Jelly Candies with Apple Pomace—A Circular Economy Solution for a Food Processing Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Customer Research Protocol
2.2. The Ingredients Used for Jelly Candies
2.3. Technological Flow of Jelly Candy Preparation
- Qualitative and quantitative reception of the ingredients—in this step, non-conforming ingredients are eliminated and every item used to manufacture jelly candies with apple pomace extract is qualitatively evaluated. The amount of solid ingredients (gelatin and sweetener mixture) is also confirmed, at this stage.
- Drying the apple pomace—to constant weight in order to be stabilized, at 60 °C for 33 min by using a convective laboratory oven (BIOBASE, BOV-T30C, 850 W, Jinan, China) [39].
- Grinding of the dry apple pomace—in small particles (under 1 mm), by a grinder mill (IKA A 10 basic, 50 mL, 270 W, Staufen, Germany) [40].
- Dosing the dry apple pomace and water—by using an analytical balance weighing (Kern ADB 200-4, 210 g, 3 W, Balingen, Germany) [41].
- Extraction of biologically active compounds from dry apple pomace—with drinking water, at 40 °C (ratio 1:5, w/v). To facilitate bioactive compound extraction an ultrasonic an ultrasonic water bath was used (Biobase UC-40A, 10 L, 250 W, Jinan, China) [42].
- Filtration of the apple pomace extract—through dense, narrow-pore paper filters (Whatman, diam. 90 mm, Nottingham, UK) with a thickness of 0.16 mm for a gradual filtration.
- Obtaining the liquid extract of apple pomace—the filtrate resulting after filtration is considered the liquid extract of apple pomace.
- Hydration of gelatin with water—at room temperature (20–22 °C) for ten minutes.
- Mixing all the ingredients of jelly candies—apple pomace extract, sweetener mixture, gelatin and water.
- Homogenization of the ingredients—through circular motions using a stainless-steel spatula.
- Solubilization of the mixture—10 min at room temperature.
- Pasteurization of the jelly candies—60 s at 60 °C using a water bath (Thermo Scientific Precision GP 2S, 2 L, 300 W, Waltham, MA USA) [43].
- Molding in silicon shapes—in circular silicone molds suitable for food use.
- Cooling the jelly candies—for 30 min at room temperature.
- Drying the final product—60 min at room temperature.
- Demolding from silicon molds—removing jellies from silicone molds.
- Packing the food product—in plastic bags hermetically sealed.
- Storage of the jelly candies—at a maximum 10 °C, using a refrigerator (Biobase BPR-5V50(G), 50 L, 85 W, Jinan, China) [44].
2.4. Carbon Footprint Calculation
- CO2e—is the equivalent of CO2 emissions expressed in kilogram;
- GHG—is the amount of a given greenhouse gas emission, expressed in kilogram;
3. Results and Discussion
3.1. Carbon Footprint of Jelly Candies
- Low carbon footprint: for values of CF below 1.9 kg CO2/kg product;
- Medium carbon footprint: for values of CF between 1.9 and 8.0 kg CO2/kg product;
- High carbon footprint: for values of CF above 8.0 kg CO2/kg product [53].
3.2. Customer Research Results
3.3. Market Plan Proposal
3.3.1. Market Analysis
3.3.2. SWOT Analysis
3.3.3. Segmentation of the Target Group
3.3.4. Setting the Marketing Objectives
- Develop a brand identity for the proposed jelly candies as “WAW Jelly Candy”, including a logo, tagline, and packaging design that reflects its organic and sustainable qualities;
- Launch a comprehensive digital marketing campaign on social media platforms, targeting health-conscious individuals and eco-conscious consumers;
- Participate in local food festivals, farmers’ markets, and community events to introduce the product to a wider audience;
- Identify and approach specialty stores, health food retailers, and organic markets for distribution partnerships;
- Launch a user-friendly website with an online store that offers direct-to-consumer sales;
- Introduce new flavors or variations of WAW Jelly Candies, which respond to different consumer preferences and expand the product line;
- Strengthen the brand’s commitment to sustainability by implementing eco-friendly packaging solutions, such as biodegradable or compostable materials;
- Attend trade shows and industry events to connect with potential distributors, retailers, and buyers for wider market coverage.
3.3.5. Designing the Market Strategy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Questionnaire Regarding the Consumption of Jellies
References
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Vlad, C.C.; Păcularu-Burada, B.; Vasile, A.M.; Milea, Ș.A.; Bahrim, G.E.; Râpeanu, G.; Stănciuc, N. Upgrading the functional potential of apple pomace in value-added ingredients with probiotics. Antioxidants 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple pomace as a potential valuable resource for full-components utilization: A review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable use of apple pomace (AP) in different industrial sectors. Materials 2022, 15, 1788. [Google Scholar] [CrossRef] [PubMed]
- NNFCC—The Bioeconomy Consultants. Fruit Pomace Production and Value Chains. Available online: https://www.nnfcc.co.uk/files/mydocs/Pomace%20factsheet.pdf (accessed on 10 December 2024).
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef]
- Zaky, A.A.; Witrowa-Rajchert, D.; Nowacka, M. Turning Apple pomace into value: Sustainable recycling in food production—A narrative review. Sustainability 2024, 16, 7001. [Google Scholar] [CrossRef]
- Asif, M.; Javaid, T.; Razzaq, Z.U.; Khan, M.K.I.; Maan, A.A.; Yousaf, S.; Usman, A.; Shahid, S. Sustainable utilization of apple pomace and its emerging potential for development of functional foods. Environ. Sci. Pollut. Res. 2024, 31, 17932–17950. [Google Scholar] [CrossRef]
- Ciurlă, L.; Enache, I.-M.; Buțerchi, I.; Mihalache, G.; Lipșa, F.D.; Patraș, A. A new approach to recover bioactive compounds from apple pomace: Healthy jelly candies. Foods 2025, 14, 39. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple Pomace as a source of bioactive polyphenol compounds in gluten-free breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef]
- Widy-Tyszkiewicz, E. Current Evidence for Disease Prevention and Treatment by Protocatechuic Acid (PCA) and Its Precursor Protocatechuic Aldehyde (PCAL) in Animals and Humans. In Plant Antioxidants and Health; Reference Series in Phytochemistry; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer: Cham, Switzerland, 2022; pp. 507–543. [Google Scholar]
- Vandorou, M.; Plakidis, C.; Tsompanidou, I.M.; Adamantidi, T.; Panagopoulou, E.A.; Tsoupras, A. A review on apple pomace bioactives for natural functional food and cosmetic products with therapeutic health-promoting properties. Int. J. Mol. Sci. 2024, 25, 10856. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Mitrea, L.; Călinoiu, L.F.; Teleky, B.-E.; Martău, G.A.; Plamada, D.; Pascuta, M.S.; Nemeş, S.-A.; Varvara, R.-A.; Vodnar, D.C. Natural polyphenol recovery from apple-, cereal-, and tomato-processing by-products and related health-promoting properties. Molecules 2022, 27, 7977. [Google Scholar] [CrossRef] [PubMed]
- Rabeeah, I.; Gruber-Schmidt, V.; Murray, H.; Afsharzadeh, N.; Paltram, R.; Marinovic, S.; Zia, H.; Hutabarat, O.S.; Hofsommer, M.; Slatnar, A.; et al. Apple pomace as a potential source of oxidative stress-protecting dihydrochalcones. Antioxidants 2024, 13, 1159. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; Zhang, S.; Rao, J.; Zhao, J.; Huang, H.; Liu, Y.; Ding, Y.; Liu, Y.; Ma, Y.; Zhang, S.; et al. Phlorizin, an important glucoside: Research progress on its biological activity and mechanism. Molecules 2024, 29, 741. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Aprikian, O.; Duclos, V.; Guyot, S.; Besson, C.; Manach, C.; Bernalier, A.; Morand, C.; Rémésy, C.; Demigné, C. Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J. Nutr. 2003, 133, 1860–1865. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment, COM/2018/673 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0673 (accessed on 10 December 2024).
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Kauser, S.; Murtaza, M.A.; Hussain, A.; Imran, M.; Kabir, K.; Najam, A.; An, K.U.; Akram, S.; Fatima, H.; Batool, S.A.; et al. Apple pomace, a bioresource of functional and nutritional components with potential of utilization in different food formulations: A review. Food Chem. Adv. 2024, 4, 100598. [Google Scholar] [CrossRef]
- Spork, C.C.; Chavez, A.; Gabarrell Durany, X.; Patel, M.K.; Villalba Méndez, G. Increasing precision in greenhouse gas accounting using real-time emission factors. J. Ind. Ecol. 2014, 19, 380–390. [Google Scholar] [CrossRef]
- IEA (International Electricity Agency)–Tracking Clean Energy Progress 2023, Assessing Critical Energy Technologies for Global Clean Energy Transitions. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 4 October 2024).
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef]
- Dilmore, R.; Zhang, L. Greenhouse gases and their role in climate change. In Greenhouse Gases and Clay Minerals. Green Energy and Technology, 1st ed.; Romanov, V., Ed.; Springer: Cham, Switzerland, 2018; Volume 1, pp. 15–32. ISBN 978-3-319-12660-9. [Google Scholar] [CrossRef]
- Quinto, C. Challenge: Climate change as the starting situation. In Insurance Systems in Times of Climate Change, 1st ed.; Quinto, C., Ed.; Springer: Berlin, Heidelberg, 2011; Volume 1, pp. 1–28. ISBN 978-3-642-22434-8. [Google Scholar] [CrossRef]
- Yaman, C. A review on the process of greenhouse gas inventory preparation and proposed mitigation measures for reducing carbon footprint. Gases 2024, 4, 18–40. [Google Scholar] [CrossRef]
- Delbeke, J.; Runge-Metzger, A.; Slingenberg, Y.; Werksman, J. The Paris agreement. In Towards a Climate-Neutral Europe: Curbing the Trend, 1st ed.; Delbeke, J., Vis, P., Eds.; Routledge: Oxfordshire, UK, 2019; Volume 2, ISBN 978-9-276-09260-5. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Scope 1 and Scope 2 Inventory Guidance. Available online: https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance (accessed on 10 November 2024).
- Ritchie, H.; Rosado, P.; Roser, M. CO2 and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 10 November 2024).
- Liu, Z.; Adams, M.; Cote, R.P.; Chen, Q.; Wu, R.; Wen, Z.; Liu, W.; Dong, L. How does circular economy respond to greenhouse gas emissions reduction: An analysis of Chinese plastic recycling industries. Renew. Sustain. Energy Rev. 2018, 91, 1162–1169. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between circular economy and climate change mitigation in the built environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- Bearth, A.; Cousin, M.-E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Sturza, R.; Niculaua, M.; Patras, A. Synthetic dye’s substitution with chokeberry extract in jelly candies. J. Food Sci. Technol. 2020, 57, 4383–4394. [Google Scholar] [CrossRef] [PubMed]
- Hariadi, H.; Amien, S.; Darniadi, S.; Sarifudin, A.; Maulana, H.; Darmajana, D.A.; Nugroho, P.; Rahmat, R.; Sunarmani, S.; Widowati, S.; et al. Activity antioxidant and sensory profile of jelly candy with addition of butterfly pea (Clitoria ternatea L.) extract powder. Food Sci. Technol. 2023, 43, e15023. [Google Scholar] [CrossRef]
- Tarahi, M.; Tahmouzi, S.; Kianiani, M.R.; Ezzati, S.; Hedayati, S.; Niakousari, M. Current innovations in the development of functional gummy candies. Foods 2024, 13, 76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crittenden, V.L.; Crittenden, W.F.; Ferrell, L.K.; Ferrell, O.C.; Pinney, C.C. Market-oriented sustainability: A conceptual framework and propositions. J. Acad. Mark. Sci. 2011, 39, 71–85. [Google Scholar] [CrossRef]
- Forms. Available online: https://workspace.google.com/intl/ro/products/forms/ (accessed on 20 November 2024).
- Amex Lab. Biobase BOV-T30C Drying Oven (43 Liters). Available online: https://www.amex-lab.ro/aparatura/etuve/etuva-uscare-biobase-bov-t30c-43-litri.html (accessed on 20 November 2024).
- Amex Lab. IKA A 10 Basic Grinding Mill (50 mL). Available online: https://www.amex-lab.ro/aparatura/mori-de-laborator/moara-de-macinat-ika-a-10-basic-50-ml.html (accessed on 20 November 2024).
- Amex Lab. Kern ADB 200-4 Analytical Balance (210 g). Available online: https://www.amex-lab.ro/aparatura/balante/balanta-analitica-kern-adb-200-4-210-g.html (accessed on 20 November 2024).
- Amex Lab. Biobase UC-40A Ultrasonic Cleaning Bath (10L). Available online: https://www.amex-lab.ro/aparatura/bai/baie-de-curatare-cu-ultrasonare-biobase-uc-40a-10-l.html (accessed on 20 November 2024).
- Amex Lab. Thermo Scientific Precision GP 2S Water Bath (2L). Available online: https://www.amex-lab.ro/aparatura/bai/baie-de-apa-thermo-scientific-precision-gp-2s-2-l.html (accessed on 20 November 2024).
- Amex Lab. Biobase BPR-5V50-G Refrigerator (50 L). Available online: https://www.amex-lab.ro/aparatura/frigidere/frigider-biobase-bpr-5v50-g-cu-usa-din-sticla-50-l.html (accessed on 20 November 2024).
- Shabir, I.; Dash, K.K.; Dar, A.H.; Pandey, V.K.; Fayaz, U.; Srivastava, S.; Nisha, R. Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods 2023, 7, 100215. [Google Scholar] [CrossRef]
- Wróbel-Jędrzejewska, M.; Markowska, J.; Bieńczak, A.; Woźniak, P.; Ignasiak, Ł.; Polak, E.; Kozłowicz, K.; Różyło, R. Carbon footprint in vegeburger production technology using a prototype forming and breading device. Sustainability 2021, 13, 9093. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. Environmental Impacts of Food Production. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 1 October 2024).
- Innovation Norway. Energy. Available online: https://eea.innovationnorway.com/article/energy (accessed on 1 October 2024).
- Uranga, J.; Leceta, I.; Etxabide, A.; Guerrero, P.; de la Caba, K. Cross-linking of fish gelatins to develop sustainable films with enhanced properties. Eur. Polym. J. 2016, 78, 82–90. [Google Scholar] [CrossRef]
- Duangsong, J.; Theerathammakorn, S. Evaluation and reduction of the carbon footprints associated with steviol glycoside production. ASEAN J. Sci. Technol. Rep. 2024, 27, e252464. [Google Scholar] [CrossRef]
- Suckling, J.; Morse, S.; Murphy, R.; Astley, S.; Halford, J.C.G.; Harrold, J.A.; Le-Bail, A.; Koukouna, E.; Musinovic, H.; Perret, J.; et al. Environmental life cycle assessment of production of the high intensity sweetener steviol glycosides from Stevia rebaudiana leaf grown in Europe: The SWEET project. Int. J. Life Cycle Assess. 2023, 28, 221–233. [Google Scholar] [CrossRef]
- Klaver, M. Techno-Economic Analysis of Biorefinery Scenarios for scFOS, Ethanol, Tryptophan, Erythritol and Collagen Production From Sugarcane; Stellenbosch University: Western Cape, South Africa, 2023; pp. 1–180, (Table 36, p. 104); Available online: https://scholar.sun.ac.za/server/api/core/bitstreams/ab6ee8e9-9f6b-4c47-861f-20100303af3b/content (accessed on 20 December 2024).
- Mesquita, C.; Carvalho, M. The carbon footprint of common vegetarian and non-vegetarian meals in Portugal: An estimate, comparison, and analysis. Int. J. Life Cycle Assess. 2024, 29, 2169–2183. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Maggiore, A.; Afonso, A.; Barrucci, A.; De Sanctis, G. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support. Publ. 2020, 17. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Greenhouse Gas Emissions from Agrifood Systems. Global, Regional and Country Trends, 2000–2022. Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/greenhouse-gas-emissions-from-agrifood-systems.-global--regional-and-country-trends--2000-2022/en (accessed on 20 February 2025).
- United Nation System Chief Executives Board for Coordination (UNSCEB). Strategy for Sustainability Management in the United Nation System 2020–2030. Available online: https://unsceb.org/strategy-sustainability-management-united-nations-system-2020-2030 (accessed on 20 February 2025).
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Digiesi, S.; Facchinia, F.; Silvestri, B. Green strategies to reduce the environmental impact of jam production. Transp. Res. Procedia 2022, 67, 72–82. [Google Scholar] [CrossRef]
- Mariz de Avelar, M.H.; de Castilho Queiroz, G.; Efraim, P. Sustainable performance of cold-set gelation in the confectionery manufacturing and its effects on perception of sensory quality of jelly candies. Clean. Eng. Technol. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Bere, E.; Brug, J. Towards health-promoting and environmentally friendly regional diets–a Nordic example. Public Health Nutr. 2008, 12, 91. [Google Scholar] [CrossRef]
- Pinho, R.; Guiné, F.; Guiné, R.P.F. Sweet samosas: A new food product in the Portuguese market. ARInt 2012, 2, 70–81. [Google Scholar]
- Vojvodić Cebin, A.; Bunić, M.; Mandura Jarić, A.; Šeremet, D.; Komes, D. Physicochemical and sensory stability evaluation of gummy candies fortified with mountain germander extract and prebiotics. Polymers 2024, 16, 259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gok, S.; Toker, O.S.; Palabiyik, I.; Konar, N. Usage possibility of mannitol and soluble wheat fiber in low calorie gummy candies. LWT 2020, 128, 109531. [Google Scholar] [CrossRef]
- Rivero, R.; Archaina, D.; Sosa, N.; Schebor, C. Sensory characterization, acceptance, and stability studies on low calories fruit jelly candies. J. Food Sci. Technol. 2023, 60, 2204–2212. [Google Scholar] [CrossRef] [PubMed]
- Altınok, E.; Palabiyik, I.; Gunes, R.; Toker, O.S.; Konar, N.; Kurultay, S. Valorisation of grape by-products as a bulking agent in soft candies: Effect of particle size. LWT 2020, 118, 1–19. [Google Scholar] [CrossRef]
- Nitelashop. Harribo Goldenbaren Jelly (100 g). Available online: https://nitelashop.ro/jeleuri-haribo-goldbaren-100-gr/ (accessed on 1 October 2024).
- Carrefour. Frutimix Sugus Jellymania Jellies (75g). Available online: https://carrefour.ro/produse/jeleuri-frutimix-sugus-jellymania-75g-19-14508329 (accessed on 1 October 2024).
- eMAG. Feleacul—Jelly Flavored with Garden Fruits (150 g). Available online: https://www.emag.ro/jeleuri-feleacul-cu-aroma-de-fructe-din-gradina-150-g/ (accessed on 1 October 2024).
- Livrari Campina. Bon Sweet Bon—Assorted jellies (100 g). Available online: https://livraricampina.ro/products/45961 (accessed on 1 October 2024).
- eMAG. Bombus—Blackcurrant Fruit Jellies. Available online: https://www.emag.ro/jeleuri-de-fructe-cu-coacaze-negre-35g-bombu/ (accessed on 1 October 2024).
- eMAG. Trolli Glow Worms Jellies. Available online: https://www.emag.ro/jeleuri-rame-trolli-glow-worms-100-g/ (accessed on 1 October 2024).
- Republica Bio. Biona Gluten-Free Fruit Brust Jellies. Available online: https://republicabio.ro/products/jeleuri-berry-burst-fara-gluten-biona-bio-75-g-ecologice/ (accessed on 1 October 2024).
- Dr.Max. Biobon Gluten-Free Fruit Jelly (100 g). Available online: https://www.drmax.ro/jeleuri-cu-fructe-fara-gluten-bio-100g-biobon/ (accessed on 1 October 2024).
- Mega Image. Bio Nature—Bio Fruit Jelly (110 g). Available online: https://www.mega-image.ro/Dulciuri-si-snacks/Dropsuri-guma-si-jeleuri/Jeleuri-si-caramele/Jeleuri-bio-fructe-110g/p/57128/ (accessed on 1 October 2024).
- Vegis. Dennree—Bio Gelatin Teddy Bears (100 g). Available online: https://vegis.ro/mamici-si-copii/dennree/10930-ursuleti-din-gelatina-ecologici-bio-100g/ (accessed on 1 October 2024).
- Delicateseflorescu. Berry Jellies (Strawberries, Blackcurrants, Raspberries). Available online: https://www.delicateseflorescu.ro/jeleuri-de-fructe-de-padure-capsuni-coacaze-negre-zmeura/ (accessed on 1 October 2024).
- Vegis. Niavis—Bio Bears Jellies (100g). Available online: https://vegis.ro/jeleuri-naturale/niavis/11453-jeleuri-ursuleti-fara-gluten-ecologice-bio-100g/ (accessed on 1 October 2024).
- Benzaghta, M.A.; Elwalda, A.; Mousa, M.; Erkan, I.; Rahman, M. SWOT analysis applications: An integrative literature review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
- Aboud, A.; Şahinli, M.A. SWOT and TOWS analysis: An application to cocoa in Ghana. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2019, 19, 13–24. [Google Scholar]
- Dandage, R.V.; Mantha, S.S.; Rane, S.B. Strategy development using TOWS matrix for international project risk management based on prioritization of risk categories. Int. J. Manag. Proj. Bus. 2019, 12, 1003–1029. [Google Scholar] [CrossRef]
- Datta, Y. Market segmentation: An integrated framework. Long Range Plan. 1996, 29, 797–811. [Google Scholar] [CrossRef]
- Sammut-Bonnici, T.; Galea, D. SWOT analysis. Wiley Encycl. Manag. 2015, 12, 1–8. [Google Scholar] [CrossRef]
- Casas-Rosal, J.C.; Segura, M.; Maroto, C. Food market segmentation based on consumer preferences using outranking multicriteria approaches. Int. Trans. Oper. Res. 2023, 30, 1537–1566. [Google Scholar] [CrossRef]
- Scholderer, J.; Brunsø, K.; Bredahl, L.; Grunert, K.G. Cross-cultural validity of the food-related lifestyles instrument (FRL) within Western Europe. Appetite 2004, 42, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Dominici, G. From marketing mix to e-marketing mix: A literature overview and classification. Int. J. Bus. Manag. 2011, 4, 17–24. [Google Scholar] [CrossRef]
- Išoraitė, M. Marketing mix theoretical aspects. Int. J. Res.–Granthaalayah 2016, 4, 25–37. [Google Scholar]
- Singh, M. Marketing mix of 4P’S for competitive advantage. IOSR J. Bus. Manag. 2012, 3, 40–45. [Google Scholar] [CrossRef]
- Căpățînă, G. New product launch: A critical review and research directions. Int. J. Econ. Pract. Theor. 2014, 4, 607–621. Available online: https://api.semanticscholar.org/CorpusID:54836925 (accessed on 10 December 2024).
- Niculescu, C. Quality Management; Niculescu, B., Ed.; Pearson Education, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Vukasović, T.; Jalen, N. Marketing plan proposal for the entry of a food supplement brand into the market. Serbian J. Eng. Manag. 2018, 3, 36–50. [Google Scholar] [CrossRef]
No. | Ingredients | Amount | Carbon Footprint Value (kg CO2/kg Product) | Carbon Footprint Calculation for 1 kg Jelly (kg CO2) |
---|---|---|---|---|
1. | Apple pomace (kg) | 0.1361 | 0.43 [47] | 0.0585 |
2. | Drinking water (L) | 1.15845 | 0.344 [48] | 0.3985 |
3. | Commercial gelatin (kg) | 0.0678 | 0.10 [49] | 0.0067 |
4. | Mixture of sweeteners (kg) | 0.0452 | 15.7110 [47,50] | 0.7101 |
TOTAL | 1.1738 |
No. | Equipment | Equipment Installed Energy (W) | Time Necessary to Manufacture 1 kg of Product (Hour) | Specific Energy Required (kWh) to Produce 1 kg of Jelly Candies | Calculated Value of CF to Produce 1 kg of Jelly Candies |
---|---|---|---|---|---|
1. | Convective laboratory oven | 850 | 0.55 | 0.4675 | 0.1431 |
2. | Grinder mill | 270 | 0.05 | 0.0135 | 0.0041 |
3. | Analytical balance weighing | 3 | 0.1 | 0.0003 | 0.0001 |
4. | Ultrasonic water bath | 250 | 0.5 | 0.125 | 0.0383 |
5. | Water bath | 300 | 0.1 | 0.03 | 0.0092 |
6. | Refrigerator | 85 | 1 | 0.085 | 0.0260 |
TOTAL | 0.2208 |
Competing Producer | Product Name | Weight (g) | Price (EUR) | References |
---|---|---|---|---|
Trade Products | ||||
Haribo | “Haribo Gold goldbaren” | 100 | 1.14 | [66] |
Kandia Dulce/Sugus | Frutimix Sugus Jellymania jellies (Ro: “Jeleuri frutimix Sugus Jellymania”) | 75 | 0.84 | [67] |
Feleacul | Jelly flavored with garden fruits (Ro: “Jeleu cu aromă fructe de grădină”) | 150 | 1.09 | [68] |
Bon sweet bon | Assorted jellies (Ro: “Jeleuri asortate”) | 100 | 0.40 | [69] |
Bombus | Blackcurrant fruit jellies (Ro: ”Jeleuri de fructe cu coacăze negre”) | 35 | 1.88 | [70] |
Trolli | Trolli Glow Worms jellies (Ro: “Jeleuri Râme Trolli Glow Worms”) | 100 | 1.76 | [71] |
Artisanal products | ||||
Bio Biona | Biona gluten-free fruit burst jellies, bio (Ro: “Jeleuri fruit burst fără gluten Biona, bio”) | 75 | 1.57 | [72] |
Bio Natur | Gluten-free fruit jellies Bio (Ro: “Jeleuri cu fructe fără gluten Bio”) | 100 | 2.38 | [73] |
Bio Planet | Bio jellies without gelatin (Ro: “Jeleuri bio fără gelatină”) | 100 | 3.40 | [74] |
Dennree | Bio gelatin teddy bears (Ro: “Ursuleți din gelatină Ecologici/Bio”) | 100 | 2.72 | [75] |
Delicatese Florescu | Berry jellies (strawberries, blackcurrants, raspberries (Ro: “Jeleuri de fructe de pădure (căpșuni, coacăze negre, zmeură)“) | 230 | 12.2 | [76] |
NIAVIS | Bio Bears Jellies (Ro: “Jeleuri Ursuleți Bio”) | 100 | 3.58 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enache, I.-M.; Ciurlă, L.; Patraș, A.; Leonte, E.; Cârlescu, P.-M. Jelly Candies with Apple Pomace—A Circular Economy Solution for a Food Processing Waste. Agriculture 2025, 15, 653. https://doi.org/10.3390/agriculture15060653
Enache I-M, Ciurlă L, Patraș A, Leonte E, Cârlescu P-M. Jelly Candies with Apple Pomace—A Circular Economy Solution for a Food Processing Waste. Agriculture. 2025; 15(6):653. https://doi.org/10.3390/agriculture15060653
Chicago/Turabian StyleEnache, Iuliana-Maria, Liliana Ciurlă, Antoanela Patraș, Elena Leonte, and Petru-Marian Cârlescu. 2025. "Jelly Candies with Apple Pomace—A Circular Economy Solution for a Food Processing Waste" Agriculture 15, no. 6: 653. https://doi.org/10.3390/agriculture15060653
APA StyleEnache, I.-M., Ciurlă, L., Patraș, A., Leonte, E., & Cârlescu, P.-M. (2025). Jelly Candies with Apple Pomace—A Circular Economy Solution for a Food Processing Waste. Agriculture, 15(6), 653. https://doi.org/10.3390/agriculture15060653