Evaluation and Early Detection of Downy Mildew of Lettuce Using Hyperspectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Data Acquisition
2.2.1. Hyperspectral Image Acquisition
2.2.2. DI Investigation
2.2.3. Biochemical Parameter Measurement
2.3. Data Process
2.4. Data Analysis
2.4.1. Pearson Correlation Analysis
2.4.2. Regression Analysis
2.4.3. Discriminant Analysis
3. Results
3.1. Correlation Analysis Between DI and Biochemical Parameters
3.2. Correlation Analysis Between DI, Biochemical Parameters, and Spectral Parameters
3.2.1. Spectral Reflectance
3.2.2. Vegetation Indices
3.3. Determination of DI, Chl, Flav, Anth Based on Spectral Parameters
3.4. Early Detection of Downy Mildew of Lettuce
3.4.1. Early Detection Models
3.4.2. Key Bands for Early Detection
3.4.3. Key Vegetation Indices for Early Detection
4. Discussion
4.1. DI, Flav, and Anth
4.2. DI, Flav, Anth, and Spectral Parameters
4.3. Determination and Early Detection Models for Downy Mildew
4.4. PLS, RF, and CNN Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Parra, L.; Maisonneuve, B.; Lebeda, A.; Schut, J.; Christopoulou, M.; Jeuken, M.; McHale, L.; Truco, M.-J.; Crute, I.; Michelmore, R. Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 2016, 210, 309–326. [Google Scholar] [CrossRef]
- Patterson, D.T.; Westbrook, J.K.; Joyce, R.J.V.; Lingren, P.D.; Rogasik, J. Weeds, Insects, and Diseases. Clim. Change 1999, 43, 711–727. [Google Scholar] [CrossRef]
- Tör, M.; Wood, T.; Webb, A.; Göl, D.; McDowell, J.M. Recent developments in plant-downy mildew interactions. Semin. Cell Dev. Biol. 2023, 148–149, 42–50. [Google Scholar] [CrossRef]
- de Cássia Alves, R.; dos Santos Zucco, M.F.; Oliveira, K.R.; Checchio, M.V.; Franco, C.A.; Körösi, K.; Gratão, P.L. Seed Priming with Silicon Improves Plant Resistance to Downy Mildew (Bremia lactucae) in Lettuce Seedlings by Intensifying Antioxidant Defense Systems. Silicon 2022, 14, 12721–12731. [Google Scholar] [CrossRef]
- Mirzwa-Mróz, E.; Zieniuk, B.; Yin, Z.; Pawełkowicz, M. Genetic Insights and Molecular Breeding Approaches for Downy Mildew Resistance in Cucumber (Cucumis sativus L.): Current Progress and Future Prospects. Int. J. Mol. Sci. 2024, 25, 12726. [Google Scholar] [CrossRef]
- Miedaner, T. Breeding Strategies for Improving Plant Resistance to Diseases. In Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 561–599. [Google Scholar]
- Parra, L.; Nortman, K.; Sah, A.; Truco, M.J.; Ochoa, O.; Michelmore, R. Identification and mapping of new genes for resistance to downy mildew in lettuce. Theor. Appl. Genet. 2021, 134, 519–528. [Google Scholar] [CrossRef]
- Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M.M.; Alrefaei, A.F.; Abbas, Q.; Naqvi, S.A.; Rao, M.J.; Mosa, W.F.A.; Abbas, Q.; et al. Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture. Agronomy 2023, 13, 1524. [Google Scholar] [CrossRef]
- Bock, C.H.; Chiang, K.-S.; Del Ponte, E.M. Plant disease severity estimated visually: A century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Trop. Plant Pathol. 2022, 47, 25–42. [Google Scholar] [CrossRef]
- Choudhury, R.A.; Koike, S.T.; Fox, A.D.; Anchieta, A.; Subbarao, K.V.; Klosterman, S.J.; McRoberts, N. Season-Long Dynamics of Spinach Downy Mildew Determined by Spore Trapping and Disease Incidence. Phytopathology 2016, 106, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, J.; Conrad, A.O.; Flower, C.E.; Pinchot, C.C.; Hayes-Plazolles, N.; Chen, Z.; Song, Z.; Fei, S.; Jin, J. Machine learning-based spectral and spatial analysis of hyper-and multi-spectral leaf images for Dutch elm disease detection and resistance screening. Artif. Intell. Agric. 2023, 10, 26–34. [Google Scholar] [CrossRef]
- Shao, Y.; Ji, S.; Xuan, G.; Ren, Y.; Feng, W.; Jia, H.; Wang, Q.; He, S. Detection and analysis of chili pepper root rot by hyperspectral imaging technology. Agronomy 2024, 14, 226. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Jin, X.; Bian, L.; Ge, Y. High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing. Crop J. 2023, 11, 1303–1318. [Google Scholar] [CrossRef]
- Poorter, H.; Hummel, G.M.; Nagel, K.A.; Fiorani, F.; von Gillhaussen, P.; Virnich, O.; Schurr, U.; Postma, J.A.; van de Zedde, R.; Wiese-Klinkenberg, A. Pitfalls and potential of high-throughput plant phenotyping platforms. Front. Plant Sci. 2023, 14, 1233794. [Google Scholar] [CrossRef]
- García-Vera, Y.E.; Polochè-Arango, A.; Mendivelso-Fajardo, C.A.; Gutiérrez-Bernal, F.J. Hyperspectral image analysis and machine learning techniques for crop disease detection and identification: A review. Sustainability 2024, 16, 6064. [Google Scholar] [CrossRef]
- Rayhana, R.; Ma, Z.; Liu, Z.; Xiao, G.; Ruan, Y.; Sangha, J.S. A Review on Plant Disease Detection Using Hyperspectral Imaging. IEEE Trans. AgriFood Electron. 2023, 1, 108–134. [Google Scholar] [CrossRef]
- Lacotte, V.; Peignier, S.; Raynal, M.; Demeaux, I.; Delmotte, F.; da Silva, P. Spatial–spectral analysis of hyperspectral images reveals early detection of downy mildew on grapevine leaves. Int. J. Mol. Sci. 2022, 23, 10012. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.H.; Liu, H.; Li, W.; Cao, A.; Wang, X.; Liu, H.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat. Remote Sens. 2021, 13, 3612. [Google Scholar] [CrossRef]
- Hernández, I.; Gutiérrez, S.; Ceballos, S.; Iñíguez, R.; Barrio, I.; Tardaguila, J. Artificial intelligence and novel sensing technologies for assessing downy mildew in grapevine. Horticulturae 2021, 7, 103. [Google Scholar] [CrossRef]
- Vatter, T.; Barceló, M.; Gjakoni, P.; Segarra, G.; Isabel Trillas, M.; Aranjuelo, I.; Kefauver, S.C.; Araus, J.L. Comparing high-cost and lower-cost remote sensing tools for detecting pre-symptomatic downy mildew (Pseudoperonospora cubensis) infections in cucumbers. Comput. Electron. Agric. 2024, 218, 108736. [Google Scholar] [CrossRef]
- An, L.; Liu, Y.; Wang, N.; Liu, G.; Liu, M.; Tang, W.; Sun, H.; Li, M. Classification of wheat powdery mildew based on hyperspectral: From leaves to canopy. Crop Prot. 2024, 177, 106559. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, Y.; Guo, A.; Huang, W.; Cai, Z.; Dong, Y.; Guo, J.; Qian, B.; Hao, Z.; Chen, G. Detection of Rubber Tree Powdery Mildew from Leaf Level Hyperspectral Data Using Continuous Wavelet Transform and Machine Learning. Remote Sens. 2023, 16, 105. [Google Scholar] [CrossRef]
- Almoujahed, M.B.; Apolo-Apolo, O.E.; Whetton, R.L.; Kazlauskas, M.; Kriaučiūnienė, Z.; Šarauskis, E.; Mouazen, A.M. Field-based hyperspectral imaging for detection and spatial mapping of fusarium head blight in wheat. Eur. J. Agron. 2025, 164, 127485. [Google Scholar] [CrossRef]
- Rieker, M.E.G.; Lutz, M.A.; El-Hasan, A.; Thomas, S.; Voegele, R.T. Hyperspectral Imaging and Selected Biological Control Agents for the Management of Fusarium Head Blight in Spring Wheat. Plants 2023, 12, 3534. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Sandroni, M.; Westergaard, J.C.; Sundmark, E.H.R.; Bagge, M.; Alexandersson, E.; Gao, J. In-field classification of the asymptomatic biotrophic phase of potato late blight based on deep learning and proximal hyperspectral imaging. Comput. Electron. Agric. 2023, 205, 107585. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y.; Rahnama, K. Early detection and spectral signature identification of tomato fungal diseases (Alternaria alternata, Alternaria solani, Botrytis cinerea, and Fusarium oxysporum) by RGB and hyperspectral image analysis and machine learning. Heliyon 2024, 10, e38017. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fernandez, M.A.; Liu, T.M.; Ding, S. Investigation of Using Hyperspectral Vegetation Indices to Assess Brassica Downy Mildew. Sensors 2024, 24, 1916. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, M.; Lam, P.-Y.; Dini-Andreote, F.; Dai, L.; Wei, Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 2022, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xu, X.; Han, R.; Wang, X.; Wang, K.; Qi, G.; Ma, P.; Komatsuda, T.; Liu, C. Integrated transcriptome and metabolome analysis reveals that flavonoids function in wheat resistance to powdery mildew. Front. Plant Sci. 2023, 14, 1125194. [Google Scholar] [CrossRef] [PubMed]
- Gould, K.S. Nature’s Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. J. Biomed. Biotechnol. 2004, 2004, 314–320. [Google Scholar] [CrossRef]
- Sudheeran, P.K.; Sela, N.; Carmeli-Weissberg, M.; Ovadia, R.; Panda, S.; Feygenberg, O.; Maurer, D.; Oren-Shamir, M.; Aharoni, A.; Alkan, N. Induced defense response in red mango fruit against Colletotrichum gloeosporioides. Hortic. Res. 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- McLay, E.R.; Pontaroli, A.C.; Wargent, J.J. UV-B Induced Flavonoids Contribute to Reduced Biotrophic Disease Susceptibility in Lettuce Seedlings. Front. Plant Sci. 2020, 11, 594681. [Google Scholar] [CrossRef] [PubMed]
- Skogholt, J.; Liland, K.H.; Indahl, U.G. Preprocessing of spectral data in the extended multiplicative signal correction framework using multiple reference spectra. J. Raman Spectrosc. 2019, 50, 407–417. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Miura, T.; Huete, A.R.; Yoshioka, H.; Holben, B.N. An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sens. Environ. 2001, 78, 284–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, Y.; Guo, Y.; Reddy, K.N.; Lee, M.A.; Fletcher, R.S.; Thomson, S.J. Early Detection of Crop Injury from Glyphosate on Soybean and Cotton Using Plant Leaf Hyperspectral Data. Remote Sens. 2014, 6, 1538–1563. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Blank, V.; Skidanov, R.; Doskolovich, L.; Kazanskiy, N. Spectral diffractive lenses for measuring a modified red edge simple ratio index and a water band index. Sensors 2021, 21, 7694. [Google Scholar] [CrossRef] [PubMed]
- Evangelides, C.; Nobajas, A. Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration. Remote Sens. Appl. Soc. Environ. 2020, 17, 100283. [Google Scholar] [CrossRef]
- Pen Uelas, J.; Filella, I.; Lloret, P.; Mun Oz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Kior, A.; Sukhov, V.; Sukhova, E. Application of Reflectance Indices for Remote Sensing of Plants and Revealing Actions of Stressors. Photonics 2021, 8, 582. [Google Scholar] [CrossRef]
- Liu, N.; Budkewitsch, P.; Treitz, P. Examining spectral reflectance features related to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of Arctic tundra. Remote Sens. Environ. 2017, 192, 58–72. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Partial least squares methods: Partial least squares correlation and partial least square regression. Comput. Toxicol. Vol. II 2013, 930, 549–579. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sharma, P.; Villegas-Diaz, R.; Fennell, A. Predicting Grapevine Physiological Parameters Using Hyperspectral Remote Sensing Integrated with Hybrid Convolutional Neural Network and Ensemble Stacked Regression. Remote Sens. 2024, 16, 2626. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, Y.; Zhai, Z. Early Detection of Bacterial Blight in Hyperspectral Images Based on Random Forest and Adaptive Coherence Estimator. Sustainability 2022, 14, 13168. [Google Scholar] [CrossRef]
- Khan, A.; Vibhute, A.D.; Mali, S.; Patil, C.H. A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. Ecol. Inform. 2022, 69, 101678. [Google Scholar] [CrossRef]
- Petrussa, E.; Braidot, E.; Zancani, M.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013, 14, 14950–14973. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Prathibha, M.D.; Singh, P.; Choyal, P.; Mishra, U.N.; Saha, D.; Kumar, R.; Anuragi, H.; Pandey, S.; Bose, B.; et al. Plant photosynthesis under abiotic stresses: Damages, adaptive, and signaling mechanisms. Plant Stress 2023, 10, 100296. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Niu, D.; Liu, X. Effects of abiotic stress on chlorophyll metabolism. Plant Sci. 2024, 342, 112030. [Google Scholar] [CrossRef]
- Pithan, P.A.; Ducati, J.R.; Garrido, L.R.; Arruda, D.C.; Thum, A.B.; Hoff, R. Spectral characterization of fungal diseases downy mildew, powdery mildew, black-foot and Petri disease on Vitis vinifera leaves. Int. J. Remote Sens. 2021, 42, 5680–5697. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Qureshi, J.; Roberts, P. Identification and Classification of Downy Mildew Severity Stages in Watermelon Utilizing Aerial and Ground Remote Sensing and Machine Learning. Front. Plant Sci. 2022, 13, 791018. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.; Chivkunova, O.; Zhigalova, T.; Solovchenko, A. In situ optical properties of foliar flavonoids: Implication for non-destructive estimation of flavonoid content. J. Plant Physiol. 2017, 218, 258–264. [Google Scholar] [CrossRef]
- Gordon, T.R.; Duniway, J.M. Effects of Powdery Mildew Infection on the Efficiency of CO2 Fixation and Light Utilization by Sugar Beet Leaves. Plant Physiol. 1982, 69, 139–142. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant. 2021, 172, 1711–1723. [Google Scholar] [CrossRef]
Disease Severity Grade | Symptom |
---|---|
0 | Asymptomatic |
1 | Slight necrosis at the inoculation site |
3 | The necrotic spots were obvious and less than 0.5 cm in diameter |
5 | Necrotic spots account for less than 1/3 of the leaf area |
7 | The area of necrotic spots accounts for 1/3 to 2/3 of the leaf area |
9 | Necrotic spots accounted for more than 2/3 of the leaf area, and even dried up |
Vegetation Index | Acronym | Equation | Reference |
---|---|---|---|
Green Normalized Difference Vegetation Index | GNDVI | (R780 − R550)/(R780 + R550) | [34] |
Green Ratio Vegetation Index | GRVI | R780/R550 | [35] |
Anthocyanin Reflectance Index 1 | ARI1 | 1/R550 − 1/R700 | [36] |
Anthocyanin Reflectance Index 2 | ARI2 | R800 (1/R550 − 1/R700) | [36] |
Photochemical Reflectance Index | PRI | (R531 − R570)/(R531 + R570) | [37] |
Atmospherically Resistant Vegetation Index | ARVI | (R780 − (2R680 − R450))/(R780 + (2R680 − R450)) | [38] |
Carotenoid Reflectance Index 2 | CRI2 | 1/R510 − 1/R700 | [39] |
Difference Vegetation Index | DVI | R780 − R680 | [40] |
Enhanced Vegetation Index | EVI | 2.5((R780 − R680)/(R780 + 6R680 − 7.56R450 + 1)) | [41] |
Modified Red Edge Simple Ratio Index | mSR705 | (R750 − R445)/(R705 + R445) | [42] |
Red Edge Normalized Difference Vegetation Index | NDVI705 | (R750 − R705)/(R750 + R705) | [43] |
Normalized Phaeophytinization Index | NPQI | (R415 − R435)/(R415 + R435) | [44] |
Plant Senescence Reflectance Index | PSRI | (R680 − R500)/R750 | [45] |
Index | Spectral Parameter | Method | Training | Testing | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
DI | Ref | PLS | 0.631 | 5.297 | 0.586 | 6.699 |
RF | 0.857 | 2.813 | 0.748 | 5.861 | ||
CNN | 0.823 | 3.482 | 0.709 | 7.956 | ||
VI | PLS | 0.635 | 5.904 | 0.563 | 5.734 | |
RF | 0.789 | 3.552 | 0.704 | 6.586 | ||
CNN | 0.758 | 5.430 | 0.835 | 6.947 | ||
Flav | Ref | PLS | 0.565 | 0.135 | 0.557 | 0.151 |
RF | 0.892 | 0.069 | 0.732 | 0.109 | ||
CNN | 0.910 | 0.066 | 0.733 | 0.107 | ||
VI | PLS | 0.522 | 0.162 | 0.464 | 0.146 | |
RF | 0.843 | 0.083 | 0.670 | 0.128 | ||
CNN | 0.738 | 0.145 | 0.711 | 0.176 | ||
Anth | Ref | PLS | 0.818 | 0.044 | 0.819 | 0.061 |
RF | 0.963 | 0.019 | 0.881 | 0.032 | ||
CNN | 0.951 | 0.023 | 0.811 | 0.061 | ||
VI | PLS | 0.901 | 0.036 | 0.825 | 0.058 | |
RF | 0.955 | 0.021 | 0.864 | 0.046 | ||
CNN | 0.908 | 0.032 | 0.853 | 0.052 |
Method | Ref | VI | |||||
---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | ||
Day 0 | PLS-DA | 0.542 | 0.556 | 0.528 | 0.486 | 0.472 | 0.500 |
RF | 0.486 | 0.500 | 0.472 | 0.514 | 0.556 | 0.472 | |
CNN | 0.542 | 0.528 | 0.556 | 0.472 | 0.444 | 0.500 | |
Day 1 | PLS-DA | 0.764 | 0.750 | 0.778 | 0.681 | 0.694 | 0.667 |
RF | 0.708 | 0.722 | 0.694 | 0.708 | 0.750 | 0.667 | |
CNN | 0.764 | 0.778 | 0.750 | 0.681 | 0.722 | 0.639 | |
Day 2 | PLS-DA | 0.861 | 0.833 | 0.889 | 0.806 | 0.778 | 0.833 |
RF | 0.764 | 0.778 | 0.750 | 0.764 | 0.806 | 0.722 | |
CNN | 0.847 | 0.861 | 0.833 | 0.819 | 0.833 | 0.806 | |
Day 3 | PLS-DA | 0.903 | 0.889 | 0.917 | 0.861 | 0.833 | 0.889 |
RF | 0.819 | 0.806 | 0.833 | 0.792 | 0.778 | 0.806 | |
CNN | 0.903 | 0.889 | 0.917 | 0.861 | 0.861 | 0.861 | |
Day 4 | PLS-DA | 0.944 | 0.944 | 0.944 | 0.903 | 0.889 | 0.917 |
RF | 0.875 | 0.861 | 0.889 | 0.847 | 0.833 | 0.861 | |
CNN | 0.931 | 0.917 | 0.944 | 0.903 | 0.889 | 0.917 | |
Day 5 | PLS-DA | 0.972 | 0.972 | 0.972 | 0.944 | 0.944 | 0.944 |
RF | 0.917 | 0.917 | 0.917 | 0.889 | 0.889 | 0.889 | |
CNN | 0.958 | 0.944 | 0.972 | 0.944 | 0.944 | 0.944 | |
Day 6 | PLS-DA | 1.000 | 1.000 | 1.000 | 0.986 | 0.972 | 1.000 |
RF | 0.958 | 0.972 | 0.944 | 0.931 | 0.917 | 0.944 | |
CNN | 0.986 | 1.000 | 0.972 | 0.972 | 0.972 | 0.972 | |
Day 7 | PLS-DA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
RF | 0.986 | 1.000 | 0.972 | 0.986 | 0.972 | 1.000 | |
CNN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, S.; Tian, M.; Hu, D.; Xu, M.; Yuan, T.; Zheng, X.; Li, L.; Wei, S. Evaluation and Early Detection of Downy Mildew of Lettuce Using Hyperspectral Imagery. Agriculture 2025, 15, 444. https://doi.org/10.3390/agriculture15050444
Ban S, Tian M, Hu D, Xu M, Yuan T, Zheng X, Li L, Wei S. Evaluation and Early Detection of Downy Mildew of Lettuce Using Hyperspectral Imagery. Agriculture. 2025; 15(5):444. https://doi.org/10.3390/agriculture15050444
Chicago/Turabian StyleBan, Songtao, Minglu Tian, Dong Hu, Mengyuan Xu, Tao Yuan, Xiuguo Zheng, Linyi Li, and Shiwei Wei. 2025. "Evaluation and Early Detection of Downy Mildew of Lettuce Using Hyperspectral Imagery" Agriculture 15, no. 5: 444. https://doi.org/10.3390/agriculture15050444
APA StyleBan, S., Tian, M., Hu, D., Xu, M., Yuan, T., Zheng, X., Li, L., & Wei, S. (2025). Evaluation and Early Detection of Downy Mildew of Lettuce Using Hyperspectral Imagery. Agriculture, 15(5), 444. https://doi.org/10.3390/agriculture15050444