Evaluation of Mineral Contents of Lettuce and Carrot Harvested from Soil Treated with Organic and Inorganic Fertilizers
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Experimental Design and Planting
2.3. Soil Properties Analysis
2.4. Sample Preparation and Digestion Process
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Experimental Soil
3.2. The Level of Mineral Contents in Lettuce and Carrot
4. Discussion
Accumulation of Minerals in Vegetables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nest, T.V.; Vandecasteele, B.; Ruysschaert, G.; Cougnon, M.; Merckx, R.; Reheul, D. Effect of organic and mineral fertilizers on soil P and C levels, crop yield and P leaching in a long term trial on a silt loam soil. Agric. Ecosyst. Environ. 2014, 197, 309–317. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Prakash, O. The Impact of Chemical Fertilizers on Our Environment and Ecosystem. 2019. Available online: https://www.researchgate.net/profile/Randeep-Kumar/publication/331132826_The_Impact_of_Chemical_Fertilizers_on_our_Environment_and_Ecosystem/links/5c66ebe492851c1c9de446eb/The-Impact-of-Chemical-Fertilizers-on-our-Environment-and-Ecosystem.pdf (accessed on 1 August 2024).
- Hazra, G. Different Types of Eco-Friendly Fertilizers: An Overview. Sustain. Environ. 2016, 1, 54. Available online: www.scholink.org/ojs/index.php/se54 (accessed on 8 February 2025). [CrossRef]
- Bokhtiar, S.; Sakurai, K. Effects of organic manure and chemical fertilizer on soil fertility and productivity of plant and ratoon crops of sugarcane. Arch. Agron. Soil Sci. 2005, 51, 325–334. [Google Scholar] [CrossRef]
- Goss, M.J.; Tubeileh, A.; Goorahoo, D. A Review of the Use of Organic Amendments and the Risk to Human Health. Adv. Agron. 2013, 120, 275–379. [Google Scholar]
- Verma, S.; Pradhan, S.S.; Singh, A.; Kushuwaha, M. Effect of Organic Manure on Different Soil Properties: A Review. Int. J. Plant Soil Sci. 2024, 36, 182–187. [Google Scholar] [CrossRef]
- Garbowski, T.; Garbowski, T.; Bar-Michalczyk, D.; Bar-Michalczyk, D.; Charazińska, S.; Charazińska, S.; Grabowska-Polanowska, B.; Grabowska-Polanowska, B.; Kowalczyk, A.; Kowalczyk, A.; et al. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2022, 225, 105462. [Google Scholar] [CrossRef]
- van Bueren, E.L.; Jones, S.; Tamm, L.; Murphy, K.; Myers, J.; Leifert, C.; Messmer, M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Liu, R.; Pieniak, Z.; Verbeke, W. Consumers’ attitudes and behaviour towards safe food in China: A review. Food Control. 2013, 33, 93–104. [Google Scholar] [CrossRef]
- Simonne, A.; Ozores-Hampton, M.; Treadwell, D.; House, L. Organic and Conventional Produce in the U.S.: Examining Safety and Quality, Economic Values, and Consumer Attitudes. Horticulturae 2016, 2, 5. [Google Scholar] [CrossRef]
- Khan, S.; Reid, B.J.; Li, G.; Zhu, Y.-G. Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environ. Int. 2014, 68, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Aina, O.E.; Amoo, S.O.; Mugivhisa, L.L.; Olowoyo, J.O. EEffect of Organic and Inorganic Sources of Nutrients on the Bioactive Compounds and Antioxidant Activity of Tomato. Appl. Ecol. Environ. Res. 2019, 17, 3681–3694. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Lu, H.-L.; Nkoh, J.N.; Baquy, M.A.-A.; Dong, G.; Li, J.-Y.; Xu, R.-K. Plants alter surface charge and functional groups of their roots to adapt to acidic soil conditions. Environ. Pollut. 2020, 267, 115590. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. Improving electrochemical characteristics of plant roots by biochar is an efficient mechanism in increasing cations uptake by plants. Chemosphere 2023, 313, 137365. [Google Scholar] [CrossRef]
- Esposito, M.; De Roma, A.; Cavallo, S.; Miedico, O.; Chiaravalle, E.; Soprano, V.; Baldi, L.; Gallo, P. Trace elements in vegetables and fruits cultivated in Southern Italy. J. Food Compos. Anal. 2019, 84, 103302. [Google Scholar] [CrossRef]
- Guadie, A.; Yesigat, A.; Gatew, S.; Worku, A.; Liu, W.; Ajibade, F.O.; Wang, A. Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Sci. Total Environ. 2021, 761, 143302. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, M.S.B.; Baranski, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crop. Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Amin, N.-U.; Hussain, A.; Alamzeb, S.; Begum, S. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem. 2013, 136, 1515–1523. [Google Scholar] [CrossRef]
- Yahia, E.M.; García-Solís, P.; Celis, M.E.M. Contribution of fruits and vegetables to human nutrition and health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–45. [Google Scholar]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elements Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Mehra, A.; Grover, S. Catatonia Associated with Hypernatremia. Indian J. Psychol. Med. 2019, 41, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.L. Micronutrient Requirements for Athletes. Clin. Sports Med. 2007, 26, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Sarnowski, A.; Gama, R.M.; Dawson, A.; Mason, H.; Banerjee, D. Hyperkalemia in Chronic Kidney Disease: Links, Risks and Management. Int. J. Nephrol. Renov. Dis. 2022, 15, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Ż.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef]
- Pepe, J.; Colangelo, L.; Biamonte, F.; Sonato, C.; Danese, V.C.; Cecchetti, V.; Occhiuto, M.; Piazzolla, V.; De Martino, V.; Ferrone, F.; et al. Diagnosis and management of hypocalcemia. Endocrine 2020, 69, 485–495. [Google Scholar] [CrossRef]
- Serna, J.; Bergwitz, C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020, 12, 3001. [Google Scholar] [CrossRef]
- Elser, J.J. Phosphorus: A limiting nutrient for humanity? Curr. Opin. Biotechnol. 2012, 23, 833–838. [Google Scholar] [CrossRef]
- Arif, L.; Hamza, M.; Iqbal, E.; Kaleem, Z. Role of Micronutrients (Vitamins & Minerals). Int. J. Multidiscip. Sci. Arts 2024, 3, 333–337. [Google Scholar] [CrossRef]
- Van Laecke, S. Hypomagnesemia and hypermagnesemia. Acta Clin. Belg. 2018, 74, 41–47. [Google Scholar] [CrossRef]
- Ansorena, M.R.; Agüero, M.V.; Goñi, M.G.; Roura, S.; Ponce, A.; Moreira, M.D.R.; Di Scala, K. Assessment of lettuce quality during storage at low relative humidity using Global Stability Index methodology. Food Sci. Technol. 2012, 32, 366–373. [Google Scholar] [CrossRef]
- Cruz, R.; Gomes, T.; Ferreira, A.; Mendes, E.; Baptista, P.; Cunha, S.; Pereira, J.A.; Ramalhosa, E.; Casal, S. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food Chem. 2014, 145, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Keatinge, J.D.H.; Waliyar, F.; Jamnadas, R.H.; Moustafa, A.; Andrade, M.; Drechsel, P.; Hughes, J.D.; Kadirvel, P.; Luther, K. Relearning Old Lessons for the Future of Food—By Bread Alone No Longer: Diversifying Diets with Fruit and Vegetables. Crop. Sci. 2010, 50, S-51–S-62. [Google Scholar] [CrossRef]
- Dias, J.S. Nutritional Quality and Health Benefits of Vegetables: A Review. Food Nutr. Sci. 2012, 03, 1354–1374. [Google Scholar] [CrossRef]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef]
- Beraki, A.F.; Landman, W.A.; DeWitt, D.G.; Olivier, C.; Mathole, K.; Ndarana, T. Modelled Sea-Surface Temperature Scenario Considerations and Southern African Seasonal Rainfall and Temperature Predictability: Report to the Water Research Commission; Water Research Commission: Pretoria, South Africa, 2013. [Google Scholar]
- Bloem, E.; Albihn, A.; Elving, J.; Hermann, L.; Lehmann, L.; Sarvi, M.; Schaaf, T.; Schick, J.; Turtola, E.; Ylivainio, K. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review. Sci. Total Environ. 2017, 607–608, 225–242. [Google Scholar] [CrossRef]
- Hammad, H.M.; Khaliq, A.; Abbas, F.; Farhad, W.; Fahad, S.; Aslam, M.; Shah, G.M.; Nasim, W.; Mubeen, M.; Bakhat, H.F. Comparative Effects of Organic and Inorganic Fertilizers on Soil Organic Carbon and Wheat Productivity under Arid Region. Commun. Soil Sci. Plant Anal. 2020, 51, 1406–1422. [Google Scholar] [CrossRef]
- Daliakopoulos, I.; Tsanis, I.; Koutroulis, A.; Kourgialas, N.; Varouchakis, A.; Karatzas, G.; Ritsema, C. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Thompson, R.B.; Incrocci, L.; van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Aina, O.E.; Mugivhisa, L.L.; Olowoyo, J.O.; Obi, C.L. Heavy metals and potential health risk assessment of Lactuca sativa and Daucus carrota from soil treated with organic manures and chemical fertilizer. Environ. Monit. Assess. 2024, 196, 1–15. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, N.; Huang, F.; Lv, Y. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil Tillage Res. 2014, 146, 47–52. [Google Scholar] [CrossRef]
- Kalinichenko, V.P.; Glinushkin, A.P.; Sokolov, M.S.; Zinchenko, V.E.; Minkina, T.M.; Mandzhieva, S.S.; Sushkova, S.N.; Makarenkov, D.A.; Bakoyev, S.Y.; Il’ina, L.P. Impact of soil organic matter on calcium carbonate equilibrium and forms of Pb in water extracts from Kastanozem complex. J. Soils Sediments 2018, 19, 2717–2728. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Younesian, M.; Madihi-Bidgoli, S.; Nodehi, R.N.; Khaniki, G.R.J.; Hadi, M.; Ghanbari, F. Heavy metal(oid)s concentration in Tehran supermarket vegetables: Carcinogenic and non-carcinogenic health risk assessment. Toxin Rev. 2018, 39, 303–310. [Google Scholar] [CrossRef]
- Abbasi, S.; Bahiraei, A. Ultra trace quantification of chromium(VI) in food and water samples by highly sensitive catalytic adsorptive stripping voltammetry with rubeanic acid. Food Chem. 2012, 133, 1075–1080. [Google Scholar] [CrossRef]
- Osman, K.T. Soil Organic Matter. In Soils; Springer: Dordrecht, The Netherlands, 2013; pp. 89–96. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Wang, Q.; Wu, L.; Luo, Y.; Christie, P. Soil properties and microbial ecology of a paddy field after repeated applications of domestic and industrial sewage sludges. Environ. Sci. Pollut. Res. 2017, 24, 8619–8628. [Google Scholar] [CrossRef]
- Herencia, J.F.; Maqueda, C. Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. J. Agric. Sci. 2016, 154, 1343–1361. [Google Scholar] [CrossRef]
- Adekiya, A.O. Legume Mulch Materials and Poultry Manure Affect Soil Properties, and Growth and Fruit Yield of Tomato. Agric. Conspec. Sci. 2018, 83, 161–167. Available online: https://hrcak.srce.hr/203014 (accessed on 15 March 2025).
- Singh, R.; Agrawal, M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef]
- Okhumata, D.S. Comparative effects of mineral fertilizer, compost and compost—Mineral fertilizer on biological, chemical and physical properties of soil. J. Wastes Biomass-Manag. 2022, 4, 73–77. [Google Scholar] [CrossRef]
- Xu, G.; Lv, Y.; Sun, J.; Shao, H.; Wei, L. Recent Advances in Biochar Applications in Agricultural Soils: Benefits and Environmental Implications. CLEAN Soil Air Water 2012, 40, 1093–1098. [Google Scholar] [CrossRef]
- Dangour, A.D.; Dodhia, S.K.; Hayter, A.; Allen, E.; Lock, K.; Uauy, R. Nutritional quality of organic foods: A systematic review. Am. J. Clin. Nutr. 2009, 90, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L.S. Tandon, Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Knap, M.; Nečemer, M.; Kump, P.; Potočnik, K.; Vidrih, R. The content of minerals in Slovenian organic and conventional produced fruits, herbs and vegetables. Acta Agric. Slov. 2014, 103, 271–279. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.B.; Kostić, A.Ž.; Rajković, M.B.; Miljković, I.; Krstić, Đ.; Caruso, G.; Moghaddam, S.S.; Brčeski, I. Organically vs. Conventionally Grown Vegetables: Multi-elemental Analysis and Nutritional Evaluation. Biol. Trace Element Res. 2021, 200, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Armesto, J.; Rocchetti, G.; Senizza, B.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Lucini, L.; Lorenzo, J.M. Nutritional characterization of Butternut squash (Cucurbita moschata D.): Effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Res. Int. 2020, 132, 109052. [Google Scholar] [CrossRef]
- Keisham, M.; Mukherjee, S.; Bhatla, S.C. Mechanisms of Sodium Transport in Plants—Progresses and Challenges. Int. J. Mol. Sci. 2018, 19, 647. [Google Scholar] [CrossRef]
- Apse, M.P.; Blumwald, E. Na+ transport in plants. FEBS Lett. 2007, 581, 2247–2254. [Google Scholar] [CrossRef]
- Plett, D.C.; Møller, I.S. Na+ transport in glycophytic plants: What we know and would like to know. Plant Cell Environ. 2010, 33, 612–626. [Google Scholar] [CrossRef]
- Adams, E.; Shin, R. Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 2014, 56, 231–249. [Google Scholar] [CrossRef]
- Byrt, C.S.; Zhao, M.; Kourghi, M.; Bose, J.; Henderson, S.W.; Qiu, J.; Gilliham, M.; Schultz, C.; Schwarz, M.; Ramesh, S.A.; et al. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant Cell Environ. 2016, 40, 802–815. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant. 2016, 38, 1–10. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Andrés, Z.; Pérez-Hormaeche, J.; Leidi, E.O.; Schlücking, K.; Steinhorst, L.; McLachlan, D.H.; Schumacher, K.; Hetherington, A.M.; Kudla, J.; Cubero, B.; et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc. Natl. Acad. Sci. USA 2014, 111, E1806–E1814. [Google Scholar] [CrossRef]
- Sustr, M.; Soukup, A.; Tylova, E. Potassium in Root Growth and Development. Plants 2019, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Głodowska, M.; Krawczyk, J. Difference in the Concentration of Macro Elements between Organically and Conventionally Grown Vegetables. Agric. Sci. 2019, 10, 267–277. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Kudla, J.; Batistič, O.; Hashimoto, K. Calcium Signals: The Lead Currency of Plant Information Processing. Plant Cell 2010, 22, 541–563. [Google Scholar] [CrossRef]
- López-Arredondo, D.L.; Leyva-González, M.A.; González-Morales, S.I.; López-Bucio, J.; Herrera-Estrella, L. Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef]
- Preuss, C.P.; Huang, C.Y.; Tyerman, S.D. Proton-coupled high-affinity phosphate transport revealed from heterologous characterization in Xenopus of barley-root plasma membrane transporter, HvPHT1;1. Plant Cell Environ. 2011, 34, 681–689. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Zare, L.; Ronaghi, A. Comparison of N Mineralization Rate and Pattern in Different Manure- and Sewage Sludge-Amended Calcareous Soil. Commun. Soil Sci. Plant Anal. 2019, 50, 559–569. [Google Scholar] [CrossRef]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2004, 105, 425–432. [Google Scholar] [CrossRef]
Pre-Planting | Post-Harvest | |||||
---|---|---|---|---|---|---|
UNTRD | CDa | SSa | NPKs | CDs | SSs | |
OC (g/kg−1) | 2.41 | 10.41 | 27.1 | 3.63 | 5.36 | 5.84 |
pH (H2O) | 7.39 | 7.67 | 6.96 | 7.18 | 7.41 | 7.12 |
EC (µscm−1) | 8.04 | 14.12 | 35.7 | 14.72 | 9.14 | 22.43 |
OM (%) | 1.42 | 35.31 | 56.3 | 1.36 | 2.13 | 2.42 |
TN (%) | 0.10 | 1.93 | 1.86 | 1.53 | 1.37 | 1.24 |
C:N | 24.1 | 5.39 | 14.57 | 2.37 | 3.91 | 4.71 |
Exchangeable cations (cmolkg−1) | ||||||
Ca2+ | 1.02 | 1.42 | 1.78 | 1.01 | 1.14 | 1.22 |
K+ | 0.14 | 1.76 | 2.24 | 1.53 | 1.46 | 1.62 |
Mg2+ | 0.38 | 2.01 | 2.31 | 1.32 | 1.54 | 1.78 |
Soil Texture | ||||||
Sand (%) | 68.9 | ND | ND | ND | ND | ND |
Silt (%) | 17.3 | ND | ND | ND | ND | ND |
Clay (%) | 13.8 | ND | ND | ND | ND | ND |
Mineral Contents | ||||||
---|---|---|---|---|---|---|
Treatments | Na (mg/kg) | Mg (mg/kg) | K (mg/kg) | Ca (mg/kg) | P (mg/kg) | N (mg/kg) |
UNTRDs | 42 a ± 8.3 | 242 a ± 79.00 | 105 c ± 32.19 | 627b c ± 95.29 | 67 d ± 24.75 | 35 c ± 5.37 |
NPKs | 42 a ± 10.11 | 246 a ± 36.80 | 115 b ± 19.97 | 731 a ± 77.41 | 135b c ± 32.43 | 58 b ± 6.62 |
CDs | 43 a ± 6.98 | 206 b ± 47.73 | 119 b ± 39.44 | 522 d ± 85.33 | 129 c ± 10.87 | 61 a ± 7.62 |
SSs | 32 b ± 8.32 | 178 c ± 32.57 | 131 a ± 14.04 | 655 b ± 81.44 | 151 a ± 37.64 | 66 a ± 7.40 |
Lettuce | Carrot | |||||||
---|---|---|---|---|---|---|---|---|
UNTRDs | NPKs | CDs | SSs | UNTRDs | NPKs | CDs | SSs | |
Na (mg/gk) | 8 ± 1.85 a | 7 ± 0.85 a | 7 ± 1.52 a | 19 ± 1.34 b | 18 ± 1.52 b | 16 ± 1.53 b | 51 ± 6.59 c | 58 ± 8.36 c |
Mg (mg/kg) | 74 ± 19.12 b | 102 ± 9.89 c | 59 ± 9.87 b | 105 ± 4.12 c | 29 ± 4.77 a | 33 ± 4.63 a | 31 ± 4.61 a | 42 ± 6.58 a |
K (mg/kg) | 492 ± 122.92 c | 494 ± 52.84 c | 546 ± 76.44 c | 189 ± 11.18 a | 359 ± 51.92 a | 426 ± 56.90 bc | 420 ± 76.44 bc | 352 ± 58.96 b |
Ca (mg/kg) | 187 ± 42.06b c | 216 ± 24.82 cd | 155 ± 33.16 b | 247 ± 17.07 d | 55 ± 4.33 a | 69 ± 11.37 a | 75 ± 11.34 a | 81 ± 9.41 a |
P (mg/kg) | 38.12 ± 10.25 a | 72 ± 7.30 c | 68 ± 12.62 c | 51 ± 2.58 ab | 39 ± 5.13 b | 63 ± 9.34b c | 47 ± 8.31 ab | 73 ± 12.53 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aina, O.E.; Mugivhisa, L.L.; Olowoyo, J.O.; Obi, L.C. Evaluation of Mineral Contents of Lettuce and Carrot Harvested from Soil Treated with Organic and Inorganic Fertilizers. Agriculture 2025, 15, 656. https://doi.org/10.3390/agriculture15060656
Aina OE, Mugivhisa LL, Olowoyo JO, Obi LC. Evaluation of Mineral Contents of Lettuce and Carrot Harvested from Soil Treated with Organic and Inorganic Fertilizers. Agriculture. 2025; 15(6):656. https://doi.org/10.3390/agriculture15060656
Chicago/Turabian StyleAina, Olawole E., Liziwe L. Mugivhisa, Joshua O. Olowoyo, and Lawrence C. Obi. 2025. "Evaluation of Mineral Contents of Lettuce and Carrot Harvested from Soil Treated with Organic and Inorganic Fertilizers" Agriculture 15, no. 6: 656. https://doi.org/10.3390/agriculture15060656
APA StyleAina, O. E., Mugivhisa, L. L., Olowoyo, J. O., & Obi, L. C. (2025). Evaluation of Mineral Contents of Lettuce and Carrot Harvested from Soil Treated with Organic and Inorganic Fertilizers. Agriculture, 15(6), 656. https://doi.org/10.3390/agriculture15060656