Early Warning and Management Measures for the Non-Agriculturalization of Cultivated Land in Shaanxi Province of China Based on a Patch-Generated Land Use Simulation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Process
2.3. PLUS Model
2.4. Model Performance Evaluation
2.5. Land Management Scenario Design
3. Results
3.1. Spatiotemporal Changes in Land Use Pattern in SP from 2000 to 2020
3.2. Spatiotemporal Dynamics and Early Warning Pattern of NACL from 2000 to 2020 in SP
3.3. Potential Impacts of Land Management Measures on the Future NACL in SP
3.4. Spatial Aggregation Characteristics of NACL Under Different Management Measures in SP
4. Discussion
4.1. Regional Differences in NACL in SP
4.2. Regulatory Role of Land Management in NACL
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lyu, X.; Peng, W.; Niu, S.; Qu, Y.; Xin, Z. Evaluation of sustainable intensification of cultivated land use according to farming households’ livelihood types. Ecol. Indic. 2022, 138, 108848. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Francis, C.A.; Hansen, T.E.; Fox, A.A.; Hesje, P.J.; Nelson, H.E.; Lawseth, A.E.; English, A. Farmland conversion to non-agricultural uses in the US and Canada: Current impacts and concerns for the future. Int. J. Agric. Sustain. 2012, 10, 8–24. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Li, S.; Nadolnyak, D.; Hartarska, V. Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area. Land Use Policy 2019, 80, 380–390. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Spatiotemporal evolution of cultivated land non-agriculturalization and its drivers in typical areas of southwest China from 2000 to 2020. Remote Sens. 2022, 14, 3211. [Google Scholar] [CrossRef]
- Cui, X.; Zhou, T.; Xiong, X.; Xiong, J.; Zhang, J.; Jiang, Y. Farmland suitability evaluation oriented by non-agriculturalization sensitivity: A case study of Hubei Province, China. Land 2022, 11, 488. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Ma, L.; Ge, D.; Tu, S.; Qu, Y. Farmland function evolution in the Huang-Huai-Hai Plain: Processes, patterns and mechanisms. J. Geogr. Sci. 2018, 28, 759–777. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Liu, S.; Zhu, Y. Measuring urbanization-occupation and internal conversion of peri-urban cultivated land to determine changes in the peri-urban agriculture of the black soil region. Ecol. Indic. 2019, 102, 328–337. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Yan, H.; Chen, H.; Wang, F.; Qiu, L. Dynamics of cropland non-agriculturalization in Shaanxi Province of China and its attribution using a machine learning approach. Land 2025, 14, 190. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, Z.; Cheng, G. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy 2023, 125, 106496. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Yang, X.; Zhang, J. Rural transformation driven by households’ adaptation to climate, policy, market, and urbanization: Perspectives from livelihoods-land use on Chinese Loess Plateau. Agriculture 2022, 12, 1111. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, L.; Wang, X.; Wu, S.; Bai, J.; Li, Z.; Zhang, Y. Efficiency of agricultural modernization in China: Systematic analysis in the new framework of multidimensional security. J. Clean. Prod. 2023, 432, 139611. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Li, Y. Ecological restoration under rural restructuring: A case study of Yan’an in China’s loess plateau. Land Use Policy 2019, 87, 104087. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Y.; Zhu, Y. Can China’s energy policies achieve the “dual carbon” goal? A multi-dimensional analysis based on policy text tools. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Huang, L.; Yang, P.; Zhang, B.; Hu, W. Spatio-Temporal coupling characteristics and the driving mechanism of population-land-industry urbanization in the Yangtze River Economic Belt. Land 2021, 10, 400. [Google Scholar] [CrossRef]
- Chen, M.; Samat, N.; Tilaki, M.J.M.; Duan, L. Land use/cover change simulation research: A system literature review based on bibliometric analyses. Ecol. Indic. 2025, 170, 112991. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Li, F. Correlation between land use spatial and functional transition: A case study of Shaanxi Province, China. Land Use Policy 2022, 119, 106194. [Google Scholar] [CrossRef]
- Liu, S.; Yao, S. The effect of precipitation on the Cost-Effectiveness of Sloping land conversion Program: A case study of Shaanxi Province, China. Ecol. Indic. 2021, 132, 108251. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Zhang, L.; Wei, X. Dynamics and causes of cropland Non-Agriculturalization in typical regions of China: An explanation Based on interpretable Machine learning. Ecol. Indic. 2024, 166, 112348. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K. Spatial dependence in linear regression models with an introduction to spatial econometrics. Handb. Appl. Econ. Stat. 1998, 155, 237–289. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Cai, G.; Xiong, J.; Wen, L.; Weng, A.; Lin, Y.; Li, B. Predicting the ecosystem service values and constructing ecological security patterns in future changing land use patterns. Ecol. Indic. 2023, 154, 110787. [Google Scholar] [CrossRef]
- Chou, J.; Dong, W.; Wang, S.; Fu, Y. Quantitative analysis of agricultural land use change in China. Phys. Chem. Earth 2015, 87–88, 3–9. [Google Scholar] [CrossRef]
- Gutiérrez Rodríguez, L.; Hogarth, N.J.; Zhou, W.; Xie, C.; Zhang, K.; Putzel, L. China’s conversion of cropland to forest program: A systematic review of the environmental and socioeconomic effects. Environ. Evid. 2016, 5, 21. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Cao, S.X. Impact of China’s large-scale ecological restoration program on the environment and society in arid and semiarid areas of China: Achievements, problems, synthesis, and applications. Crit. Rev. Environ. Sci. Technol. 2011, 41, 317–335. [Google Scholar] [CrossRef]
- Chen, B.; Yao, N. Evolution characteristics of cultivated land protection policy in China based on Smith policy implementation. Agriculture 2024, 14, 1194. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Chu, X.; Li, Z.; Wang, Y. Optimization of land-use management for ecosystem service improvement: A review. Phys. Chem. Earth 2017, 101, 70–77. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Q. A spatial panel statistical analysis on cultivated land conversion and chinese economic growth. Ecol. Indic. 2015, 51, 20–24. [Google Scholar] [CrossRef]
- Xu, W.; Sun, T. Evaluation of rural habitat environment in under-developed areas of Western China: A case study of Northern Shaanxi. Environ. Dev. Sustain. 2022, 24, 10503–10539. [Google Scholar] [CrossRef]
- Newton, A.C.; Coward, F.; Elliott, S.; Jenkins, E.; Linden, M.V.; Riris, P.; Silva, F. Understanding long-term human ecodynamics through the lens of ecosystem collapse. Holocene 2024, 34, 1439–1453. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The deep challenge of nitrate pollution in river water of China. Sci. Total Environ. 2021, 770, 144674. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Evaluation and dynamic prediction of ecological security from the perspective of sustainable development: A case study of Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 42331–42346. [Google Scholar] [CrossRef]
- Chien, S.-S. Local farmland loss and preservation in China A perspective of quota territorialization. Land Use Policy 2015, 49, 65–74. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Cao, Z.; Liu, Z.; Lu, Z.; Liu, Y. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Wang, L.Y.; Zheng, W.W.; Tang, L.P.; Zhang, S.Y.; Liu, Y.L.; Ke, X.L. Spatial optimization of urban land and cropland based on land production capacity to balance cropland protection and ecological conservation. J. Environ. Manag. 2021, 285, 112054. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, C.; Schindler, S.; Mueller, R.; Bontzorlos, V.; Clough, D.; Bezak, P.; Bonn, A.; et al. A greener path for the EU Common Agricultural Policy. Science 2019, 365, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, L.; Thiele, R. Rural welfare implications of large-scale land acquisitions in Africa: A theoretical framework. Econ. Model. 2015, 51, 269–279. [Google Scholar] [CrossRef]
- Kurosaki, T. Crop choice, farm income, and political control in Myanmar. J. Asia Pac. Econ. 2008, 13, 180–203. [Google Scholar] [CrossRef]
- Haberl, H. Competition for land: A sociometabolic perspective. Ecol. Econ. 2015, 119, 424–431. [Google Scholar] [CrossRef]
- Naess, P.; Saglie, I.-L.; Richardson, T. Urban sustainability: Is densification sufficient? Eur. Plan. Stud. 2020, 28, 146–165. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Piquer-Rodríguez, M.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Worldwide research trends on sustainable land use in agriculture. Land Use Policy 2019, 87, 104069. [Google Scholar] [CrossRef]
Data Type | Driving Factors | Data Source | Spatial Resolution |
---|---|---|---|
Land use data | Land use data in 2000, 2010, 2020 | https://www.resdc.cn/ (accessed on 12 July 2024) | 1 km |
Topographic data | Elevation, Slope | http://www.gscloud.cn/ (accessed on 12 July 2024) | 30 m |
Socio-economic data | Population density | https://www.worldpop.org/ (accessed on 15 July 2024) | 1 km |
Per capita GDP | https://www.resdc.cn/ (accessed on 15 July 2024) | 1 km | |
Accessibility factor data | National highways | http://www.webmap.cn/ (accessed on 16 July 2024) | 1 km |
Rural residential areas | http://www.webmap.cn/ (accessed on 15 July 2024) | 1 km | |
Climate data | Annual temperature | http://www.geodata.cn (accessed on 12 July 2024) | 1 km |
Annual precipitation | http://www.geodata.cn (accessed on 13 July 2024) | 1 km |
Natural Growth | Cultivated Land Protection | Ecological Protection | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
b | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
d | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
e | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Cultivated Land | Forest Land | Grass Land | Water | Build-Up Land | Bare Land | ||
---|---|---|---|---|---|---|---|
2000 | Area (km2) | 71,994.33 | 46,268.80 | 77,573.52 | 1748.69 | 3015.48 | 4893.21 |
Proportion (%) | 35.03 | 22.52 | 37.75 | 0.85 | 1.47 | 2.38 | |
2010 | Area (km2) | 70,134.57 | 47,597.65 | 77,826.13 | 1789.38 | 3380.73 | 4765.59 |
Proportion (%) | 34.13 | 23.16 | 37.87 | 0.87 | 1.65 | 2.32 | |
2020 | Area (km2) | 66,600.16 | 48,620.22 | 78,755.51 | 1838.25 | 5298.65 | 4453.62 |
Proportion (%) | 32.41 | 23.66 | 38.32 | 0.89 | 2.58 | 2.17 |
Land Use Types | Natural Growth | Cultivated Land Protection | Ecological Protection | |||
---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Cultivated land | 65,454.08 | 31.84 | 72,905.50 | 35.47 | 65,605.47 | 31.91 |
Forest land | 49,928.52 | 24.29 | 51,242.62 | 24.93 | 49,979.85 | 24.31 |
Grass land | 78,566.12 | 38.22 | 70,471.13 | 34.28 | 78,646.40 | 38.26 |
Water | 1872.76 | 0.91 | 1570.61 | 0.76 | 1790.00 | 0.87 |
Build-up land | 5559.93 | 2.70 | 5300.87 | 2.58 | 5387.51 | 2.62 |
Bare land | 4185.00 | 2.04 | 4075.69 | 1.98 | 4157.18 | 2.02 |
2000–2020 | Natural Growth | Cultivated Land Protection | Ecological Protection | |
---|---|---|---|---|
p-value | <0.01 | <0.01 | <0.01 | <0.01 |
Z-score | 8.639 | 8.647 | 9.996 | 8.163 |
GISA | 0.537 | 0.538 | 0.623 | 0.506 |
Aggregation Types | 2000–2020 | Natural Growth | Cultivated Land Protection | Ecological Protection |
---|---|---|---|---|
High–High | 94,199.75 (16) | 77,641.08 (11) | 80,854.28 (12) | 96,835.25 (16) |
High–Low | 1856.66 (1) | 6666.37 (2) | 6017.36 (2) | 2314.71 (1) |
Low–High | 4168.77 (2) | 7302.56 (3) | 7302.56 (3) | 3802.44 (2) |
Low–Low | 12,201.34 (7) | 8037.55 (12) | 17,399.76 (19) | 15,203.3 (17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Chen, H.; Wang, F.; Qiu, L.; Li, R. Early Warning and Management Measures for the Non-Agriculturalization of Cultivated Land in Shaanxi Province of China Based on a Patch-Generated Land Use Simulation Model. Agriculture 2025, 15, 672. https://doi.org/10.3390/agriculture15070672
Yan H, Chen H, Wang F, Qiu L, Li R. Early Warning and Management Measures for the Non-Agriculturalization of Cultivated Land in Shaanxi Province of China Based on a Patch-Generated Land Use Simulation Model. Agriculture. 2025; 15(7):672. https://doi.org/10.3390/agriculture15070672
Chicago/Turabian StyleYan, Huiting, Hao Chen, Fei Wang, Linjing Qiu, and Rui Li. 2025. "Early Warning and Management Measures for the Non-Agriculturalization of Cultivated Land in Shaanxi Province of China Based on a Patch-Generated Land Use Simulation Model" Agriculture 15, no. 7: 672. https://doi.org/10.3390/agriculture15070672
APA StyleYan, H., Chen, H., Wang, F., Qiu, L., & Li, R. (2025). Early Warning and Management Measures for the Non-Agriculturalization of Cultivated Land in Shaanxi Province of China Based on a Patch-Generated Land Use Simulation Model. Agriculture, 15(7), 672. https://doi.org/10.3390/agriculture15070672