Soil Organic Carbon Assessment for Carbon Farming: A Review
Abstract
:1. Introduction
1.1. Broader Perspective and Motivation
1.2. Aim of the Present Study
1.3. Paper Outline
2. Overview of the Soil Organic Carbon Survey Methodologies and Key Relevant Technologies and Models
2.1. The Dynamics of Carbon Sequestration in Agricultural Soils and Influencing Factors
2.2. Soil Organic Carbon Assessment
2.2.1. Sampling Scale
- Global scale: This involves the evaluation of SOC levels on an international level, thus offering a broad appreciation of global patterns in SOC dynamics.
- Continental scale: Focusing on particular continents allows for examining how SOC variations are influenced by regional climates across large geographic areas.
- National scale: Investigating specific countries yields valuable insights that can enhance policy-making efforts at the national level.
- Regional scale: This scale deals with particular regions of a country, facilitating the study of the impact of local climate and soil types on SOC variations.
- Local scale: At this level, granular information is provided, enabling site-specific management practices.
2.2.2. Sampling Scope
2.2.3. Sampling Depth and Size
2.2.4. Sampling Techniques
- Random sampling: Samples are selected randomly from the population.
- Grid sampling: This involves dividing the area into a grid, and then samples are selected at specific grid points.
- Stratified sampling: This involves dividing a population into distinct subgroups (strata) based on specific characteristics and selecting samples from each to ensure reliable results.
- Sampling based on management zones: Samples are collected within predefined zones that reflect different management practices.
- Balanced sampling: Equal representation of different categories or strata within the sample.
- Transect sampling: This includes collecting samples along a predetermined line that runs through the study area.
- Statistical models: These models use statistical techniques, such as Kriging geostatistical models, to find relationships between SOC levels and several variables, such as climate factors, soil properties, and land use.
- Process-based models: These models can simulate the underlying biological, chemical, and physical factors that govern SOC accumulation, decomposition, and mineralization [49]. Various inputs can be included in these models, ranging from land use, climate, vegetation, and soil properties to mineralization and “humification” (the formation of humus from decomposed organic matter [50]).
2.2.5. Soil Organic Carbon Measurement Methods
2.2.6. Sources of Error
3. Methods
- Development of primary research questions (RQs):
- RQ1: What are the state-of-the-art approaches in sampling, modeling, and data acquisition?;
- RQ2: What are the key challenges, open issues, potential advancements, and future directions needed to enhance the effectiveness of carbon farming practices?
- Research protocol development: A thorough research protocol was created to outline the methodology for literature screening and data extraction. This protocol was unanimously approved by all authors prior to commencing the literature search.
- Literature search: Papers relevant to the current research topic were explored using the following search engines: Google Scholar, Scopus, Taylor & Francis, and MDPI. Combinations of specific keywords, including “Soil Organic Carbon”, along with “Soil Sampling”, “Estimation”, and “Monitoring”, were utilized in the search. The search process began on 1 October 2024 and proceeded backward year by year to ensure the inclusion of relevant works published in previous years. To achieve this, references within each article were also examined to identify additional relevant studies. To assess their relevance to the scope of the present review, the titles and abstracts of the identified papers were first evaluated, followed by a detailed examination of the full texts. Filters applied during the search included the following: (a) publication date filters; (b) limiting the results to peer-reviewed journal papers; (c) restricting results to studies published in English; (d) focusing on field-scale assessment; (e) studies clearly articulating soil sampling techniques or SOC measurement methods; and (f) excluding review papers to focus on primary data, allowing for the direct evaluation of methodology. This approach also prevents data duplication and minimizes reliance on interpretations that could introduce bias. Although review papers were not included in our analysis, they consisted of significant information sources to tackle multiple facets primarily concerning RQ2. A final consensus meeting was held with all co-authors to discuss the appropriateness of the selected papers based on the established inclusion criteria and to resolve any differing opinions. Following the PRISMA guidelines [60], 86 relevant studies were found, with the corresponding review procedure flowchart depicted in Figure 1.
- Data extraction: Specific information, covering references (title, publishing year, and authors), scope, sampling and modeling approach, data sources, and relevant sampling details, were systematically documented in an online spreadsheet that all authors could access.
- Data analysis and results: The preliminary stage comprised a brief descriptive review of each paper, organized in tabular form and accompanied by statistical assessments.
- Findings interpretation: Drawing conclusions from the available scientific evidence was performed in relation to the primary RQs discussed above.
4. Results
4.1. Categorization of the Selected Studies Based on Their Main Features
- Reference: The citation for each study, including the first author names.
- Year: The year of publication.
- Approach: The sampling strategy employed in the study, classified as either design-based (DB) or model-based (MB), to differentiate between direct sampling efforts and those incorporating computational modeling.
- Sampling: The method used to gather SOC data, represented by abbreviations such as balanced sampling (BS), grid sampling (GS), random sampling (RS), and transect sampling (TS).
- Sampling details: Specific details provided about the sampling procedure, such as the number of samples (NS), depth interval (DI), sample density (SDEN), and the specific procedures used during sample collection.
- Modeling: The geostatistical or ML models used to process and analyze SOC data, such as several types of Kriging variants and regression algorithms for addressing specific challenges in SOC sampling.
- Data acquisition: The techniques or sensors used to obtain SOC data, including traditional laboratory methods (LAB), remote sensing approaches, and proximal spectroscopy.
4.2. Keyword Information Clustering
4.3. Chronological Distribution
4.4. Sampling Methods
4.5. Sampling Details
4.6. Modeling Methods
4.6.1. Machine Learning Models
4.6.2. Kriging Models
- Ordinary Kriging: Estimates using spatial correlation assuming a constant, unknown mean across the study area; best for data with relatively uniform trends.
- Block Kriging: Averages estimates over defined blocks, smoothing results for regional assessments.
- Stratified Ordinary Kriging: Applies ordinary Kriging within pre-defined, homogeneous strata to account for known sub-regions.
- Simple Kriging with Local Means: Incorporates known local mean variations and is suitable for heterogeneous landscapes but requires accurate local mean data.
- Robust Ordinary Kriging: Minimizes the impact of outliers, providing more stable estimates in datasets with potential errors.
- Co-Kriging: Uses correlations between multiple variables to improve predictions of the target variable.
- Empirical Bayesian Kriging: Accounts for semivariogram uncertainty through simulations; useful for sparse data or complex spatial variability.
- Factorial Kriging: Decomposes spatial variability into multiple components; suitable for complex datasets with varied trends.
- Geographical Detector-based Stratified Regression Kriging: Integrates geographical detectors to identify influencing factors, then applies stratified regression Kriging.
- Kriging with External Drift: Incorporates auxiliary data (environmental factors) as a trend component to improve predictions.
- Kriging with a Trend: Models systematic trends alongside spatial correlation; effective in areas with gradients.
- Partial Least Squares Regression Kriging: Combines regression with Kriging for high-dimensional datasets.
- Random Forest–Ordinary Kriging: Blends random forest’s non-linear modeling with ordinary Kriging’s spatial interpolation.
- Regression Kriging: Combines regression for non-spatial factors with Kriging for spatial residuals.
4.6.3. Inverse Distance Weighting
4.6.4. CENTURY Agroecosystem Dynamic Model
4.7. Data Acquisition
4.7.1. Conventional Laboratory Measurements
4.7.2. Spectroscopy
4.7.3. Remote Sensing
4.7.4. Historical Inventory
4.7.5. Other Techniques
4.7.6. Ex Situ, Proximal, and Remote Sensing Categorization
5. Discussion
5.1. RQ1: What Are the State-of-the-Art Approaches in Sampling, Modeling, and Data Acquisition?
5.2. RQ2: What Are the Key Challenges, Open Issues, Potential Advancements, and Research Directions Needed to Enhance the Effectiveness of Carbon Farming Practices?
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Woolf, D.; Fan, M.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Zhou, S.; Li, P.; Zhang, Y. Factors influencing and changes in the organic carbon pattern on slope surfaces induced by soil erosion. Soil Tillage Res. 2024, 238, 106001. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. RECSOIL: Recarbonization of Global Agricultural Soils; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef]
- Paul, C.; Bartkowski, B.; Dönmez, C.; Don, A.; Mayer, S.; Steffens, M.; Weigl, S.; Wiesmeier, M.; Wolf, A.; Helming, K. Carbon farming: Are soil carbon certificates a suitable tool for climate change mitigation? J. Environ. Manag. 2023, 330, 117142. [Google Scholar] [CrossRef]
- Van Hoof, S. Climate Change Mitigation in Agriculture: Barriers to the Adoption of Carbon Farming Policies in the EU. Sustainability 2023, 15, 10452. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Pawłowska, M.; Harasim, E.; Pawłowski, L. Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review. Energies 2023, 16, 4225. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, P.; Thakur, N. Sustainable farming practices and soil health: A pathway to achieving SDGs and future prospects. Discov. Sustain. 2024, 5, 250. [Google Scholar] [CrossRef]
- Nordbeck, R.; Hogl, K. National peatland strategies in Europe: Current status, key themes, and challenges. Reg. Environ. Change 2023, 24, 5. [Google Scholar] [CrossRef]
- Quevedo-Cascante, M.; Mogensen, L.; Kongsted, A.G.; Knudsen, M.T. How does Life Cycle Assessment capture the environmental impacts of agroforestry? A systematic review. Sci. Total Environ. 2023, 890, 164094. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: Commission Proposals to Remove, Recycle and Sustainably Store Carbon; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Lampridi, M.; Sørensen, C.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef]
- Raina, N.; Zavalloni, M.; Viaggi, D. Incentive mechanisms of carbon farming contracts: A systematic mapping study. J. Environ. Manag. 2024, 352, 120126. [Google Scholar] [CrossRef]
- Odebiri, O.; Odindi, J.; Mutanga, O. Basic and deep learning models in remote sensing of soil organic carbon estimation: A brief review. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102389. [Google Scholar] [CrossRef]
- Pouladi, N.; Gholizadeh, A.; Khosravi, V.; Borůvka, L. Digital mapping of soil organic carbon using remote sensing data: A systematic review. Catena 2023, 232, 107409. [Google Scholar] [CrossRef]
- Radočaj, D.; Gašparović, M.; Jurišić, M. Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review. Agriculture 2024, 14, 1005. [Google Scholar] [CrossRef]
- Li, T.; Cui, L.; Wu, Y.; McLaren, T.I.; Xia, A.; Pandey, R.; Liu, H.; Wang, W.; Xu, Z.; Song, X.; et al. Soil Organic Carbon Estimation via Remote Sensing and Machine Learning Techniques: Global Topic Modeling and Research Trend Exploration. Remote Sens. 2024, 16, 3168. [Google Scholar] [CrossRef]
- Croft, H.; Kuhn, N.J.; Anderson, K. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena 2012, 94, 64–74. [Google Scholar] [CrossRef]
- Senesi, G.S.; Senesi, N. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review. Anal. Chim. Acta 2016, 938, 7–17. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, D. From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review. Sustainability 2020, 12, 443. [Google Scholar] [CrossRef]
- Allen, D.E.; Pringle, M.J.; Page, K.L.; Dalal, R.C. A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. Rangel. J. 2010, 32, 227–246. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E. Sampling designs for soil organic carbon stock assessment of soil profiles. Geoderma 2017, 307, 220–230. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Petropoulos, T.; Marinoudi, V.; Berruto, R.; Bochtis, D. Carbon Farming: Bridging Technology Development with Policy Goals. Sustainability 2024, 16, 1903. [Google Scholar] [CrossRef]
- Davis, M.R.; Alves, B.J.R.; Karlen, D.L.; Kline, K.L.; Galdos, M.; Abulebdeh, D. Review of soil organic carbon measurement protocols: A US and Brazil comparison and recommendation. Sustainability 2018, 10, 53. [Google Scholar] [CrossRef]
- Olson, K.R. Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development. Geoderma 2013, 195–196, 201–206. [Google Scholar] [CrossRef]
- Rakesh, S.; Sarkar, D.; Shikha; Sankar, A.; Sinha, A.K.; Mukhopadhyay, P.; Rakshit, A. Protocols for Determination and Evaluation of Organic Carbon Pools in Soils Developed Under Contrasting Pedogenic Processes and Subjected to Varying Management Situations; BT—Soil Analysis: Recent Trends and Applications; Springer: Singapore, 2020; pp. 87–105. ISBN 978-981-15-2039-6. [Google Scholar]
- Campbell, E.E.; Paustian, K. Current developments in soil organic matter modeling and the expansion of model applications: A review. Environ. Res. Lett. 2015, 10, 123004. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Srinivasa Rao, C.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Chapter One—Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Adv. Agron. 2019, 156, 1–107. [Google Scholar]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- She, R.; Yu, Y.; Ge, C.; Yao, H. Soil Texture Alters the Impact of Salinity on Carbon Mineralization. Agronomy 2021, 11, 128. [Google Scholar] [CrossRef]
- Zhang, X.; Han, X.; Yu, W.; Wang, P.; Cheng, W. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years. PLoS ONE 2017, 12, e0184978. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Abagandura, G.O.; Sekaran, U.; Singh, S.; Singh, J.; Ibrahim, M.A.; Subramanian, S.; Owens, V.N.; Kumar, S. Intercropping kura clover with prairie cordgrass mitigates soil greenhouse gas fluxes. Sci. Rep. 2020, 10, 7334. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Sarkar, B.; Biswas, B.; Bolan, N.S.; Churchman, G.J. Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture. Soil Biol. Biochem. 2017, 109, 95–106. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Guo, X.; Xiao, L.; Yang, Y.; Luo, Y.; Mishra, U.; Luo, Z. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Change 2024, 14, 98–105. [Google Scholar] [CrossRef]
- Saint-Laurent, D.; Gervais-Beaulac, V.; Paradis, R.; Arsenault-Boucher, L.; Demers, S. Distribution of Soil Organic Carbon in Riparian Forest Soils Affected by Frequent Floods (Southern Québec, Canada). Forests 2017, 8, 124. [Google Scholar] [CrossRef]
- Soares, P.R.; Harrison, M.T.; Kalantari, Z.; Zhao, W.; Ferreira, C.S.S. Drought effects on soil organic carbon under different agricultural systems. Environ. Res. Commun. 2023, 5, 112001. [Google Scholar] [CrossRef]
- Lobsey, C.R.; Viscarra Rossel, R.A. Sensing of soil bulk density for more accurate carbon accounting. Eur. J. Soil Sci. 2016, 67, 504–513. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Focus | Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. Guidelines for Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Mudge, P.; McNeill, S.; Hedley, C.B.; Roudier, P.; Poggio, M.; Whenua, M.; Malone, B.; Baldock, J.; Smith, P.; Trust, P.; et al. Design of an On-Farm Soil Carbon Benchmarking and Monitoring Approach for Individual Pastoral Farms; Ministry for Primary Industries: Wellington, New Zealand, 2020. [Google Scholar]
- Gold Standard for the Global Goals. Soil Organic Carbon Framework Methodology; Gold Standard for the Global Goals: Geneva, Switzerland, 2020. [Google Scholar]
- Lawrence, P.G.; Roper, W.; Morris, T.F.; Guillard, K. Guiding soil sampling strategies using classical and spatial statistics: A review. Agron. J. 2020, 112, 493–510. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Kyoto, Japan, 2006. [Google Scholar]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Pierson, D.; Lohse, K.A.; Wieder, W.R.; Patton, N.R.; Facer, J.; de Graaff, M.A.; Georgiou, K.; Seyfried, M.S.; Flerchinger, G.; Will, R. Optimizing process-based models to predict current and future soil organic carbon stocks at high-resolution. Sci. Rep. 2022, 12, 10824. [Google Scholar] [CrossRef] [PubMed]
- Sedlář, O.; Balík, J.; Černý, J.; Kulhánek, M.; Smatanová, M. Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality. Agronomy 2023, 13, 175. [Google Scholar] [CrossRef]
- Zayani, H.; Fouad, Y.; Michot, D.; Kassouk, Z.; Baghdadi, N.; Vaudour, E.; Lili-Chabaane, Z.; Walter, C. Using Machine-Learning Algorithms to Predict Soil Organic Carbon Content from Combined Remote Sensing Imagery and Laboratory Vis-NIR Spectral Datasets. Remote Sens. 2023, 15, 4264. [Google Scholar] [CrossRef]
- Mustapha, A.A.; Abdu, N.; Oyinlola, E.Y.; Nuhu, A.A. Evaluating Different Methods of Organic Carbon Estimation on Nigerian Savannah Soils. J. Soil Sci. Plant Nutr. 2023, 23, 790–800. [Google Scholar] [CrossRef]
- Loria, N.; Lal, R.; Chandra, R. Handheld In Situ Methods for Soil Organic Carbon Assessment. Sustainability 2024, 16, 5592. [Google Scholar] [CrossRef]
- Murad, M.O.F.; Ackerson, J.; Tolles, C.; Meissner, K.; Morgan, C.L.S.; Ge, Y. Estimating soil organic carbon content at variable moisture contents using a low-cost spectrometer. Geoderma 2023, 440, 116723. [Google Scholar] [CrossRef]
- Pathirana, S.; Lambot, S.; Krishnapillai, M.; Cheema, M.; Smeaton, C.; Galagedara, L. Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture. Remote Sens. 2023, 15, 2932. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Filippou, E.; Kalaitzidis, D.; Benos, L.; Busato, P.; Bochtis, D. Proposing UGV and UAV Systems for 3D Mapping of Orchard Environments. Sensors 2022, 22, 1571. [Google Scholar] [CrossRef]
- Vanguelova, E.I.; Bonifacio, E.; De Vos, B.; Hoosbeek, M.R.; Berger, T.W.; Vesterdal, L.; Armolaitis, K.; Celi, L.; Dinca, L.; Kjønaas, O.J.; et al. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—Review and recommendations. Environ. Monit. Assess. 2016, 188, 630. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Benos, L.; Kyriakarakos, G.; Pearson, S.; Sørensen, C.G.; Bochtis, D. Digital Twins in Agriculture and Forestry: A Review. Sensors 2024, 24, 3117. [Google Scholar] [CrossRef]
- Lee, C.-L.; Strong, R.; Dooley, K.E. Analyzing Precision Agriculture Adoption across the Globe: A Systematic Review of Scholarship from 1999–2020. Sustainability 2021, 13, 10295. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bocchi, S.; Castrignanò, A.; Fornaro, F.; Maggiore, T. Application of factorial kriging for mapping soil variation at field scale. Eur. J. Agron. 2000, 13, 295–308. [Google Scholar] [CrossRef]
- Morton, J.D.; Baird, D.B.; Manning, M.J. A soil sampling protocol to minimise the spatial variability in soil test values in New Zealand hill country. N. Z. J. Agric. Res. 2000, 43, 367–375. [Google Scholar] [CrossRef]
- Bergstrom, D.W.; Monreal, C.M.; Jacques, E.S.; Jacques, S. Spatial dependence of soil organic carbon mass and its relationship to soil series and topography. Can. J. Soil Sci. 2001, 81, 53–62. [Google Scholar] [CrossRef]
- Pennock, D.J.; Frick, A.H. The role of field studies in landscape-scale applications of process models: An example of soil redistribution and soil organic carbon modeling using CENTURY. Soil Tillage Res. 2001, 58, 183–191. [Google Scholar] [CrossRef]
- Martin, P.D.; Malley, D.F.; Manning, G.; Fuller, L. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Can. J. Soil Sci. 2002, 82, 413–422. [Google Scholar] [CrossRef]
- Mueller, T.G.; Pierce, F.J. Soil Carbon Maps: Enhancing Spatial Estimates with Simple Terrain Attributes at Multiple Scales. Soil Sci. Soc. Am. J. 2003, 67, 258–267. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Hengl, T.; Rossiter, D.G.; Stein, A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Aust. J. Soil Res. 2003, 41, 1403–1422. [Google Scholar] [CrossRef]
- Poussart, J.N.; Ardö, J.; Olsson, L. Verification of soil carbon sequestration: Sample requirements. Environ. Manag. 2004, 33, S416–S425. [Google Scholar] [CrossRef]
- Evrendilek, F.; Celik, I.; Kilic, S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. J. Arid Environ. 2004, 59, 743–752. [Google Scholar] [CrossRef]
- Simbahan, G.C.; Dobermann, A.; Goovaerts, P.; Ping, J.; Haddix, M.L. Fine-resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma 2006, 132, 471–489. [Google Scholar] [CrossRef]
- Su, Z.-Y.; Xiong, Y.-M.; Zhu, J.-Y.; Ye, Y.-C.; Ye, M. Soil Organic Carbon Content and Distribution in a Small Landscape of Dongguan, South China. Pedosphere 2006, 16, 10–17. [Google Scholar] [CrossRef]
- Stevens, A.; van Wesemael, B.; Vandenschrick, G.; Touré, S.; Tychon, B. Detection of Carbon Stock Change in Agricultural Soils Using Spectroscopic Techniques. Soil Sci. Soc. Am. J. 2006, 70, 844–850. [Google Scholar] [CrossRef]
- Simbahan, G.C.; Dobermann, A. Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma 2006, 133, 345–362. [Google Scholar] [CrossRef]
- Huang, X.; Senthilkumar, S.; Kravchenko, A.; Thelen, K.; Qi, J. Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma 2007, 141, 34–42. [Google Scholar] [CrossRef]
- Goidts, E.; Van Wesemael, B.; Van Oost, K. Driving forces of soil organic carbon evolution at the landscape and regional scale using data from a stratified soil monitoring. Glob. Change Biol. 2009, 15, 2981–3000. [Google Scholar] [CrossRef]
- Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J.L. Can Apparent Electrical Conductivity Improve the Spatial Characterization of Soil Organic Carbon? Vadose Zone J. 2009, 8, 586–593. [Google Scholar] [CrossRef]
- Peigné, J.; Vian, J.F.; Cannavacciuolo, M.; Bottollier, B.; Chaussod, R. Soil sampling based on field spatial variability of soil microbial indicators. Eur. J. Soil Biol. 2009, 45, 488–495. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Easter, M.; Williams, S.; Killian, K.; Paustian, K. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob. Change Biol. 2010, 16, 810–822. [Google Scholar] [CrossRef]
- Dlugoß, V.; Fiener, P.; Schneider, K. Layer-Specific Analysis and Spatial Prediction of Soil Organic Carbon Using Terrain Attributes and Erosion Modeling. Soil Sci. Soc. Am. J. 2010, 74, 922–935. [Google Scholar] [CrossRef]
- Delbari, M.; Loiskandl, W.; Afrasiab, P. Uncertainty assessment of soil organic carbon content spatial distribution using geostatistical stochastic simulation. Aust. J. Soil Res. 2010, 48, 27–35. [Google Scholar] [CrossRef]
- Vašát, R.; Heuvelink, G.B.M.; Borůvka, L. Sampling design optimization for multivariate soil mapping. Geoderma 2010, 155, 147–153. [Google Scholar] [CrossRef]
- Knadel, M.; Thomsen, A.; Greve, M.H. Multisensor On-The-Go Mapping of Soil Organic Carbon Content. Soil Sci. Soc. Am. J. 2011, 75, 1799–1806. [Google Scholar] [CrossRef]
- Gelder, B.K.; Anex, R.P.; Kaspar, T.C.; Sauer, T.J.; Karlen, D.L. Estimating Soil Organic Carbon in Central Iowa Using Aerial Imagery and Soil Surveys. Soil Sci. Soc. Am. J. 2011, 75, 1821–1828. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Kravchenko, A. Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs. Geoderma 2011, 166, 102–110. [Google Scholar] [CrossRef]
- VandenBygaart, A.J.; Bremer, E.; McConkey, B.G.; Ellert, B.H.; Janzen, H.H.; Angers, D.A.; Carter, M.R.; Drury, C.F.; Lafond, G.P.; McKenzie, R.H. Impact of Sampling Depth on Differences in Soil Carbon Stocks in Long-Term Agroecosystem Experiments. Soil Sci. Soc. Am. J. 2011, 75, 226–234. [Google Scholar] [CrossRef]
- Hbirkou, C.; Pätzold, S.; Mahlein, A.K.; Welp, G. Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma 2012, 175–176, 21–28. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Rice, C.W.; Wielopolski, L.; Ebinger, M.H.; Reeves, J.B.; Thomson, A.M.; Harris, R.; Francis, B.; Mitra, S.; Rappaport, A.G.; et al. Evaluation of Three Field-Based Methods for Quantifying Soil Carbon. PLoS ONE 2013, 8, e55560. [Google Scholar] [CrossRef]
- Brodský, L.; Vašát, R.; Klement, A.; Zádorová, T.; Jakšík, O. Uncertainty propagation in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma 2013, 199, 54–63. [Google Scholar] [CrossRef]
- Kuang, B.; Tekin, Y.; Mouazen, A.M. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil Tillage Res. 2015, 146, 243–252. [Google Scholar] [CrossRef]
- Rodionov, A.; Welp, G.; Damerow, L.; Berg, T.; Amelung, W.; Pätzold, S. Towards on-the-go field assessment of soil organic carbon using Vis-NIR diffuse reflectance spectroscopy: Developing and testing a novel tractor-driven measuring chamber. Soil Tillage Res. 2015, 145, 93–102. [Google Scholar] [CrossRef]
- De Gruijter, J.J.; McBratney, A.B.; Minasny, B.; Wheeler, I.; Malone, B.P.; Stockmann, U. Farm-scale soil carbon auditing. Geoderma 2016, 265, 120–130. [Google Scholar] [CrossRef]
- Aldana-Jague, E.; Heckrath, G.; Macdonald, A.; van Wesemael, B.; Van Oost, K. UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma 2016, 275, 55–66. [Google Scholar] [CrossRef]
- Sherpa, S.R.; Wolfe, D.W.; van Es, H.M. Sampling and Data Analysis Optimization for Estimating Soil Organic Carbon Stocks in Agroecosystems. Soil Sci. Soc. Am. J. 2016, 80, 1377–1392. [Google Scholar] [CrossRef]
- Naveed, M.; Herath, L.; Moldrup, P.; Arthur, E.; Nicolaisen, M.; Norgaard, T.; Ferré, T.P.A.; de Jonge, L.W. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Appl. Soil Ecol. 2016, 103, 44–55. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Reg. 2017, 10, 115–125. [Google Scholar] [CrossRef]
- Francaviglia, R.; Renzi, G.; Doro, L.; Parras-Alcántara, L.; Lozano-García, B.; Ledda, L. Soil sampling approaches in Mediterranean agro-ecosystems. Influence on soil organic carbon stocks. Catena 2017, 158, 113–120. [Google Scholar] [CrossRef]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef]
- Vos, C.; Jaconi, A.; Jacobs, A.; Don, A. Hot regions of labile and stable soil organic carbon in Germany-Spatial variability and driving factors. Soil 2018, 4, 153–167. [Google Scholar] [CrossRef]
- Vos, C.; Don, A.; Hobley, E.U.; Prietz, R.; Heidkamp, A.; Freibauer, A. Factors controlling the variation in organic carbon stocks in agricultural soils of Germany. Eur. J. Soil Sci. 2019, 70, 550–564. [Google Scholar] [CrossRef]
- Guo, L.; Linderman, M.; Shi, T.; Chen, Y.; Duan, L.; Zhang, H. Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling. Remote Sens. 2018, 10, 888. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy. Comput. Electron. Agric. 2018, 151, 469–477. [Google Scholar] [CrossRef]
- Arrouays, D.; Saby, N.P.A.; Boukir, H.; Jolivet, C.; Ratié, C.; Schrumpf, M.; Merbold, L.; Gielen, B.; Gogo, S.; Delpierre, N.; et al. Soil sampling and preparation for monitoring soil carbon. Int. Agrophys. 2018, 32, 633–643. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Ellinger, M.; Merbach, I.; Werban, U.; Ließ, M. Error propagation in spectrometric functions of soil organic carbon. Soil 2019, 5, 275–288. [Google Scholar] [CrossRef]
- Laamrani, A.; Berg, A.A.; Voroney, P.; Feilhauer, H.; Blackburn, L.; March, M.; Dao, P.D.; He, Y.; Martin, R.C. Ensemble identification of spectral bands related to soil organic carbon levels over an agricultural field in southern Ontario, Canada. Remote Sens. 2019, 11, 1298. [Google Scholar] [CrossRef]
- Seidel, M.; Hutengs, C.; Ludwig, B.; Thiele-Bruhn, S.; Vohland, M. Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations. Geoderma 2019, 354, 113856. [Google Scholar] [CrossRef]
- Žížala, D.; Minarík, R.; Zádorová, T. Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: An approach to reduce soil moisture and crop residue effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Rossel, R.A.V.; Boruvka, L.; Klement, A. Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma 2020, 357, 113972. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Cheng, H.; et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma 2020, 365, 114228. [Google Scholar] [CrossRef]
- Badagliacca, G.; Romeo, M.; Lo Presti, E.; Gelsomino, A.; Monti, M. Factors governing total and permanganate oxidizable c pools in agricultural soils from Southern Italy. Agriculture 2020, 10, 99. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil organic carbon mapping from remote sensing: The effect of crop residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Longo, M.; Piccoli, I.; Minasny, B.; Morari, F. Soil apparent electrical conductivity-directed sampling design for advancing soil characterization in agricultural fields. Vadose Zone J. 2020, 19, e20060. [Google Scholar] [CrossRef]
- Poeplau, C.; Jacobs, A.; Don, A.; Vos, C.; Schneider, F.; Wittnebel, M.; Tiemeyer, B.; Heidkamp, A.; Prietz, R.; Flessa, H. Stocks of organic carbon in German agricultural soils—Key results of the first comprehensive inventory. J. Plant Nutr. Soil Sci. 2020, 183, 665–681. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wu, Z.; Wang, B.; Wang, S. Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity. Catena 2021, 196, 104953. [Google Scholar] [CrossRef]
- Deluz, C.; Nussbaum, M.; Sauzet, O.; Gondret, K.; Boivin, P. Evaluation of the Potential for Soil Organic Carbon Content Monitoring with Farmers. Front. Environ. Sci. 2020, 8, 113. [Google Scholar] [CrossRef]
- Du, L.; McCarty, G.W.; Li, X.; Rabenhorst, M.C.; Wang, Q.; Lee, S.; Hinson, A.L.; Zou, Z. Spatial extrapolation of topographic models for mapping soil organic carbon using local samples. Geoderma 2021, 404, 115290. [Google Scholar] [CrossRef]
- Matinfar, H.R.; Maghsodi, Z.; Mousavi, S.R.; Rahmani, A. Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale. Catena 2021, 202, 105258. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Saberioon, M.; Borůvka, L.; Houška, J.; Vašát, R.; Agyeman, P.C.; Coblinski, J.A.; Klement, A. Exploring the suitability of uas-based multispectral images for estimating soil organic carbon: Comparison with proximal soil sensing and spaceborne imagery. Remote Sens. 2021, 13, 308. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, P.; Crucil, G.; van Wesemael, B.; Limbourg, Q.; Van Oost, K. Evaluating the capability of a UAV-borne spectrometer for soil organic carbon mapping in bare croplands. Land Degrad. Dev. 2021, 32, 4375–4389. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Neumann, C.; Chabrillat, S.; Van Wesemael, B.; Castaldi, F.; Borůvka, L.; Sanderman, J.; Klement, A.; Hohmann, C. Soil organic carbon estimation using VNIR-SWIR spectroscopy: The effect of multiple sensors and scanning conditions. Soil Tillage Res. 2021, 211, 105017. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; et al. Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas. Geoderma 2021, 398, 115118. [Google Scholar] [CrossRef]
- Izurieta, J.E.A.; Márquez, C.O.; García, V.J.; Santillán, C.A.J.; Sisti, J.M.; Pasqualotto, N.; Van Wittenberghe, S.; Delegido, J. Multi-predictor mapping of soil organic carbon in the alpine tundra: A case study for the central Ecuadorian páramo. Carbon Balance Manag. 2021, 16, 32. [Google Scholar] [CrossRef]
- Li, S.; Rossel, R.A.V.; Webster, R. The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon. Eur. J. Soil Sci. 2022, 73, e13202. [Google Scholar] [CrossRef]
- Potash, E.; Guan, K.; Margenot, A.; Lee, D.K.; DeLucia, E.; Wang, S.; Jang, C. How to estimate soil organic carbon stocks of agricultural fields? perspectives using ex-ante evaluation. Geoderma 2022, 411, 115693. [Google Scholar] [CrossRef]
- De Benedetto, D.; Barca, E.; Castellini, M.; Popolizio, S.; Lacolla, G.; Stellacci, A.M. Prediction of Soil Organic Carbon at Field Scale by Regression Kriging and Multivariate Adaptive Regression Splines Using Geophysical Covariates. Land 2022, 11, 381. [Google Scholar] [CrossRef]
- Drexler, S.; Broll, G.; Flessa, H.; Don, A. Benchmarking soil organic carbon to support agricultural carbon management: A German case study. J. Plant Nutr. Soil Sci. 2022, 185, 427–440. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Munnaf, M.A.; Cruz, C.; Mouazen, A.M. Spectra Fusion of Mid-Infrared (MIR) and X-ray Fluorescence (XRF) Spectroscopy for Estimation of Selected Soil Fertility Attributes. Sensors 2022, 22, 3459. [Google Scholar] [CrossRef]
- Izurieta, J.E.A.; Santillán, C.A.J.; Márquez, C.O.; García, V.J.; Rivera-Caicedo, J.P.; Van Wittenberghe, S.; Delegido, J.; Verrelst, J. Improving the remote estimation of soil organic carbon in complex ecosystems with Sentinel-2 and GIS using Gaussian processes regression. Plant Soil 2022, 479, 159–183. [Google Scholar] [CrossRef]
- Rosinger, C.; Bodner, G.; Bernardini, L.G.; Huber, S.; Mentler, A.; Sae-Tun, O.; Scharf, B.; Steiner, P.; Tintner-Olifiers, J.; Keiblinger, K. Benchmarking carbon sequestration potentials in arable soils by on-farm research on innovative pioneer farms. Plant Soil 2023, 488, 137–156. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; An, J.; Wang, Y.; Song, H.; Wu, Y.; Liu, Q. Relationship between Soil Organic Carbon, Soil Nutrients, and Land Use in Linyi City (East China). Sustainability 2022, 14, 13585. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, D.; Wang, J.; Triantafilis, J. Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches. Geoderma Reg. 2022, 30, e00566. [Google Scholar] [CrossRef]
- Saurette, D.D.; Berg, A.A.; Laamrani, A.; Heck, R.J.; Gillespie, A.W.; Voroney, P.; Biswas, A. Effects of sample size and covariate resolution on field-scale predictive digital mapping of soil carbon. Geoderma 2022, 425, 116054. [Google Scholar] [CrossRef]
- Biney, J.K.M. Verifying the predictive performance for soil organic carbon when employing field Vis-NIR spectroscopy and satellite imagery obtained using two different sampling methods. Comput. Electron. Agric. 2022, 194, 106796. [Google Scholar] [CrossRef]
- Van der Voort, T.S.; Verweij, S.; Fujita, Y.; Ros, G.H. Enabling soil carbon farming: Presentation of a robust, affordable, and scalable method for soil carbon stock assessment. Agron. Sustain. Dev. 2023, 43, 22. [Google Scholar] [CrossRef]
- Castaldi, F.; Koparan, M.H.; Wetterlind, J.; Žydelis, R.; Vinci, I.; Savaş, A.Ö.; Kıvrak, C.; Tunçay, T.; Volungevičius, J.; Obber, S.; et al. Assessing the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in croplands. ISPRS J. Photogramm. Remote Sens. 2023, 199, 40–60. [Google Scholar] [CrossRef]
- Bettigole, C.; Hanle, J.; Kane, D.A.; Pagliaro, Z.; Kolodney, S.; Szuhay, S.; Chandler, M.; Hersh, E.; Wood, S.A.; Basso, B.; et al. Optimizing Sampling Strategies for Near-Surface Soil Carbon Inventory: One Size Doesn’t Fit All. Soil Syst. 2023, 7, 27. [Google Scholar] [CrossRef]
- Hengl, T.; Sorenson, P.; Parente, L.; Cornish, K.; Battigelli, J.; Bonannell, C.; Gorzelak, M.; Nichols, K. Assessment of soil organic carbon stocks in Alberta using 2-scale sampling and 3D predictive soil mapping. Facets 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Greenberg, I.; Vohland, M.; Seidel, M.; Hutengs, C.; Bezard, R.; Ludwig, B. Evaluation of Mid-Infrared and X-ray Fluorescence Data Fusion Approaches for Prediction of Soil Properties at the Field Scale. Sensors 2023, 23, 662. [Google Scholar] [CrossRef]
- Potash, E.; Guan, K.; Margenot, A.J.; Lee, D.K.; Boe, A.; Douglass, M.; Heaton, E.; Jang, C.; Jin, V.; Li, N.; et al. Multi-site evaluation of stratified and balanced sampling of soil organic carbon stocks in agricultural fields. Geoderma 2023, 438, 116587. [Google Scholar] [CrossRef]
- Mathers, C.; Black, C.K.; Segal, B.D.; Gurung, R.B.; Zhang, Y.; Easter, M.J.; Williams, S.; Motew, M.; Campbell, E.E.; Brummitt, C.D.; et al. Validating DayCent-CR for cropland soil carbon offset reporting at a national scale. Geoderma 2023, 438, 116647. [Google Scholar] [CrossRef]
- Reyes, J.; Ließ, M. Spectral Data Processing for Field-Scale Soil Organic Carbon Monitoring. Sensors 2024, 24, 849. [Google Scholar] [CrossRef]
- Segura, C.; Neal, A.L.; Castro-Sardiňa, L.; Harris, P.; Rivero, M.J.; Cardenas, L.M.; Irisarri, J.G.N. Comparison of direct and indirect soil organic carbon prediction at farm field scale. J. Environ. Manag. 2024, 365, 121573. [Google Scholar] [CrossRef]
- European Commission. CENTURY Agroecosystem Dynamic Model; European Commission: Luxembourg, 2025. [Google Scholar]
- Hilal, A.; Bangroo, S.A.; Kirmani, N.A.; Wani, J.A.; Biswas, A.; Bhat, M.I.; Farooq, K.; Bashir, O.; Shah, T.I. Chapter 19—Geostatistical modeling—A tool for predictive soil mapping. In Remote Sensing in Precision Agriculture; Lamine, S., Srivastava, P.K., Kayad, A., Muñoz-Arriola, F., Pandey, P.C., Eds.; Earth Observation; Academic Press: Cambridge, MA, USA, 2024; pp. 389–418. ISBN 978-0-323-91068-2. [Google Scholar]
- Bel-Lahbib, S.; Ibno Namr, K.; Rerhou, B.; Mosseddaq, F.; El Bourhrami, B.; Moughli, L. Assessment of soil quality by modeling soil quality index and mapping soil parameters using IDW interpolation in Moroccan semi-arid. Model. Earth Syst. Environ. 2023, 9, 4135–4153. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Afridi, W.A.K.; Kumar, N.; Jayasundera, K.; Gupta, A.; Singh, P.; George, B.; Mukhopadhyay, S.C. Design an Electromagnetic Sensor to Measure the Organic Carbon in Soil and Its Validation with Standard Walkley–Black Method. IEEE Sens. Lett. 2023, 7, 1501804. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Sanderman, J.; Baldock, J.A.; Dangal, S.R.S.; Ludwig, S.; Potter, S.; Rivard, C.; Savage, K. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 2021, 156, 97–114. [Google Scholar] [CrossRef]
- Sanderman, J.; Savage, K.; Dangal, S.R.S. Mid-infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 2020, 84, 251–261. [Google Scholar] [CrossRef]
- Rugani, B.; Pölling, B.; Della Casa, M.; Guidolotti, G.; Baldacchini, C.; Timpe, A.; Calfapietra, C. Coupled life cycle assessment and business modelling to estimate the sustainability of using regenerated soils in urban forestry as nature-based solutions. Urban For. Urban Green. 2024, 95, 128327. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.K.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Guan, K.; Jin, Z.; Peng, B.; Tang, J.; DeLucia, E.H.; West, P.C.; Jiang, C.; Wang, S.; Kim, T.; Zhou, W.; et al. A scalable framework for quantifying field-level agricultural carbon outcomes. Earth Sci. Rev. 2023, 243, 104462. [Google Scholar] [CrossRef]
- Climate Action Reserve. Soil Enrichment Protocol Version 1.0, September 2020; Climate Action Reserve: Los Angeles, CA, USA; Available online: https://www.climateactionreserve.org/wp-content/uploads/2020/10/Soil-Enrichment-Protocol-V1.0.pdf (accessed on 15 January 2025).
- DOE ARPA-E: DE-FOA-0002250; Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management (SMARTTFARM). Available online: https://arpa-e-foa.energy.gov/Default.aspx?foaId=e7465e6e-cb9c-455c-9625-4c3db4386f00 (accessed on 25 August 2023).
- Benos, L.; Tsaopoulos, D.; Tagarakis, A.C.; Kateris, D.; Busato, P.; Bochtis, D. Explainable AI-Enhanced Human Activity Recognition for Human–Robot Collaboration in Agriculture. Appl. Sci. 2025, 15, 650. [Google Scholar] [CrossRef]
- Silva, L.; Rodríguez-Sedano, F.; Baptista, P.; Coelho, J.P. The Digital Twin Paradigm Applied to Soil Quality Assessment: A Systematic Literature Review. Sensors 2023, 23, 1007. [Google Scholar] [CrossRef]
- Wolf, A. Sustainable Carbon Cycles: A Framework for the Ramp-up of Carbon Capture? Intereconomics 2022, 57, 260–266. [Google Scholar] [CrossRef]
- Anibaldi, R.; Rundle-Thiele, S.; David, P.; Roemer, C. Theoretical Underpinnings in Research Investigating Barriers for Implementing Environmentally Sustainable Farming Practices: Insights from a Systematic Literature Review. Land 2021, 10, 386. [Google Scholar] [CrossRef]
Sampling Approach | Advantages | Disadvantages |
---|---|---|
Random sampling | Minimizes selection bias and enhances statistical validity | Requires a larger sample size, which can be resource-intensive and lead to non-representative results |
Grid sampling | Useful for assessing spatial patterns and trends with even coverage, mainly in larger areas; ease of use and repetitiveness; minimum bias | May overlook important variations; not cost-effective; labor-intensive |
Stratified sampling | Improves precision and efficiency by ensuring representation of specific strata; minimum bias | Requires prior knowledge to define strata, making design and analysis more complex |
Management zone sampling | Optimizes resource use and allows targeted assessment of management impacts | Defining boundaries can be challenging; may introduce bias |
Balanced sampling | Improves precision and efficiency through ensuring comprehensive data collection | Can be difficult to implement, especially in diverse populations; may introduce bias |
Transect sampling | Captures detailed spatial information and reveals SOC gradients | Limited spatial coverage may not represent overall diversity |
Reference | Year | Approach | Sampling | Sampling Details | Modeling | Data Acquisition |
---|---|---|---|---|---|---|
Bocchi et al. [61] | 2000 | DB | GS | DI; TS; SS | ML; FK | LAB |
Morton et al. [62] | 2000 | DB | TRS | TS; CO; NS | N/A | LAB |
Bergstrom et al. [63] | 2001 | DB | TRS | SPT; TS | RK | LAB |
Pennock & Frick [64] | 2001 | DB | GS | TS; SS; DI | SM | LAB |
Martin et al. [65] | 2002 | DB | TRS | NS; HD; SPT; TL | ML | EXS.NIR; LAB |
Mueller & Pierce [66] | 2003 | DB | GS | SDEN; CO; SPT | ML; OK; COK; KED; KT | LAB; SAT |
Udelhoven et al. [67] | 2003 | DB | GS | TOS; CO; TS; SPT | ML | LAB; PS.VNIR; EXS.VNIR |
Hengl et al. [68] | 2003 | DB | STR | NS | ML | SAT; LAB; HMD |
Poussart et al. [69] | 2004 | DB | GS | TOS; TS; NS; NL; SPT; CO | N/A | LAB |
Evrendilek et al. [70] | 2004 | DB | RS | TS; DI; NS; NL; SPT; TL | N/A | LAB |
Simbahan et al. [71] | 2005 | DB | GS; STR; TRS; RS | SDEN; NL; TS; NS; TOS; CO; SPT | OK; COK; KED; RK | LAB; SI; SAT; PS.EMI |
Su et al. [72] | 2006 | DB | GS | TS; SS; DI; TL | N/A | LAB |
Stevens et al. [73] | 2006 | DB | GS | TOS; NS; NL; SPT; CO; TS | ML | PS.VNIR; AIR; LAB |
Simbahan & Dobermann [74] | 2006 | DB | STR; TRS; GS; RS | NS; NL; TS | ML; OK; RK | PS.EMI; SAT; SI; LAB |
Huang et al. [75] | 2007 | DB | TRS | NS; TS | OK; ML | LAB; SAT; PS.NIR |
Goidts et al. [76] | 2009 | DB, MB | STR; KM; WMV | NS; NL; PD | ML; KR | HMD; LAB |
Martinez et al. [77] | 2009 | DB, MB | STR; KM | TOS; HD; TS; SPT | OK; SKLM | PS.EMI; LAB |
Peigne et al. [78] | 2009 | DB | GS; RS; STR | NS; TS; TL; SPT | OK; ROK | LAB |
Ogle et al. [79] | 2010 | DB | STR | N/A | SM | HMD |
Dlugoß et al. [80] | 2010 | DB | GS; TRS | TOS; NS; TS; SS; SDEN; TL; SPT; DI | OK; RK | PS.LIDAR; LAB |
Delbari et al. [81] | 2010 | DB | GS | NS; TS | OK | LAB |
Vasat et al. [82] | 2010 | DB | GS | TOS; NS; CO; TL; TS; SS | COK | LAB |
Knadel et al. [83] | 2011 | DB | GS | TOS; NS; SPT; TS | OK | PS.NIR; PS.EMI; LAB |
Gelder et al. [84] | 2011 | DB | GS | NS; TOS; TL; SPT; TS; SS | ML | LAB; AIR; SI |
Muñoz & Kravchenko [85] | 2011 | DB | TRS | TOS; NS; TS; SPT | ML | LAB; AIR; PS.NIR |
VandenBygaart et al. [86] | 2011 | DB | TRS | NS; DI; TS; SS; TL; SPT | N/A | LAB |
Hbirkou et al. [87] | 2012 | DB | RS | TOS; NS; TS; SPT | ML; OK; IDW | AIR; LAB |
Izaurralde et al. [88] | 2013 | DB | GS | TS; TL | ML; OK | PS.DRIFTS; PS.LIBS; PS.INS; LAB |
Brodsky et al. [89] | 2013 | DB | GS | NS; TS | ML; OK | LAB; PS.VNIR |
Kuang et al. [90] | 2015 | DB; MB | TRS | NS; SPT; TS | ML; K | PS.VNIR; EXS.VNIR; LAB |
Radionov et al. [91] | 2015 | DB | RS | NS; CO; TS | ML | PS.VNIR; LAB |
De Gruijter et al. [92] | 2015 | DB | STR | NS; CO | ML | SAT; PS.GR; SI |
Aldana-Jague et al. [93] | 2016 | DB | TRS; RS | TOS; NS; TS; TL; SPT | ML | UAV; LAB; SI |
Sherpa et al. [94] | 2016 | DB | GS; STR | TOS; TS; TL | OK | LAB; SI |
Naveed et al. [95] | 2016 | DB | GS | TOS; TS; SPT | ML | LAB |
Adhikari & Hartemink [96] | 2017 | DB; MB | GS; RS; CLHS | NS; SDEN; SPT; TS; SS | RK; IDW | PS.LIDAR; PS.EMI; LAB |
Francaviglia et al. [97] | 2017 | DB | RS | NS; SPT; SS; TS; DI; NL | N/A | LAB |
Vasat et al. [98] | 2017 | DB | GS | NS; NL; TS; SPT | ML | EXS.VNIR; LAB |
Luo et al. [99] | 2017 | DB | RS | NS; TS; SPT | ML | EXS.MIR; LAB |
Vos et al. [100] | 2018 | DB | GS | NS; TS | ML | EXS.IR; LAB |
Vos et al. [101] | 2018 | DB | GS | NS; DI; TS; SS | ML | HMD; LAB |
Guo et al. [102] | 2018 | DB, MB | GS; RS | TOS; NS; SDEN; SS; TS; SPT | ML; PLSRK | AIR; LAB |
Nawar & Muazen [103] | 2018 | DB; MB | RS; SA; KM | NS; NL; SPT | ML | EXS.VNIR; SI; LAB |
Arrouays et al. [104] | 2018 | DB | GS; STR | NS; DI; HD; TS; SS; SPT | N/A | LAB |
Gholizadeh et al. [105] | 2018 | DB; MB | STR; CLHS | TS; SPT; NL | ML | LAB; EXS.VNIR; AIR |
Ellinger et al. [106] | 2019 | MB | KM, KS | NS; TS; TOS | ML | LAB; EXS.VNIR |
Laamrani et al. [107] | 2019 | DB | TRS | TOS; NS; TS; SPT | ML | UAV; EXS.VNIR; SI; LAB |
Seidel et al. [108] | 2019 | DB | RS | NS; DI; TS; SS; SPT | ML | EXS.VNIR; LAB |
Žížalaet al. [109] | 2019 | DB; MB | STR; CLHS | NS; NL; TS; SPT; CO | ML | SAT; UAV; LAB |
Castaldi et al. [110] | 2019 | DB | RS | NS; NL; SPT | ML | AIR; SAT; LAB |
Gholizadeh et al. [111] | 2020 | DB; MB | GS | TOS; NS; NL; HD; TS; SPT | ML | SAT; EXS.VNIR; LAB |
Hong et al. [112] | 2020 | DB | GS | TOS; NS; TS; CO; SPT | ML | AIR; LAB |
Badagliacca et al. [113] | 2020 | DB | RS | TOS; NS; DI; TS; TL; CO; SPT | ML | LAB |
Dvorakova et al. [114] | 2020 | DB | RS | TOS; TS; CO; SPT | ML | AIR; SAT; LAB |
Longo et al. [115] | 2020 | DB; MB | RS; STR; KM | TOS; NS; NL; DI; TS; SS; TL; CO; SPT | ML | PS.EMI; LAB |
Poeplau et al. [116] | 2020 | DB | GS; STR | NS; DI; TS; SS; TL | N/A | HMD; LAB |
Liu et al. [117] | 2020 | DB | STR | NS; DI; TS | SOK; OK; RK; GDSRK | LAB |
Deluz et al. [118] | 2020 | DB | STR; RS; TRS | NS; TS; TL; SPT; CO | OK | HMD; LAB |
Du et al. [119] | 2021 | DB | GS | TOS; TS; TL; CO | RK | LAB; PS.LIDAR |
Matinfar et al. [120] | 2021 | DB | RS | NS; TS; SPT | ML; RF-OK | LAB, SAT |
Biney et al. [121] | 2021 | DB | GS | NS; TS; CO; SPT | ML; IDW | SAT; UAV; LAB |
Zhang et al. [122] | 2021 | DB | GS | NS | ML; RK | UAV; EXS.VNIR; SI; LAB |
Gholizadeh et al. [123] | 2021 | DB | GS | NS; NL; TS; SPT | ML | EXS.VNIR; LAB |
Guo et al. [124] | 2021 | DB | GS | TOS; NS; TS; CO; SPT | ML | SAT; AIR; LAB |
Izurieta et al. [125] | 2021 | DB | RS | TOS; NS; TS; TL; SPT | ML | SAT; LAB |
Li et al. [126] | 2021 | DB | STR | NS; NL | ML | EXS.VNIR; EXS.IR; LAB |
Potash et al. [127] | 2022 | DB; MB | RS; BS; STR; KM | TOS; NS; TS; SS; TL; SPT | ML; KED | SAT; SI |
De Benedeto et al. [128] | 2022 | DB | GS | TOS; NS; NL; SPT | ML; RK | PS.EMI; PS.GPR; LAB |
Drexler et al. [129] | 2022 | DB | GS; STR | TS | N/A | HMD |
Kandpal et al. [130] | 2022 | DB | RS | NS; NL; SD; TS; SPT | ML | EXS.MIR; EXS.XRF; LAB |
Izurieta et al. [131] | 2022 | DB | RS | TOS; DI; TS; SS; TL; SPT | ML | SAT; LAB |
Rosinger et al. [132] | 2022 | DB | TRS | NS; NL; DI; TS; CO; SPT | ML | EXS.MIR; LAB |
Wu et al. [133] | 2022 | DB | GS | TOS; NS; SPT | ML; RK | LAB |
Zhao et al. [134] | 2022 | DB | GS | NS; NL; TS | ML | LAB; PS.NIR; SI |
Saurette et al. [135] | 2022 | DB; MB | GS; CLHS | NS;TS; SPT | ML; K | LAB; PS.LIDAR |
Biney [136] | 2022 | DB | RS; GS | NS; TS; SPT | ML | LAB; PS.VNIR; SAT |
Vandervoort et al. [137] | 2023 | DB; MB | STR | NS; SD; TS | ML | SAT; PS.NIR; SI; LAB |
Zayani et al. [51] | 2023 | DB | GS | NS; TS; NL; CO; SPT | ML | LAB; SAT; EXS.VNIR |
Castaldi et al. [138] | 2023 | DB | GS | NS; SDEN; NL; TL; SPT; TS; CO | ML, K | LAB; SAT |
Bettigole et al. [139] | 2023 | DB; MB | STR; RS; GS; CLHS; KM | NL; DI; TOS; SDEN; TS; TL | EBK | SAT; SI; LAB |
Hengl et al. [140] | 2023 | MB | CLHS | NS; NL; DI; TS; SS | ML | SAT; LAB |
Greenberg et al. [141] | 2023 | DB | GS | TOS; NS; NL; SPT | ML | EXS.MIR; EXS.XRF; LAB |
Potash et al. [142] | 2023 | DB; MB | RS; BS; STR; KM | TOS; NS; NL; SD; DI; TS; SS; TL; SPT | ML; KED | SAT; SI; LAB |
Reyes & Ließ [143] | 2023 | DB | STR | TOS; NS; TS; SPT | ML; OK; BK | PS.NIR; SI; LAB |
Reyes & Ließ [144] | 2024 | DB | STR | TS; NS; SPT | ML | LAB; PS.VNIR; EXS.VNIR; HMD |
Segura et al. [145] | 2024 | DB | GS | TOS; TS | ML | SAT; HMD; LAB |
Research Area | Research Need | Future Direction |
---|---|---|
Uncertainty quantification in SOC 1 measurement | There is uncertainty in SOC quantification due to inherent variability in soils, temporal fluctuations, and measurement methods. | Quantify and reduce uncertainty by improving calibration techniques and sensor accuracy and developing methods to account for spatial and temporal SOC variability. |
SOC assessment accuracy and precision | SOC assessment methods often face challenges in accuracy and scaling across diverse soils and regions. | Explore improvements in sampling, modeling (e.g., explainable AI-enhanced ML [159]), and analysis to enhance SOC assessment accuracy across diverse agricultural environments and soil types. |
Cost-effective SOC measurement techniques | High costs of direct measurement methods limit the scalability of carbon farming. | Explore low-cost, high-accuracy alternatives for SOC measurement that are scalable to large areas to reduce operational costs. |
Remote sensing for SOC estimation | Remote sensing technologies struggle to capture SOC levels at depth and are influenced by external factors like crop residues and moisture content. | Improve remote sensing techniques to enhance the depth and accuracy of SOC estimation while minimizing interference from non-soil elements. |
Integration of ground and remote sensing data | There is often a lack of integration between ground-based measurements and remote sensing data, limiting the effectiveness of large-scale SOC assessments. | Develop integrated approaches that combine ground-truth data with remote sensing information for more accurate and spatially representative SOC assessments. |
Integration of digital tools (e.g., FMIS 2, Digital Twins) | Limited use of digital tools for real-time monitoring and decision-making in carbon farming. | Integrate FMIS and digital twins with carbon farming practices to enable real-time tracking of carbon sequestration [160]. |
Carbon market accessibility and transparency | Carbon markets are often seen as complex, with price volatility and transaction costs creating barriers to entry for small-scale farmers [24]. | Investigate blockchain and transparent carbon credit systems to improve traceability, accessibility, and market stability. |
Policy support and incentives for carbon farming | Policy frameworks and incentives that support carbon farming adoption are often lacking or poorly implemented [161]. | Research policy models that provide financial and technical support to farmers, including subsidies, carbon credit incentives, and market stabilization. |
Farmer engagement and adoption | Farmers face barriers such as lack of awareness, knowledge, and technical support to adopt carbon farming practices effectively [162]. | Explore methods to enhance farmer engagement through awareness campaigns, accessible training, and incentives for carbon market participation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulos, T.; Benos, L.; Busato, P.; Kyriakarakos, G.; Kateris, D.; Aidonis, D.; Bochtis, D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture 2025, 15, 567. https://doi.org/10.3390/agriculture15050567
Petropoulos T, Benos L, Busato P, Kyriakarakos G, Kateris D, Aidonis D, Bochtis D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture. 2025; 15(5):567. https://doi.org/10.3390/agriculture15050567
Chicago/Turabian StylePetropoulos, Theodoros, Lefteris Benos, Patrizia Busato, George Kyriakarakos, Dimitrios Kateris, Dimitrios Aidonis, and Dionysis Bochtis. 2025. "Soil Organic Carbon Assessment for Carbon Farming: A Review" Agriculture 15, no. 5: 567. https://doi.org/10.3390/agriculture15050567
APA StylePetropoulos, T., Benos, L., Busato, P., Kyriakarakos, G., Kateris, D., Aidonis, D., & Bochtis, D. (2025). Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture, 15(5), 567. https://doi.org/10.3390/agriculture15050567