Selection of New Field Pea Varieties for the Organic and Conventional Farming Systems in the Nemoral Climatic Zone
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site and Conditions
2.2. Experimental Design and Analysis
2.3. Statistical Analysis
3. Results
3.1. Productivity of New Field Pea Varieties in Different Cropping Systems
3.2. Protein and Amino Acid Content of Different Varieties
4. Discussion
4.1. Field Pea Yield Responses to Cropping System and Variety Selection
4.2. Field Pea Nutritional Value Responses to Cropping System and Variety Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; Van Der Heijden, M.G.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising grain yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Ferreira, H.; Pinto, E.; Vasconcelos, M.W. Legumes as a Cornerstone of the Transition Toward More Sustainable Agri-Food Systems and Diets in Europe. Front. Sustain. Food Syst. 2021, 5, 694121. [Google Scholar] [CrossRef]
- Weindl, I.; Ost, M.; Wiedmer, P.; Schreiner, M.; Neugart, S.; Klopsch, R.; Kühnhold, H.; Kloas, W.; Henkel, I.M.; Schlüter, O.; et al. Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Glob. Food Secur. 2020, 25, 100367. [Google Scholar]
- Ditzler, L.; van Apeldoorn, D.F.; Pellegrini, F.; Antichi, D.; Bàrberi PRossing, W.A.H. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 2021, 41, 26. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Nolot, J.-M.; Raffaillac, D.; Justes, E. Innovative cropping systems to reduce N inputs and maintain wheat grain yields by inserting grain legumes and cover crops in southwestern Fran. Eur. J. Agron. 2017, 82, 331–341. [Google Scholar] [CrossRef]
- Costa, M.P.; Reckling, M.; Chadwick, D.; Rees, R.M.; Saget, S.; Williams, M.; Styles, D. Legume-Modified Rotations Deliver Nutrition With Lower Environmental Impact. Front. Sustain. Food Syst. 2021, 5, 656005. [Google Scholar] [CrossRef]
- Willsey, T.; Patey, J.; Vucurevich, C.; Chatterton, S.; Carcamo, H. Evaluation of foliar and seed treatments for integrated management of root rot and field pea leaf weevil in field pea and faba bean. Crop Prot. 2021, 143, 105538. [Google Scholar]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.; Vanhatalo, A.; et al. Grain legume production and use in euro pean agricultural systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2019, 360, 987–992. [Google Scholar] [CrossRef]
- Tao, A.; Afshar, R.K.; Huang, J.; Mohammed, Y.A.; Espe, M.; Chen, C. Variation in grain yield, starch, and protein of dry field pea grown across Montana. Agron. J. 2017, 109, 1491–1501. [Google Scholar] [CrossRef]
- Wiréhn, L. Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 2018, 77, 63–74. [Google Scholar]
- Ravasi, R.A.; Paleari, L.; Vesely, F.M.; Movedi, E.; Thoelke, W.; Confalonieri, R. Ideotype definition to adapt legumes to climate change: A case study for field pea in Northern Italy. Agric. For. Meteorol. 2020, 291, 108081. [Google Scholar] [CrossRef]
- Mousavi-Derazmahalleh, M.; Bayer, P.E.; Hane, J.K.; Valliyodan, B.; Nguyen, H.T.; Nelson, M.N.; Erskine, W.; Varshney, R.K.; Papa, R.; Edwards, D. Adapting legume crops to climate change using genomic approaches. Plant Cell Environ. 2019, 42, 6–19. [Google Scholar] [CrossRef]
- Marteau-Bazouni, M.; Jeuffroy, M.-H.; Guilpart, N. Grain legume response to future climate and adaptation strategies in Europe: A review of simulation studies. Eur. J. Agron. 2024, 153, 127056. [Google Scholar] [CrossRef]
- Rubiales, D.; Annicchiarico, P.; Vaz Patto, M.C.; Julier, B. Legume Breeding for the Agroecological Transition of Global Agri-Food Systems: A Eurofield pean Perspective. Front. Plant Sci. 2021, 12, 782574. [Google Scholar] [CrossRef]
- Toleikiene, M.; Slepetys, J.; Sarunaite, L.; Lazauskas, S.; Deveikyte, I.; Kadziuliene, Z. Soybean development and productivity in response to organic management above the northern boundary of soybean distribution in Europe. Agronomy 2021, 11, 214. [Google Scholar] [CrossRef]
- Žydelis, R.; Herbst, M.; Weihermüller, L.; Ruzgas, R.; Volungevičius, J.; Barčauskaitė, K.; Tilvikienė, V. Yield potential and factor influencing yield gap in industrial hemp cultivation under nemoral climate conditions. Eur. J. Agron. 2022, 139, 126576. [Google Scholar]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Almogdad, M.; Semaškienė, R. The occurrence and control of black bean aphid (Aphis fabae Scop.) in broad bean. Zemdirbyste-Agriculture 2021, 108, 165–172. [Google Scholar] [CrossRef]
- Semaškienė, R.; Jonavičienė, A.; Razbadauskienė, K.; Deveikytė, I.; Sabeckis, A.; Supronienė, S.; Šarūnaitė, L.; Kadžiulienė, Ž. The response to crop health and productivity of field pea (Pisum sativum L.) at different growing conditions. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 923–930. [Google Scholar]
- Kaziūnienė, J.; Pini, F.; Shamshitov, A.; Razbadauskienė, K.; Frercks, B.; Gegeckas, A.; Mažylytė, R.; Lapinskienė, L.; Supronienė, S. Genetic Characterization of Rhizobium spp. Strains in an Organic Field Pea (Pisum sativum L.) Field in Lithuania. Plants 2024, 13, 1888. [Google Scholar] [CrossRef] [PubMed]
- Tafesse, E.G.; Warkentin, T.D.; Bueckert, R.A. Canopy architecture and leaf type as traits of heat resistance in field pea. Field Crops Res. 2019, 241, 107561. [Google Scholar]
- Sadras, V.O.; Lake, L.; Kaurc, S.; Rosewarned, G. Phenotypic and genetic analysis of pod wall ratio, phenology and yield components in field pea. Field Crops Res. 2019, 241, 107551. [Google Scholar] [CrossRef]
- Carlson-Nilsson, U.; Aloisi, K.; Vågen, I.M.; Rajala, A.; Mølmann, J.B.; Rasmussen, S.K.; Niemi, M.; Wojciechowska, E.; Pärssinen, P.; Poulsen, G.; et al. Trait Expression and Environmental Responses of Field pea (Pisum sativum L.) Genetic Resources Targeting Cultivation in the Arctic. Front. Plant Sci. 2021, 12, 688067. [Google Scholar] [CrossRef]
- Witten, S.; Aulrich, K. Effect of variety and environment on the amount of thiamine and riboflavin in cereals and grain legumes. Anim. Feed. Sci. Technol. 2018, 238, 39–46. [Google Scholar]
- Robinson, G.H.J.; Domoney, C. Perspectives on the genetic improvement of health- and nutrition-related traits in field pea. Plant Physiol. Biochem. 2021, 158, 353–362. [Google Scholar]
- Reveglia, P.; Blanco, M.; Cobos, M.J.; Labuschagne, M.; Joy, M.; Rubiales, D. Metabolic profiling of pea (Pisum sativum) cultivars in changing environments: Implications for nutritional quality in animal feed. Food Chem. 2025, 462, 140972. [Google Scholar]
- Klein, A.; Houtin, H.; Rond-Coissieux, C.; Naudet-Huart, M.; Touratier, M.; Marget, P.; Burstin, J. Meta-analysis of QTL reveals the genetic control of grain yield-related traits and seed prot ein content in field pea. Sci. Rep. 2020, 10, 15925. [Google Scholar] [CrossRef]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Pappa, V.; Konosonoka, I.H.; Travlos, I.; Bilalis, D.; Bebeli, P.; Savvas, D. Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of field pea landraces grown under organic and conventional farming systems. Arch. Agron. Soil Sci. 2019, 65, 294–307. [Google Scholar] [CrossRef]
- Thavarajah, D.; Lawrence, T.J.; Powers, S.E.; Kay, J.; Thavarajah, P.; Shipe, E.; McGee, R.; Kumar, S.; Boyles, R. Organic dry field pea (Pisum sativum L.) biofortification for better human health. PLoS ONE 2022, 17, e0261109. [Google Scholar] [CrossRef]
- Roos, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and opportunities of increasing grain yields in organic farming. A review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.-C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 2017, 37, 13. [Google Scholar]
- Georgieva, N. Suitability of field pea varieties for organic farming conditions. Biol. Agric. Hortic. 2017, 33, 225–234. [Google Scholar] [CrossRef]
- Walter, S.; Zehring, J.; Mink, K.; Quendt, U.; Zocher, K.; Rohn, S. Protein content of field pea (Pisum sativum) and beans (Vicia faba)—Influence of cultivation conditions. J. Food Compos. Anal. 2022, 105, 104257. [Google Scholar]
Cropping System | Varieties | Seeds in Pod (n° pod−1) | Seeds, (n° plant−1) | Seed Grain Yield on Plant (g plant−1) | Productive Nods (n° plant−1) | Vegetation Length (Days) | Plant Height (cm) |
---|---|---|---|---|---|---|---|
Conventional | Jura | 5.0 abc | 19.2 ab | 6.0 abc | 2.60 bc | 83 ab | 70 c |
Lina | 5.8 a | 24.2 a | 6.2 ab | 2.96 bc | 83 ab | 80 b | |
Egle | 4.9 abc | 23.1 a | 7.0 a | 2.67 bc | 90 a | 92 a | |
Ieva | 5.4 ab | 22.7 a | 6.0 abc | 4.04 a | 83 ab | 69 cd | |
Ingrid | 4.3 bc | 15.3 bc | 4.4 cd | 2.59 bc | 84 ab | 73 bc | |
Organic | Jura | 4.3 bc | 14.1 bc | 4.1 de | 2.50 bc | 79 bc | 56 e |
Lina | 3.9 cd | 13.4 bc | 3.4 de | 2.40 c | 72 c | 58 e | |
Egle | 3.9 cd | 15.7 b | 4.8 bcd | 2.40 c | 76 bc | 75 bc | |
Ieva | 4.1 c | 13.7 bc | 4.2 cde | 3.27 b | 78 bc | 62 de | |
Ingrid | 2.9 d | 9.8 c | 2.5 e | 1.47 d | 73 c | 55 e | |
Probability | 0.053 | 0.014 | 0.024 | <0.001 | 0.014 | <0.001 | |
Average | |||||||
Conventional | 5.1 a | 21.4 a | 6.1 a | 3.02 a | 85 a | 78.4 a | |
Organic | 3.9 b | 13.6 b | 4.0 b | 2.59 b | 77 b | 62.1 b | |
Total | 4.5 | 17.5 | 5.1 | 2.81 | 81 | 70.3 |
Cropping Systems | Varieties | Field Pea Grain Yield, kg ha−1 | Protein Content, % | 1000 Grain Weight | ||
---|---|---|---|---|---|---|
2018 | 2019 | (g) | g | |||
Conventional | Jura DS | 3963 a | 4892 ab | 5971 ab | 24.4 ab | 304 a |
Lina DS | 3726 ab | 4234 bc | 6570 a | 23.8 bc | 284 bc | |
Egle DS | 4241 a | 4479 ab | 6541 a | 24.9 a | 300 ab | |
Ieva DS | 3218 b | 5729 a | 5227 b | 23.7 bc | 274 c | |
Ingrid | 3060 b | 4108 bc | 5998 ab | 23.7 bc | 313 a | |
Organic | Jura DS | 1254 cd | 2872 cde | 3010 c | 22.1 d | 284 bc |
Lina DS | 1358 cd | 2422 de | 3339 c | 23.2 cd | 268 cd | |
Egle DS | 1722 c | 3422 bcd | 3150 c | 22.4 d | 272 c | |
Ieva DS | 723 d | 3711 bcd | 2936 cd | 20.4 e | 253 d | |
Ingrid | 900 d | 1716 e | 1973 d | 20.5 e | 270 cd | |
Average | ||||||
Conventional | 3767 a | 4653 a | 6160 a | 24.3 a | 78.4 a | |
Organic | 1287 b | 2988 b | 3036 b | 21.7 b | 62.1 b | |
Total | 2527 | 3890 | 4598 | 23.0 | 70.3 |
Varieties | Histidine | Valine | Tyrosine | Leucine | Arginine | Glycine | Glutamine |
---|---|---|---|---|---|---|---|
Egle DS | 1.01 a | 0.97 a | 0.85 a | 1.67 a | 2.50 a | 1.09 a | 4.69 a |
Lina DS | 0.83 b | 0.93 ab | 0.84 a | 1.62 ab | 2.13 cd | 1.04 abc | 4.44 ab |
Ieva DS | 1.01 a | 0.91 ab | 0.84 a | 1.66 ab | 2.03 cd | 1.02 bc | 4.41 ab |
Jura DS | 1.01 a | 0.97 a | 0.85 a | 1.65 ab | 2.18 b | 1.07 ab | 4.60 a |
Ingrid | 0.77 b | 0.87 b | 0.79 b | 1.56 b | 1.92 d | 0.99 c | 4.27 b |
Average | 0.92 | 0.93 | 0.83 | 1.63 | 2.15 | 1.04 | 4.48 |
Variation | 7.64 | 4.56 | 3.32 | 3.71 | 4.22 | 4.08 | 4.02 |
Probability | 0.0003 | 0.0265 | 0.0441 | 0.1376 | <0.0001 | 0.0293 | 0.0377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadžiulienė, Ž.; Toleikienė, M.; Razbadauskienė, K.; Šarūnaitė, L.; Deveikytė, I.; Supronienė, S.; Semaškienė, R.; Arlauskienė, A. Selection of New Field Pea Varieties for the Organic and Conventional Farming Systems in the Nemoral Climatic Zone. Agriculture 2025, 15, 687. https://doi.org/10.3390/agriculture15070687
Kadžiulienė Ž, Toleikienė M, Razbadauskienė K, Šarūnaitė L, Deveikytė I, Supronienė S, Semaškienė R, Arlauskienė A. Selection of New Field Pea Varieties for the Organic and Conventional Farming Systems in the Nemoral Climatic Zone. Agriculture. 2025; 15(7):687. https://doi.org/10.3390/agriculture15070687
Chicago/Turabian StyleKadžiulienė, Žydrė, Monika Toleikienė, Kristyna Razbadauskienė, Lina Šarūnaitė, Irena Deveikytė, Skaidrė Supronienė, Roma Semaškienė, and Aušra Arlauskienė. 2025. "Selection of New Field Pea Varieties for the Organic and Conventional Farming Systems in the Nemoral Climatic Zone" Agriculture 15, no. 7: 687. https://doi.org/10.3390/agriculture15070687
APA StyleKadžiulienė, Ž., Toleikienė, M., Razbadauskienė, K., Šarūnaitė, L., Deveikytė, I., Supronienė, S., Semaškienė, R., & Arlauskienė, A. (2025). Selection of New Field Pea Varieties for the Organic and Conventional Farming Systems in the Nemoral Climatic Zone. Agriculture, 15(7), 687. https://doi.org/10.3390/agriculture15070687