties and cadmium transformation in cadmium contaminated soil. Ecotoxicol. Environ. Saf. 2024, 284, 116935. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Battocchi, D.; Simões, A.M.; Tallman, D.E.; Bierwagen, G.P. Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys. Corros. Sci. 2006, 48, 1292–1306. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.-Q.; Zhang, Q.-P.; Liu, Q.-C.; Li, Y.-D.; Xiao, R. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef]
- Meng, Z.; Huang, S.; Lin, Z. Effects of modification and co-aging with soils on Cd(II) adsorption behaviors and quantitative mechanisms by biochar. Environ. Sci. Pollut. Res. 2023, 30, 8902–8915. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Liu, X.; Huang, G.; Xiao, W.; Han, L. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 2020, 110, 87–97. [Google Scholar] [CrossRef]
- Wu, Y.J.; Liu, L.P.; Li, F.; Tang, Y.X.; Ge, F.; Tian, J.; Zhang, M. A hypoxic pyrolysis process to turn petrochemical sludge into magnetic biochar for cadmium-polluted soil remediation. J. Cent. South Univ. 2024, 31, 1360–1370. [Google Scholar] [CrossRef]
- Zhang, H.; Ke, S.J.; Xia, M.W.; Bi, X.T.; Shao, J.A.; Zhang, S.H.; Chen, H.P. Effects of phosphorous precursors and speciation on reducing bioavailability of heavy metal in paddy soil by engineered biochars. Environ. Pollut. 2021, 285, 117459. [Google Scholar] [CrossRef]
- Zhong, M.T.; Li, W.D.; Jiang, M.H.; Wang, J.A.; Shi, X.Y.; Song, J.H.; Zhang, W.X.; Wang, H.J.; Cui, J. Improving the ability of straw biochar to remediate Cd contaminated soil: KOH enhanced the modification of K3PO4 and urea on biochar. Ecotoxicol. Environ. Saf. 2023, 262, 115317. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, J.C.; Shen, L.P.; Xiu, J.H.; Shan, S.D.; Ma, K.T. Pretreatment of straw using filamentous fungi improves the remediation effect of straw biochar on bivalent cadmium contaminated soil. Environ. Sci. Pollut. Res. 2022, 29, 60933–60944. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, W.; Xiao, J.G.; Zhang, H.; Zhang, Y.; Xiao, W. Effects of magnetic hydroxyapatite loaded biochar on Cd removal and passivation in paddy soil and its accumulation in rice: A 2-year field study. Environ. Sci. Pollut. Res. 2023, 30, 9865–9873. [Google Scholar] [CrossRef] [PubMed]
- Pandey, U.B. 30—Potato onion (Multiplier onion). In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 495–501. [Google Scholar]
- Wang, Z.Y.; Liu, G.C.; Zheng, H.; Li, F.M.; Ngo, H.H.; Guo, W.S.; Liu, C.; Chen, L.; Xing, B.S. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour. Technol. 2015, 177, 308–317. [Google Scholar] [CrossRef]
- Cui, X.Q.; Fang, S.Y.; Yao, Y.Q.; Li, T.Q.; Ni, Q.J.; Yang, X.E.; He, Z.L. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 2016, 562, 517–525. [Google Scholar] [CrossRef]
- Meng, Z.W.; Huang, S.; Xu, T.; Deng, Y.Y.; Lin, Z.B.; Wang, X.G. Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging. Environ. Pollut. 2020, 263, 114449. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Shen, J.; Duvnjak, Z. Adsorption kinetics of cupric and cadmium ions on corncob particles. Process. Biochem. 2005, 40, 3446–3454. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Harvey, O.R.; Herbert, B.E.; Rhue, R.D.; Kuo, L.J. Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environ. Sci. Technol. 2011, 45, 5550–5556. [Google Scholar] [CrossRef]
- Ren, X.H.; He, J.Y.; Chen, Q.; He, F.; Wei, T.; Jia, H.L.; Guo, J.K. Marked changes in biochar’s ability to directly immobilize Cd in soil with aging: Implication for biochar remediation of Cd-contaminated soil. Environ. Sci. Pollut. Res. 2022, 29, 73856–73864. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. Comparison of plant Cd accumulation from a Cd-contaminated soil amended with biochar produced from various feedstocks. Environ. Sci. Pollut. Res. 2021, 28, 12699–12706. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wang, Y.L.; Wang, L.E.; Huang, H.J.; Zhou, C.H.; Ni, G.R. Reduced cadmium(Cd) accumulation in lettuce plants by applying KMnO4 modified water hyacinth biochar. Heliyon 2022, 8, e11304. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ibrahim, M.; Zia-ur-Rehman, M.; Abbas, T.; Ok, Y.S. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 2230–2248. [Google Scholar] [CrossRef]
- Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain. Plant Physiol. 2018, 177, 271–284. [Google Scholar] [CrossRef]
- Arif, M.; Ali, S.; Ilyas, M.; Riaz, M.; Akhtar, K.; Ali, K.; Adnan, M.; Fahad, S.; Khan, I.; Shah, S.H.; et al. Enhancing phosphorus availability, soil organic carbon, maize productivity and farm profitability through biochar and organic-inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Manag. 2021, 37, 104–119. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.H.; Kwon, E.E. Biochar as a tool for the improvement of soil and environment. Front. Environ. Sci. 2023, 11, 1324533. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Chen, C.; Xiang, Y.; Rezaei Rashti, M.; Li, Y.; Deng, Q.; Zhang, R. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta-analysis of field studies. GCB Bioenergy 2021, 13, 1859–1873. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Shao, H.; Sun, J. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Sci. Total Environ. 2016, 569–570, 65–72. [Google Scholar] [CrossRef]
- Zeeshan, M.; Ahmad, W.; Hussain, F.; Ahamd, W.; Numan, M.; Shah, M.; Ahmad, I. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J. Clean. Prod. 2020, 255, 120318. [Google Scholar] [CrossRef]
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.X.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.Y.; Rinklebe, J.; et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Sci. Total Environ. 2021, 755, 142582. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.Y.; Bian, R.J.; Cheng, K.; Zhang, X.H.; Zheng, J.F.; Joseph, S.; Crowley, D.; Pan, G.X.; Li, L.Q. Effects of biochar on availability and plant uptake of heavy metals—A meta-analysis. J. Environ. Manag. 2018, 222, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Gierón, Z.Z.; Sitko, K.; Zieleznik-Rusinowska, P.; Szopinski, M.; Rojek-Jelonek, M.; Rostanski, A.; Rudnicka, M.; Malkowski, E. Ecophysiology of Arabidopsis arenosa, a new hyperaccumulator of Cd and Zn. J. Hazard. Mater. 2021, 412, 125052. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.H.; Zhou, Q.X.; Wang, X.; Zhang, K.S.; Guo, G.L.; Ma, Q.Y.L. A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin. Sci. Bull. 2005, 50, 33–38. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Brooks, R.R.; Pease, A.J.; Malaisse, F. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant Soil 1983, 73, 377–385. [Google Scholar] [CrossRef]
- Wang, S.L.; Zheng, J.G. Cd-accumulation characteristics of Brassica cultivars and their potential for phytoremediating Cd-contaminated soils. J. Fujian Agric. For. Univ. 2004, 33, 94–99. [Google Scholar]
- Bakshi, S.; Aller, D.M.; Laird, D.A.; Chintala, R. Comparison of the Physical and Chemical Properties of Laboratory- and Field-Aged Biochars. J. Environ. Qual. 2016, 45, 1627–1634. [Google Scholar] [CrossRef]
- Spokas, K.A. Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 2013, 5, 165–176. [Google Scholar] [CrossRef]
pH | EC (μS/cm) | Cd (mg/kg) | Na (%) | Mg (%) | Al (%) | Si (%) | K (%) | Ca (%) | Mn (%) | P (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
S0 | 7.68 | 54.5 | - | 0.93 | 1.41 | 8.57 | 27.94 | 2.07 | 1.43 | 0.32 | 0.02 |
SCd | 7.65 | 75.9 | 129.80 | 1.05 | 1.54 | 9.00 | 29.50 | 2.20 | 1.46 | 0.17 | 0.03 |
Fraction | Extraction Solution | Time | Condition | |
---|---|---|---|---|
F1 | Exchangeable fraction | 10 mL MgCl2 (1.0 mol/L) | 2 h | 25 °C |
F2 | Carbonate-bound fraction | 10 mL CH3COONa (1.0 mol/L) | 2 h | 25 °C |
F3 | Fe-Mn oxide-bound fraction | 10 mL NH2OH (0.04 mol/L)-CH3COOH (25%) | 6 h | 96 °C |
F4 | Organic-bound fraction | 3 mL HNO3 (0.01 mol/L), 5 mL H2O2 (30%) | 2 h | 85 °C |
8 mL H2O2 (30%) | 5 h | 85 °C | ||
5 mL CH3COONH4 (3.2 mol/L)-HNO3 (20%) | 0.5 h | 25 °C | ||
F5 | Residual fraction | HCl-HNO3-HF-HClO4 | - | - |
Adsorbents | pH | EC (μs/cm) | Ash Content (%) | SSA (m2/g) | Pore Volume (cm3/g) | H/C | O/C | (O + N)/C | Adsorption Capacity (mg/g) |
---|---|---|---|---|---|---|---|---|---|
AW | 3.96 | 170.7 | 7.90 | 3.6166 | 0.0089 | 1.56 | 0.83 | 0.85 | 28.93 |
AM | 7.49 | 426.7 | 8.76 | 3.6223 | 0.0043 | 1.85 | 0.95 | 0.96 | 30.48 |
C300 | 6.78 | 315.0 | 18.10 | 4.5578 | 0.0110 | 0.91 | 0.47 | 0.49 | 26.26 |
C500 | 8.33 | 555.7 | 28.52 | 6.7688 | 0.0203 | 0.32 | 0.24 | 0.25 | 31.35 |
C700 | 12.84 | 2000.0 | 36.93 | 66.0080 | 0.0496 | 0.16 | 0.16 | 0.18 | 33.21 |
CM | 8.69 | 358.5 | 32.97 | 4.2099 | 0.0135 | 1.04 | 0.68 | 0.69 | 31.23 |
MBP | 8.14 | 213.0 | 48.86 | 54.2381 | 0.1249 | 1.91 | 1.44 | 1.47 | 31.79 |
HA | 6.34 | 57.7 | 39.01 | 3.6769 | 0.0185 | 1.15 | 0.59 | 0.62 | 29.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Lu, J.; Lai, Y.; Wei, Q.; Gou, Z.; Zou, X. Bio-Adsorbents Derived from Allium cepa var. aggregatum Waste for Effective Cd Removal and Immobilization in Black Soil. Agriculture 2025, 15, 427. https://doi.org/10.3390/agriculture15040427
Hou Y, Lu J, Lai Y, Wei Q, Gou Z, Zou X. Bio-Adsorbents Derived from Allium cepa var. aggregatum Waste for Effective Cd Removal and Immobilization in Black Soil. Agriculture. 2025; 15(4):427. https://doi.org/10.3390/agriculture15040427
Chicago/Turabian StyleHou, Yaru, Jilong Lu, Yawen Lai, Qiaoqiao Wei, Zhiyi Gou, and Xiaoxiao Zou. 2025. "Bio-Adsorbents Derived from Allium cepa var. aggregatum Waste for Effective Cd Removal and Immobilization in Black Soil" Agriculture 15, no. 4: 427. https://doi.org/10.3390/agriculture15040427
APA StyleHou, Y., Lu, J., Lai, Y., Wei, Q., Gou, Z., & Zou, X. (2025). Bio-Adsorbents Derived from Allium cepa var. aggregatum Waste for Effective Cd Removal and Immobilization in Black Soil. Agriculture, 15(4), 427. https://doi.org/10.3390/agriculture15040427