CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Annotation
2.3. Data Partitioning and Data Enhancement
2.4. General Technical Route
2.5. The Proposed CEFW-YOLO
2.5.1. CWSConv
2.5.2. C2PSA_ECCAttention
2.5.3. FMLAttention
2.5.4. WIoU Loss Function
3. Results and Discussion
3.1. Model Evaluation
3.2. Comparison of YOLO11n and CEFW-YOLO
3.3. Ablation Experiment
3.4. Comparison Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dutot, M.; Nelson, L.M.; Tyson, R.C. Predicting the Spread of Postharvest Disease in Stored Fruit, with Application to Apples. Postharvest Biol. Technol. 2013, 85, 45–56. [Google Scholar] [CrossRef]
- Yang, R.; He, Y.; Hu, Z.; Gao, R.; Yang, H. CA-YOLOv5: A YOLO Model for Apple Detection in the Natural Environment. Syst. Sci. Control Eng. 2024, 12, 2278905. [Google Scholar] [CrossRef]
- Lv, M.; Su, W.-H. YOLOV5-CBAM-C3TR: An Optimized Model Based on Transformer Module and Attention Mechanism for Apple Leaf Disease Detection. Front. Plant Sci. 2024, 14, 1323301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Ma, W.; Wang, J.; Yang, M.; Wang, Y.; Wang, C. EADD-YOLO: An Efficient and Accurate Disease Detector for Apple Leaf Using Improved Lightweight YOLOv5. Front. Plant Sci. 2023, 14, 1120724. [Google Scholar] [CrossRef]
- Pavate, A.; Kukreja, S.; Janrao, S.; Bankar, S.; Patil, R.; Bidve, V. Efficient Model for Cotton Plant Health Monitoring via YOLO-Based Disease Prediction. Indones. J. Electr. Eng. Comput. Sci. 2025, 37, 164. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Vijayakumar, A.; Vairavasundaram, S. YOLO-Based Object Detection Models: A Review and Its Applications. Multimed. Tools Appl. 2024, 83, 83535–83574. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Gong, X.; Zhang, S. A High-Precision Detection Method of Apple Leaf Diseases Using Improved Faster R-CNN. Agriculture 2023, 13, 240. [Google Scholar] [CrossRef]
- Li, X.; Yang, C. Maize Leaf Disease Identification Method Based on Improved Faster R-CNN. In Proceedings of the 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 11 October 2023; pp. 961–964. [Google Scholar]
- Bondre, S.; Patil, D. Crop Disease Identification Segmentation Algorithm Based on Mask-RCNN. Agron. J. 2024, 116, 1088–1098. [Google Scholar] [CrossRef]
- Luo, W.; Cai, L.; Yang, Y. Apple Leaf Disease Recognition in Natural Scenes Based on Re-Parameterized SSD Algorithm. In Proceedings of the International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2022), Guangzhou, China, 23–25 December 2023; Liang, R., Wang, J., Eds.; SPIE: Guangzhou, China, 2023; p. 137. [Google Scholar]
- Yao, X.; Yang, F.; Yao, J. YOLO-Wheat: A Wheat Disease Detection Algorithm Improved by YOLOv8s. IEEE Access 2024, 12, 133877–133888. [Google Scholar] [CrossRef]
- Trinh, T.; Bui, X.; Tran, T.; Nguyen, H.; Ninh, K. Mangosteen Fruit Detection Using Improved Faster R-CNN. Intelligence of Things: Technologies and Applications: The First International Conference on Intelligence of Things (ICIT 2022), Hanoi, Vietnam, 17–19 August 2022, Proceedings; Lecture Notes on Data Engineering and Communications Technologies; Springer International Publishing: Cham, Switzerland, 2022; pp. 366–375. [Google Scholar]
- Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y. A Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves. Agriculture 2022, 12, 248. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Wang, C.; Wang, L.; Zhang, Y.; Song, H. Segmentation Method of Zanthoxylum bungeanum Cluster Based on Improved Mask R-CNN. Agriculture 2024, 14, 1585. [Google Scholar] [CrossRef]
- Huang, F.; Li, Y.; Liu, Z.; Gong, L.; Liu, C. A Method for Calculating the Leaf Area of Pak Choi Based on an Improved Mask R-CNN. Agriculture 2024, 14, 101. [Google Scholar] [CrossRef]
- Wang, C.; Yang, G.; Huang, Y.; Liu, Y.; Zhang, Y. A Transformer-Based Mask R-CNN for Tomato Detection and Segmentation. IFS 2023, 44, 8585–8595. [Google Scholar] [CrossRef]
- Guo, W.; Feng, S.; Feng, Q.; Li, X.; Gao, X. Cotton Leaf Disease Detection Method Based on Improved SSD. Int. J. Agric. Biol. Eng. 2024, 17, 211–220. [Google Scholar]
- Zhang, W.; Huang, H.; Sun, Y.; Wu, X. AgriPest-YOLO: A Rapid Light-Trap Agricultural Pest Detection Method Based on Deep Learning. Front. Plant Sci. 2022, 13, 1079384. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Li, E.; Yang, G.; Liang, Z.; Tan, M. MD-YOLO: Multi-Scale Dense YOLO for Small Target Pest Detection. Comput. Electron. Agric. 2023, 213, 108233. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, T.; Liu, W.; Yuan, C.; Seng, X.; Guo, T.; Wang, X. YOLO-CRD: A Lightweight Model for the Detection of Rice Diseases in Natural Environments. Phyton 2024, 93, 1275–1296. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Xu, X.; Liu, L.; Yue, J.; Ding, R.; Lu, Y.; Liu, J.; Qiao, H. GVC-YOLO: A Lightweight Real-Time Detection Method for Cotton Aphid-Damaged Leaves Based on Edge Computing. Remote Sens. 2024, 16, 3046. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, C.; Yan, L.; Xiong, H.; Suthisut, D.; Pobsuk, P.; Wang, D. AC-YOLO: Multi-Category and High-Precision Detection Model for Stored Grain Pests Based on Integrated Multiple Attention Mechanisms. Expert Syst. Appl. 2024, 255, 124659. [Google Scholar] [CrossRef]
- Boudaa, B.; Abada, K.; Aichouche, W.A.; Nabil Belakermi, A. Advancing Plant Diseases Detection with Pre-Trained YOLO Models. In Proceedings of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), El Oued, Algeria, 24–25 April 2024; pp. 1–6. [Google Scholar]
- Liu, B.; Huang, X.; Sun, L.; Wei, X.; Ji, Z.; Zhang, H. MCDCNet: Multi-Scale Constrained Deformable Convolution Network for Apple Leaf Disease Detection. Comput. Electron. Agric. 2024, 222, 109028. [Google Scholar] [CrossRef]
- Zeng, W.; Pang, J.; Ni, K.; Peng, P.; Hu, R. Apple Leaf Disease Detection Based on Lightweight YOLOv8-GSSW. Appl. Eng. Agric. 2024, 40, 589–598. [Google Scholar] [CrossRef]
- Zhou, S.; Yin, W.; He, Y.; Kan, X.; Li, X. Detection of Apple Leaf Gray Spot Disease Based on Improved YOLOv8 Network. Mathematics 2025, 13, 840. [Google Scholar] [CrossRef]
- Yan, C.; Yang, K. FSM-YOLO: Apple Leaf Disease Detection Network Based on Adaptive Feature Capture and Spatial Context Awareness. Digit. Signal Process. 2024, 155, 104770. [Google Scholar] [CrossRef]
- Qiu, Z.; Xu, Y.; Chen, C.; Zhou, W.; Yu, G. Enhanced Disease Detection for Apple Leaves with Rotating Feature Extraction. Agronomy 2024, 14, 2602. [Google Scholar] [CrossRef]
- Huo, S.; Duan, N.; Xu, Z. An Improved Multi-scale YOLOv8 for Apple Leaf Dense Lesion Detection and Recognition. IET Image Proc. 2024, 18, 4913–4927. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Mark Liao, H.-Y. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In Proceedings of the Computer Vision—ECCV 2024, Milan, Italy, 29 September–4 October 2024; Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G., Eds.; Lecture Notes in Computer Science. Springer Nature: Cham, Switzerland, 2025; Volume 15089, pp. 1–21, ISBN 978-3-031-72750-4. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Guiguang Ding Yolov10: Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
Model | P | R | mAP@0.5 | mAP@0.5:0.95 | FPS | FLOPs(G) |
---|---|---|---|---|---|---|
YOLO11n | 0.818 | 0.779 | 0.797 | 0.519 | 103.3 | 6.3 |
CEFW-YOLO | 0.855 | 0.812 | 0.873 | 0.571 | 136.4 | 5.0 |
CWSConv | C2PSA_ECCAttention | FMLAttention | WIoU | P | R | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|---|---|---|
× | × | × | × | 0.818 | 0.779 | 0.797 | 0.519 |
√ | × | × | × | 0.823 | 0.784 | 0.805 | 0.524 |
× | √ | × | × | 0.820 | 0.787 | 0.802 | 0.522 |
× | × | √ | × | 0.835 | 0.791 | 0.835 | 0.531 |
× | × | × | √ | 0.830 | 0.795 | 0.827 | 0.528 |
√ | √ | × | × | 0.837 | 0.797 | 0.841 | 0.539 |
√ | × | √ | × | 0.839 | 0.799 | 0.847 | 0.545 |
√ | √ | √ | × | 0.842 | 0.800 | 0.855 | 0.556 |
× | √ | √ | √ | 0.845 | 0.804 | 0.865 | 0.562 |
√ | √ | √ | √ | 0.855 | 0.812 | 0.873 | 0.571 |
Model | P | R | mAP@0.5 | mAP@0.5:0.95 | FPS | FLOPs(G) |
---|---|---|---|---|---|---|
FasterRCNN | 0.753 | 0.732 | 0.720 | 0.441 | 25.3 | - |
YOLOv5n | 0.787 | 0.794 | 0.794 | 0.518 | 98.2 | 7.1 |
YOLOv6n | 0.813 | 0.774 | 0.795 | 0.520 | 54.5 | 11.8 |
YOLOv8n | 0.798 | 0.785 | 0.804 | 0.526 | 76.2 | 8.1 |
YOLOv9t | 0.809 | 0.775 | 0.802 | 0.536 | 90.1 | 7.6 |
YOLOv10n | 0.817 | 0.766 | 0.790 | 0.515 | 78.7 | 8.2 |
YOLO11n | 0.818 | 0.779 | 0.797 | 0.519 | 103.3 | 6.3 |
CEFW-YOLO | 0.855 | 0.812 | 0.873 | 0.571 | 136.4 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Li, X.; He, Y.; Islam, M.A. CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments. Agriculture 2025, 15, 833. https://doi.org/10.3390/agriculture15080833
Tao J, Li X, He Y, Islam MA. CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments. Agriculture. 2025; 15(8):833. https://doi.org/10.3390/agriculture15080833
Chicago/Turabian StyleTao, Jinxian, Xiaoli Li, Yong He, and Muhammad Adnan Islam. 2025. "CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments" Agriculture 15, no. 8: 833. https://doi.org/10.3390/agriculture15080833
APA StyleTao, J., Li, X., He, Y., & Islam, M. A. (2025). CEFW-YOLO: A High-Precision Model for Plant Leaf Disease Detection in Natural Environments. Agriculture, 15(8), 833. https://doi.org/10.3390/agriculture15080833