The Impacts of Ethylicin on Absorption, Transport, and Growth in Tomato Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Reagents
2.1.1. Test Formulations
2.1.2. Soil Treatments
2.2. Methods
2.2.1. Tomato Cultivation
2.2.2. Uptake and Translocation of Ethylicin in Indoor Tomato Plants
2.2.3. Sample Pre-Treatment
2.2.4. Sample Addition Recovery
2.2.5. Uptake and Translocation of Ethylicin in Field-Grown Tomato Plants
2.2.6. Effects on Fusarium spp. and Phytophthora spp. After Field Root Irrigation
2.3. Testing Conditions
2.4. Data Statistics
3. Results
3.1. Translocation of Ethylicin Uptake in Potted Tomato Plants
3.1.1. Additive Recovery Rate
3.1.2. Uptake and Translocation of Ethylicin in Tomato Plants
3.2. The Absorption of Ethylicin in Tomato Plants in the Field
3.2.1. Field Uptake of Ethylicin After Root Irrigation
3.2.2. Leaf Absorption of Ethylicin 1000× and 2000× After Root Irrigation
3.2.3. Control Effects of Root Irrigation at Different Soil Depths
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Tang, L.; He, H.; Tang, X.; Wang, W. Effects of different fumigants on soil physical and chemical properties and strawberry growth and development. China Fruits 2023, 11, 50–55+60. [Google Scholar]
- Wang, H.; Chen, P.; Wang, Y.; Wei, F.; Yang, S.; Guan, H.; Xu, W. Effects of Soil Fumigation on Microbial Community under Continuous Cropping of Panax notoginseng. J. Yunnan Norm. Univ. (Nat. Sci. Ed.) 2024, 44, 51–58. [Google Scholar]
- Li, W. Research on the Toxicity and Application Technology of Ethylicin as a Fumigant; Chinese Academy of Agricultural Sciences: Beijing, China, 2023. [Google Scholar]
- UNEP. Phasing-Out Methyl Bromide in Developing Countries: A Success Story and Its Challenges; UNEP: Nairobi, Kenya, 2014. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Letter Seeking Comments on Control Measures for Chloropicrin in Aluminum Phosphide. 2024. Available online: http://www.zzys.moa.gov.cn/gzdt/202407/t20240731_6460055.htm (accessed on 19 July 2024).
- Xu, H. Phytochemical Conservation, 4th ed.; China Agriculture Press: Beijing, China, 2007. [Google Scholar]
- Zhang, H.; Wei, G.; Zhao, W.; Hu, A. Mechanism Underlying Absorption and Transportation of Kasugamycin in Tomato Seedlings. Mod. Agrochem. 2022, 21, 47–52. [Google Scholar]
- Qiu, J.; Chen, G.; Xu, J.; Luo, E.; Liu, Y.; Wang, F.; Zhou, H.; Liu, Y.; Zhu, F.; Ouyang, G. In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.). J. Hazard. Mater. 2016, 316, 52–59. [Google Scholar] [CrossRef]
- Yao, A.; Yang, J. Conduction mode of pesticides in plant and pesticide-conduction biology. China Plant Prot. 2012, 32, 14–18. [Google Scholar]
- Liu, X.; Luo, S.; Yang, J.; Mu, C.; Li, J. Synthesis of 14C-Labelled Myclobutanil and the Corroboration of its Uptake and Translocation in Wheat Seedling. Chin. J. Pestic. Sci. 2008, 10, 23–27. [Google Scholar]
- Jiang, S.; Miller, F. Research of uptake, transport, distribution and metabolism of 14C-MBC in cotton seedling plants. J. China Agric. Univ. 1987, 8, 103–112. [Google Scholar]
- Wang, F.; Li, J.; Li, B. The uptake, distribution and translocation of 14C-Metalaxyl in cucumber plants and the slowly releasing effect of seed coating formulation. Acta Phytopathol. Sin. 1995, 25, 167–170. [Google Scholar]
- Tong, M.; Gao, W.; Jiao, W.; Zhou, J.; Li, Y.; He, L.; Hou, R. Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (Camellia sinensis L.). J. Agric. Food Chem. 2017, 65, 7638–7646. [Google Scholar] [CrossRef]
- Li, W.; Ren, L.; Li, Q.; Zhang, D.; Jin, X.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Evaluation of ethylicin as a potential soil fumigant in commercial tomato production in China. Sci. Total Environ. 2023, 854, 158520. [Google Scholar] [CrossRef]
- Evangelista, C.T.; Fan, Y.; Liu, Y.; Chen, X. Study on the preparation of slow-release gels of ethylicin. Guangdong Chem. Ind. 2021, 48, 38–39. [Google Scholar]
- Huo, H.; Chen, Z. Quantitative gas chromatographic analysis of 41% ethylicin prodrug samples. J. Anhui Agric. Sci. 2007, 35, 8087–8091. [Google Scholar] [CrossRef]
- She, J. Dissipation Ecotoxicological Effects of Pesticide Ethylicin in Cucumber and Soil. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2009. [Google Scholar]
- She, J.; Yang, R.; Fu, Q.; Wang, H. Ethylicin Residue Dynamics in cucumber and soil. Environ. Sci. Manag. 2009, 34, 25–28. [Google Scholar]
- Cao, D. Broad-spectrum and efficient fungicide—Ethylicin. Nongcun Baishitong 2014, 47–48. [Google Scholar] [CrossRef]
- Li, J.; He, G.; Chu, Y.; Liu, Y. Ethylicin Determined with Gas Chromatography and Mass Spectrometry. Forensic Sci. Technol. 2022, 47, 623–626. [Google Scholar]
- Han, D. Study on the Degradation Behavior of Dimethyl Disulfide, a New Soil fumigant. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2017. [Google Scholar]
- Komada, H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 1975, 8, 114–124. [Google Scholar]
- Masago, H.; Yoshikawa, M.; Fukada, M.; Nakanishi, N. Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopathology 1977, 67, 425–428. [Google Scholar] [CrossRef]
- Ju, C.; Zhang, H.; Wu, R.; Dong, S.; Yao, S.; Wang, F.; Cao, D.; Xu, S.; Fang, H.; Yu, Y. Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. Sci. Total Environ. 2020, 703, 135636. [Google Scholar] [CrossRef]
- Wang, H.; Yang, R.; She, J.; Zheng, L.; Liu, P. The Residue and Field Residue Decline Study of 20% Hypertomic Ethylicin EC in Plant, Rice, Rice Hull, Paddy Water and Soil. Chin. J. Pestic. Sci. 2008, 10, 455–459. [Google Scholar]
- Chen, X.; Tang, X.; Zhang, Y.; Fang, W.; Yan, D.; Li, Y.; Cao, A.; Bai, Q.; Wang, Q. Effect of dilution ratio on the amount of metam sodium-produced methyl isothiocyanate and its dissipation. Plant Prot. 2024, 50, 122–128. [Google Scholar]
- Xu, S.; Liu, Y.; Xia, M.; Wang, Y.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. Dazomet Fumigation and Short-time Allium fistulosum Rotation Can Significantly Reduce the Apple Replant Disease. Acta Hortic. Sin. 2018, 45, 11–20. [Google Scholar]
- Hu, A. Absorption and Conductance of Glucose Insecticide Couplings; South China Agricultural University: Guangzhou, China, 2010. [Google Scholar]
- Zhang, S.; Wang, C.; Xu, B.; Ran, G.; Cao, L.; Cao, C.; Huang, Q.; Zhu, F.; Zhao, P. Study on uptake and translocation of five fungicides in rice. Chin. J. Pestic. Sci. 2022, 24, 752–761. [Google Scholar]
- Han, P.; Hu, B.; Ma, S.; Cao, Y. Determination of the endocytic conductance properties of penflufen in wheat plants by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Chin. J. Pestic. Sci. 2017, 19, 729–734. [Google Scholar]
- Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A.M.; Nauen, R.; Niebes, J.-F.; Reckmann, U.; Schnorbach, H.-J. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Prot. 2009, 28, 838–844. [Google Scholar] [CrossRef]
- Kumar, B.V.; Kuttalam, S.; Chandrasekaran, S. Efficacy of a new insecticide spirotetramat against cotton whitefly. Pestic. Res. J. 2009, 21, 45–48. [Google Scholar]
- Yang, S.; Wen, X.; Liu, Y.; Yang, G.; Jiang, Y. Experiments on the effect of plant Immune Inducers oligosaccharins on cherry tomatoes. Digit. Agric. Intell. Agric. Mach. 2024, 91–93. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, B.; Cui, C.; Wei, G.; Zuo, L.; Xiong, J. Cooperative prevention and control effects of amino-oligosaccharide and ethylicin on cotton Verticillium wilt in Xinjiang. China Cotton 2023, 50, 6–10. [Google Scholar]
- Fu, X.; Zhang, Y.; Zhu, F.; Zhang, J.; Guo, Y.; Feng, G. Study on the synergistic bactericidal effect of ethylicin and aminoglycosides on bacterial fruit blotch of melon. Chin. J. Trop. Agric. 2024, 9, 1–6. [Google Scholar]
Name | Manufacturer | Abridge |
---|---|---|
80% Ethylicin | Hainan Zhengye Zhongnong High-Tech Co., Ltd. (Haikou, Hainan) | Single-agent formulation |
80% Ethylicin + 5% oligosaccharins | Hainan Zhengye Zhongnong High-Tech Co., Ltd. (Haikou, Hainan) | Compound formulation |
Physicochemical Properties | NH4+-N (mg/kg) | NO3−-N (mg/kg) | Available K (mg/kg) | Organic Matter (g/kg) | pH (1:2.5) | Electrical Conductivity (ms/cm) |
---|---|---|---|---|---|---|
Fangshan | 3.98 | 160 | 845.00 | 32.50 | 7.75 | 239.00 |
Miyun | 4.08 | 42.82 | 1600.00 | 20.02 | 6.26 | 1692.25 |
Substrate | Fortified Level (mg/kg) | Average Recovery Rate (%, n = 3) | Coefficient of Variation (%, n = 3) |
---|---|---|---|
Root | 1 | 85.94 | 7.43 |
10 | 94.87 | 4.71 | |
100 | 93.64 | 2.64 | |
Stem | 1 | 115.29 | 8.60 |
10 | 105.01 | 3.15 | |
100 | 104.07 | 3.33 | |
Leaf | 1 | 83.78 | 7.90 |
10 | 101.85 | 3.77 | |
100 | 102.75 | 10.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Liu, S.; Ren, L.; Zeng, T.; Wen, X.; Wang, S.; Jin, X.; Hao, Z.; Gao, S.; Gao, J.; et al. The Impacts of Ethylicin on Absorption, Transport, and Growth in Tomato Plants. Agriculture 2025, 15, 533. https://doi.org/10.3390/agriculture15050533
Zheng Y, Liu S, Ren L, Zeng T, Wen X, Wang S, Jin X, Hao Z, Gao S, Gao J, et al. The Impacts of Ethylicin on Absorption, Transport, and Growth in Tomato Plants. Agriculture. 2025; 15(5):533. https://doi.org/10.3390/agriculture15050533
Chicago/Turabian StyleZheng, Yiwen, Shenyan Liu, Lirui Ren, Tao Zeng, Xiangling Wen, Shaolong Wang, Xi Jin, Zheng Hao, Shimeng Gao, Jie Gao, and et al. 2025. "The Impacts of Ethylicin on Absorption, Transport, and Growth in Tomato Plants" Agriculture 15, no. 5: 533. https://doi.org/10.3390/agriculture15050533
APA StyleZheng, Y., Liu, S., Ren, L., Zeng, T., Wen, X., Wang, S., Jin, X., Hao, Z., Gao, S., Gao, J., & Cao, A. (2025). The Impacts of Ethylicin on Absorption, Transport, and Growth in Tomato Plants. Agriculture, 15(5), 533. https://doi.org/10.3390/agriculture15050533