Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sensory Analysis
2.3. Determination of Fatty Acid Composition
2.4. Extraction and Determination of Total Polyphenol Content and Antioxidant Capacity
2.4.1. Extract Preparations for Total Polyphenol Compounds (TPC) and Total Antioxidant Capacity (TAC)
2.4.2. Determination of Total Phenolic Compounds (TPC)
2.4.3. Determination of Total Antioxidant Capacity (TAC)
2.5. Determination of the Volatile Fraction
2.6. Statistical Analyses
3. Results
3.1. Sensory Analysis
3.2. Fatty Acid Composition
3.3. Antioxidant Profile
3.3.1. Total Phenolic Compounds (TPC) Content
3.3.2. Total Antioxidant Capacity Determination
3.4. Volatile Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rotondi, A.; Fabbri, A.; Ganino, T. Sensory and chemical properties of extra virgin olive oils produced in two different Italian regions: Tuscany and Emilia-Romagna. J. Food Agric. Environ. 2008, 6, 71–77. [Google Scholar]
- Frangipane, M.T.; Costantini, L.; Merendino, N.; Massantini, R. Antioxidant Profile and Sensory Analysis in Olive Oils of Different Quality Grades. Agriculture 2023, 13, 993. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Muzzalupo, I.; Vendramin, G.G.; Chiappetta, A. Genetic Biodiversity of Italian Olives (Olea europaea) Germplasm Analyzed by SSR Markers. Sci. World J. 2014, 12, 296590. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Parenti, A.; Bellumori, M.; Migliorini, M.; Mulinacci, N.; Guerrini, L. Clustering Monovarietal Extra Virgin Olive Oil According to Sensory Profile, Volatile Compounds, and k-Mean Algorithm. Eur. J. Lipid Sci. Technol. 2022, 124, 2200038. [Google Scholar] [CrossRef]
- Selection of pdo and pgi Extra Virgin Olive Oils Tuscany. By the “Agriculture and Rural Development Directorate” of the Tuscany Region, “Agricultural, Vegetable and Livestock Production” Sector. Promotion. Available online: www.regione.toscana.it (accessed on 10 January 2025).
- Surano, A.; Abou Kubaa, R.; Nigro, F.; Altamura, G.; Losciale, P.; Saponari, M.; Saldarelli, P. Susceptible and resistant olive cultivars s show differential physiological response to Xylella fastidiosa infections. Front. Plant Sci. 2022, 13, 968934. [Google Scholar] [CrossRef] [PubMed]
- Serio, F.; Imbriani, G.; Girelli, C.R.; Miglietta, P.P.; Scortichini, M.; Fanizzi, F.P. A Decade after the Outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. Plants 2024, 13, 1433. [Google Scholar] [CrossRef]
- Masaf. Italian Ministry of Agriculture, Food Sovereignty and Forestry, National Phytosanitary Service, Note Prot. n° 0179664 of 04/19/2024. Available online: https://www.protezionedellepiante.it/emergenze-fitosanitarie/ (accessed on 10 January 2025).
- Savoia, M.A.; Fanelli, V.; Miazzi, M.M.; Taranto, F.; Procino, S.; Susca, L.; Montilon, V.; Potere, O.; Nigro, F.; Montemurro, C. Apulian Autochthonous Olive Germplasm: A Promising Resource to Restore Cultivation in Xylella fastidiosa-Infected Areas. Agriculture 2023, 13, 1746. [Google Scholar] [CrossRef]
- Vendrell Calatayud, M.; Li, X.; Brizzolara, S.; Tonutti, P.; Wang, S.C. Storage effect on olive oil phenols: Cultivar-specific responses. Front. Nutr. 2024, 11, 1382551. [Google Scholar] [CrossRef]
- Oteri, M.; Rigano, F.; Micalizzi, G.; Casale, M.; Malegori, C.; Dugo, P.; Mondello, L. Comparison of lipid profile of Italian Extra Virgin Olive Oils by using rapid chromatographic approaches. J. Food Compos. Anal. 2022, 110, 104531. [Google Scholar] [CrossRef]
- IOC. International Olive Oil Council Sensory Analysis of Olive Oil Method for the Organoleptic Assessment of Virgin Olive Oil. COI/T.20/Doc. No 15/Rev. 10. 2018. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T20-Doc.-15-REV-10-2018-Eng.pdf (accessed on 10 January 2025).
- EU. Commission Delegated Regulation, 2022/2104 of 29 July 2022. Available online: http://data.europa.eu/eli/reg_del/2022/2104/oj (accessed on 10 January 2025).
- EC. European Community, Commission Regulation (1991) 2568/91 on the characteristics of olive oil and olive residue oil and on the relevant methods of analysis. Off. J. Eur. Communities 1991, L248, 1–83. [Google Scholar]
- Sidel, J.L.; Bleibaum, R.N.; Tao, K.W.C. Descriptive Analysis Sensory Evaluation; John Wiley & Sons Ltd., Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 287–318. [Google Scholar]
- Olmo-García, L.; Fernández-Fernández, C.; Hidalgo, A.; Vílchez, P.; Fernández-Gutiérrez, A.; Marchal, R.; Carrasco-Pancorbo, A. Evaluating the reliability of specific and global methods to assess thephenolic content of virgin olive oil: Do they drive to equivalentresults? J. Chromatogr. 2019, 1585, 56–69. [Google Scholar] [CrossRef]
- Costantini, L.; Luksic, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Brkić Bubola, K.; Krapac, M.; Lukić, I.; Sladonja, B.; Autino, A.; Cantini, C.; Poljuha, D. Morphological and molecular characterization of Bova olive cultivar and aroma fingerprint of its oil. Food Technol. Biotechnol. 2014, 52, 342–350. [Google Scholar]
- Fernandes, G.D.; Ellis, A.C.; Gámbaro, A.; Barrera-Arellano, D. Sensory evaluation of high-quality virgin olive oil: Panel analysis versus consumer perception. Curr. Opin. Food Sci. 2018, 21, 66–71. [Google Scholar] [CrossRef]
- Jukić Špika, M.; Perica, S.; Žanetić, M.; Škevin, D. Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect? Antioxidants 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Pacetti, D.; Boarelli, M.C.; Giovannetti, R.; Ferraro, S.; Conti, P.; Alfei, B.; Caprioli, G.; Ricciutelli, M.; Sagratini, G.; Fedeli, G.; et al. Chemical and sensory profiling of monovarietal Extra Virgin Olive Oils from the Italian Marche Region. Antioxidants 2020, 9, 330. [Google Scholar] [CrossRef]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The compounds responsible for the sensory profile in monovarietal virgin olive oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Fregapane, G.; Salvador, M.; Simal-Gándara, J. Characterization of extra virgin olive oils from Galician autochthonous varieties and their co-crushings with Arbequina and Picual cv. Food Chem. 2015, 176, 493–503. [Google Scholar] [CrossRef]
- Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Methods 2020, 13, 1027–1041. [Google Scholar] [CrossRef]
- Del Monaco, G.; Officioso, A.; D’Angelo, S.; La Cara, F.; Ionata, E.; Marcolongo, L.; Squillaci, G.; Maurelli, L.; Morana, A. Characterization of extra virgin olive oils produced with typical Italian varieties by their phenolic profile. Food Chem. 2015, 184, 220–228. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Servili, M. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT-Food Sci. Technol. 2018, 87, e523–e528. [Google Scholar] [CrossRef]
- Casadei, E.; Valli, E.; Bendini, A.; Barbieri, S.; Tucci, R.; Ferioli, F.; Gallina Toschi, T. Valorization of monovarietal Nostrana di Brisighella extra virgin olive oils: Focus on bioactive compounds. Front. Nutr. 2024, 11, 1353832. [Google Scholar] [CrossRef]
- Blasi, F.; Ianni, F.; Cossignani, L. Phenolic profiling for geographical and varietal authentication of extra virgin olive oil. Trends Food Sci. Technol. 2024, 147, 104444. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Jerković, I.; Maldini, M.; Serreli, G. Phenolic Compounds, Antioxidant Activity, and Other Characteristics of Extra Virgin Olive Oils from Italian Autochthonous Varieties Tonda di Villacidro, Tonda di Cagliari, Semidana, and Bosana. J. Chem. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Borges, T.H.; Serna, A.; López, L.C.; Lara, L.; Nieto, R.; Seiquer, I. Composition and Antioxidant Properties of Spanish Extra Virgin Olive Oil Regarding Cultivar, Harvest Year and Crop Stage. Antioxidants 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Gośliński, M.; Popławski, C. Antioxidant properties and Fatty Acid profile of Cretan Extra Virgin bioolive oils: A pilot study. Int. J. Food Sci. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Vilmercati, A.; Dugo, L.; Russo, M.; Petitti, T.; Mondello, L.; de Gara, L. Extraction, analysis, and antioxidant activity evaluation of phenolic compounds in different italian extra-virgin olive oils. Molecules 2018, 23, 3249. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013−2040. [Google Scholar] [CrossRef]
- Neugebauer, A.; Granvogl, M.; Schieberle, P. Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. J. Agric. Food Chem. 2020, 68, 5927−5937. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor Chemistry of Virgin Olive Oil: An Overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Procida, G.; Cichelli, A.; Lagazio, C.; Conte, L.S. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches. J. Sci. Food Agric. 2016, 96, 311–318. [Google Scholar] [CrossRef] [PubMed]
N° | COMPONENT 1 | LRI 2 | LRI 3 | (%) 4 |
---|---|---|---|---|
1 | capric acid, C10:0 | 1368 | 1373 | 0.5 ± 0.02 |
2 | palmitic acid, C16:0 | 1965 | 1962 | 11.0 ± 0.65 |
3 | linoleic acid, C18:2n6 | 2120 | 2123 | 3.4 ± 0.05 |
4 | oleic acid, C18:1n9 | 2136 | 2141 | 80.8 ± 1.32 |
5 | stearic acid, C18:0 | 2175 | 2180 | 4.3 ± 0.08 |
SUM | 100.0 | |||
Saturated FAs | 15.8 | |||
Unsaturated FAs | 84.2 |
Sample | TPC | ABTS•+ | FRAP |
---|---|---|---|
mg GAE/g | mmol TE/g | mmol Fe2+/g | |
Leccio Del Corno | 3.29 ± 0.05 | 1.27 ± 0.06 | 1.31 ± 0.005 |
N° | COMPONENT 1 | LRI 2 | LRI 3 | A (%) 4 |
---|---|---|---|---|
1 | 3-hexenal, (Z)- | 1120 | 1124 | 16.5 ± 0.09 |
2 | 2-pentenal, 2-methyl- | 1185 | 1190 | 4.5 ± 0.02 |
3 | 2-hexenal, (E)- | 1215 | 1209 | 41.0 ± 0.22 |
4 | nonanal | 1390 | 1393 | 6.9 ± 0.06 |
5 | propanoic acid | 1547 | 1540 | 9.3 ± 0.05 |
6 | hexanoic acid, 2-methyl- | 1761 | 1757 | 16.4 ± 0.18 |
7 | trans-farnesol | 2355 | 2361 | 5.4 ± 0.03 |
SUM | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frangipane, M.T.; Costantini, L.; Garzoli, S.; Merendino, N.; Massantini, R. Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa. Agriculture 2025, 15, 619. https://doi.org/10.3390/agriculture15060619
Frangipane MT, Costantini L, Garzoli S, Merendino N, Massantini R. Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa. Agriculture. 2025; 15(6):619. https://doi.org/10.3390/agriculture15060619
Chicago/Turabian StyleFrangipane, Maria Teresa, Lara Costantini, Stefania Garzoli, Nicolò Merendino, and Riccardo Massantini. 2025. "Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa" Agriculture 15, no. 6: 619. https://doi.org/10.3390/agriculture15060619
APA StyleFrangipane, M. T., Costantini, L., Garzoli, S., Merendino, N., & Massantini, R. (2025). Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa. Agriculture, 15(6), 619. https://doi.org/10.3390/agriculture15060619