Farmers’ Acceptance of Water–Fertilizer Integration Technology: Theory and Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Development
2.2. Measurements
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Measurement Model Evaluation
3.2. Structural Model Evaluation
3.3. Hypothesis Test
4. Discussion
4.1. Theoretical Influences
4.2. Practical Application Significance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, T.; Li, K.; Xiong, K.; Wang, J.; Yang, S.; Wang, Z.; Gao, A.; Yu, X. Research Progress on Water–Fertilizer Coupling and Crop Quality Improvement and Its Implication for the Karst Rock Desertification Control. Agronomy 2022, 12, 903. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, G.; Quan, W.; Zhao, X.; Tao, Q. Coupling optimization of water-fertilizer for coordinated development of the environment and growth of Pinus massoniana seedlings. Agric. Water Manag. 2024, 300, 108895. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, M.; Li, C.; Liu, X.; Cao, C.; Li, X.; Kan, Z. Precision fertilization and irrigation: Progress and applications. AgriEngineering 2022, 4, 626–655. [Google Scholar] [CrossRef]
- Song, K.; Qin, Q.; Yang, Y.-F.; Sun, L.-J.; Sun, Y.-F.; Zheng, X.-Q.; Lü, W.-G.; Xue, Y. Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards. J. Integr. Agric. 2023, 22, 598–610. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, N.; Li, Y.; Li, Y.; Zhang, D.; Xu, Z.; Zhang, Z. Growth and fruit yields of greenhouse tomato under the integrated water and fertilizer by Moistube irrigation. Agronomy 2022, 12, 1630. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhen, J.; Xu, C.; Hu, X.; Wang, Y. Optimizing drip fertigation management to simultaneously improve the yield, water productivity and fertilizer agronomic utilization efficiency of grapes in different precipitation year patterns. Agric. Water Manag. 2024, 295, 108749. [Google Scholar] [CrossRef]
- Zou, J.; Shen, L.; Wang, F.; Tang, H.; Zhou, Z. Dual carbon goal and agriculture in China: Exploring key factors influencing farmers’ behavior in adopting low carbon technologies. J. Integr. Agric. 2024, 23, 3215–3233. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, C.; Zai, X.; Song, Y.; Zhang, X. Optimizing fertilizer use for sustainable food systems: An evaluation of integrated water-fertilizer system adoption among cotton farmers in China. Front. Sustain. Food Syst. 2023, 7, 1310426. [Google Scholar] [CrossRef]
- Sun, G.; Hu, T.; Liu, X.; Peng, Y.; Leng, X.; Li, Y.; Yang, Q. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions. Agric. Water Manag. 2022, 260, 107296. [Google Scholar] [CrossRef]
- Du, R.; Jiang, Y.; Li, R.; Li, D.; Li, R.; Yang, X.; Zhang, Z. Appropriate water and fertilizer supply enhanced yield by promoting photosynthesis and growth of strawberries. Agric. Water Manag. 2024, 304, 109074. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, Y.; Mu, Y.; Zhou, Y.; Zhang, C.; Liu, J. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain. Sci. Total Environ. 2017, 575, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Nie, J.; Yin, H.; Luo, Y.; Shu, C.; Cheng, Q.; Fu, H.; Li, B.; Li, L.; Sun, Y.; et al. Can the Integration of Water and Fertilizer Promote the Sustainable Development of Rice Production in China? Agriculture 2024, 14, 585. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Jiang, G.; Quan, Z. Addressing the differences in Farmers’ willingness and behavior regarding developing green agriculture—A case study in Xichuan County, China. Land 2021, 10, 316. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Ronaghi, M.H.; Forouharfar, A. A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT). Technol. Soc. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Otter, V.; Deutsch, M. Did policy lose sight of the wood for the trees? An UTAUT-based partial least squares estimation of farmers acceptance of innovative sustainable land use systems. Land Use Policy 2023, 126, 106467. [Google Scholar] [CrossRef]
- Schwartz, S.H. Normative influences on altruism. In Advances in Experimental Social Psychology; Elsevier: Amsterdam, The Netherlands, 1977; Volume 10, pp. 221–279. [Google Scholar]
- Wang, Y.-J.; Wang, N.; Huang, G.Q. How do rural households accept straw returning in Northeast China? Resour. Conserv. Recycl. 2022, 182, 106287. [Google Scholar] [CrossRef]
- Li, S.; Liu, X. Exploring the Influencing Factors of Carbon Footprint Tracking Application Usage Intention: A Combined UTAUT and NAM Approach; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Sattler, C.; Nagel, U.J. Factors affecting farmers’ acceptance of conservation measures—A case study from north-eastern Germany. Land Use Policy 2010, 27, 70–77. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhao, K. Antecedents of citizens’ environmental complaint intention in China: An empirical study based on norm activation model. Resour. Conserv. 2018, 134, 121–128. [Google Scholar] [CrossRef]
- Shi, Y.; Siddik, A.B.; Masukujjaman, M.; Zheng, G.; Hamayun, M.; Ibrahim, A.M. The antecedents of willingness to adopt and pay for the IoT in the agricultural industry: An application of the UTAUT 2 theory. Sustainability 2022, 14, 6640. [Google Scholar] [CrossRef]
- Singh, H.; Singh, V.; Singh, T.; Higueras-Castillo, E. Electric vehicle adoption intention in the Himalayan region using UTAUT2–NAM model. Policy Case Stud. Transp. 2023, 11, 100946. [Google Scholar] [CrossRef]
- Xie, K.; Zhu, Y.; Ma, Y.; Chen, Y.; Chen, S.; Chen, Z. Willingness of tea farmers to adopt ecological agriculture techniques based on the UTAUT Extended Model. Int. J. Environ. Res. Public Health 2022, 19, 15351. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Q.; Kitkuakul, S. Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy. Cogent Bus. Manag. 2018, 5, 1459006. [Google Scholar] [CrossRef]
- Lawler III, E.E.; Suttle, J.L. Expectancy theory and job behavior. Organ. Behav. Hum. Perform. 1973, 9, 482–503. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Bahruddin, M.A.; Tareq, A.H. A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: Assessing farmers behavior. Trends Food Sci. Technol. 2019, 86, 439–452. [Google Scholar] [CrossRef]
- Sabbagh, M.; Gutierrez, L. Farmers’ acceptance of a micro-irrigation system: A focus group study. Bio-Based Appl. Econ. 2023, 12, 221–242. [Google Scholar] [CrossRef]
- Wang, G.; Plaster, M.T.; Bai, Y.-L.; Liu, C.-F. Consumers’ experiences and preferences for plant-based meat food: Evidence from a choice experiment in four cities of China. J. Integr. Agric. 2023, 22, 306–319. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Straub, D.W. Editor’s comments: A critical look at the use of PLS-SEM in “MIS Quarterly”. MIS Q. 2012, 36, iii–xiv. [Google Scholar] [CrossRef]
- Ramayah, T.; Cheah, J.; Chuah, F.; Ting, H.; Memon, M.A. Partial least squares structural equation modeling (PLS-SEM) using smartPLS 3.0. Updat. Guide Pract. Guide Stat. Anal. 2018, 1, 1–72. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Jöreskog, K.G. Structural analysis of covariance and correlation matrices. Psychometrika 1978, 43, 443–477. [Google Scholar] [CrossRef]
- Sarstedt, M.; Henseler, J.; Ringle, C.M. Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. In Measurement and Research Methods in International Marketing; Emerald Group Publishing Limited: Leeds, UK, 2011; pp. 195–218. [Google Scholar]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares: Concepts, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 655–690. [Google Scholar]
- Neyman, J.; Pearson, E.S. IX. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. 1933, 231, 289–337. [Google Scholar]
- Steg, L.; Vlek, C. Encouraging pro-environmental behaviour: An integrative review and research agenda. J. Environ. Psychol. 2009, 29, 309–317. [Google Scholar] [CrossRef]
- Dong, H.; Wang, B.; Han, J.; Luo, L.; Wang, H.; Sun, Z.; Zhang, L.; Dai, M.; Cheng, X.; Zhao, Y. Understanding farmers’ eco-friendly fertilization technology adoption behavior using an integrated SOR model: The case of soil testing and formulated fertilization technology in Shaanxi, China. Front. Environ. Sci. 2022, 10, 991255. [Google Scholar] [CrossRef]
- Capuano, N.; Chiclana, F.; Fujita, H.; Herrera-Viedma, E.; Loia, V. Fuzzy group decision making with incomplete information guided by social influence. IEEE Trans. Fuzzy Syst. 2017, 26, 1704–1718. [Google Scholar] [CrossRef]
- Li, J.; Liu, G.; Chen, Y.; Li, R. Study on the influence mechanism of adoption of smart agriculture technology behavior. Sci. Rep. 2023, 13, 8554. [Google Scholar] [CrossRef]
- Wang, N.; Tang, H.; Wang, Y.-J.; Huang, G.Q. Antecedents in rural residents’ acceptance of autonomous vehicles. Transp. Res. Part D Transp. Environ. 2024, 132, 104244. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
Construct | Items | Origin |
---|---|---|
Performance Expectancy (PE) | PE1: Water–fertilizer integration technology can improve the efficiency of water resources and fertilizer use. | [14] |
PE2: Employing water–fertilizer integration technology helps me complete agricultural production tasks faster. | ||
PE3: I believe water–fertilizer integration technology is highly beneficial for agricultural production. | ||
Effort Expectancy (EE) | EE1: It was easy for me to learn how to use water and fertilizer integration technology. | [21] |
EE2: Employing water–fertilizer integration technology is straightforward to understand. | ||
EE3: I can quickly become proficient in employing water–fertilizer integration technology. | ||
EE4 *: It is challenging for me to learn how to employ water–fertilizer integration technology, and it requires a lot of effort. | ||
Social Influence (SI) | SI1: People vital to me (such as family and friends) believe I should use water and fertilizer integration technology. | [28] |
SI2: People who influence my behavior think I should use water and fertilizer integration technology. | ||
SI3: People whose opinions I value think I should use water and fertilizer integration technology. | ||
Facilitating Conditions (FC) | FC1: I have the resources needed to use integrated water and fertilizer technology (such as space and money). | [24] |
FC2: I have the necessary knowledge to use integrated water and fertilizer technology. | ||
FC3: When I encounter difficulties employing water–fertilizer integration technology, I can receive the necessary technical guidance and services. | ||
Financial Consequences (FCF) | FCF1: Employing this technology can reduce financial waste caused by separate irrigation and fertilization. | [29] |
FCF2: Employing this technology can save water and fertilizer, thereby lowering my production costs. | ||
FCF3: The initial investment may be higher, but employing this technology can increase my net income overall. | ||
Awareness of Consequences (AC) | AC1: I think employing this technology can conserve water resources. | [17] |
AC2: I think employing this technology can reduce fertilizer runoff. | ||
AC3: I think employing this technology can promote the sustainable development of the environment. | ||
Ascription of Responsibility (AR) | AR1: Saving water resources is my responsibility. | [22] |
AR2: Reducing fertilizer runoff is my responsibility. | ||
AR3: Promoting the sustainable development of the environment is my responsibility. | ||
Personal Norms (PN) | PN1: I feel that conserving water resources, reducing fertilizer runoff, and promoting environmental sustainability is a moral obligation. | [17] |
PN2: I think it is generally important for farmers to save water, reduce fertilizer loss, and promote environmental sustainability. | ||
PN3: I feel obliged to use integrated water and fertilizer management because of my own values/principles. | ||
Behavioral Intention (BI) | BI1: I am interested in using water and fertilizer integration technology. | [14] |
BI2: I am willing to try using integrated water and fertilizer technology. | ||
BI3: In summary, I intend to use integrated water and fertilizer technology. |
Characteristics | n (%) |
---|---|
Gender | |
Male | 319 (52.6%) |
Female | 287 (47.3%) |
Education level | |
Elementary school or lower | 125 (20.6%) |
Middle school | 269 (44.4%) |
High school/secondary school | 87 (14.4%) |
College and above | 125 (20.6%) |
Age | |
≤25 | 98 (16.2%) |
26–35 years | 57 (9.4%) |
36–45 years | 92 (15.2%) |
46–55 years | 190 (31.4%) |
56–65 years | 119 (19.6%) |
≥66 | 50 (8.2%) |
Land area | |
50 acres or lower | 330 (54.5%) |
50–100 acres | 107 (17.7%) |
100–150 acres | 53 (8.7%) |
150–200 acres | 54 (8.9%) |
200 acres or more | 62 (10.2%) |
Agricultural income per year | |
10,000 Yuan or lower | 175 (28.9%) |
10,000–50,000 Yuan | 255 (42.1%) |
50,000–100,000 Yuan | 103 (17.0%) |
100,000 Yuan or more | 73 (12.0%) |
Plant variety | |
Maize | 62 (10.2%) |
Corn | 406 (67.0%) |
Rice | 105 (17.3%) |
Else | 33 (5.4%) |
Heard of integrated water and fertilizer technology or not | |
Yes | 264 (43.6%) |
No | 342 (56.4%) |
Used integrated water and fertilizer technology or not | |
Yes | 194 (32.0%) |
No | 412 (68.0%) |
Constructs | Items | Factor Loadings | Mean | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|---|
AC | AC1 | 0.922 | 4.904 | 0.899 | 0.937 | 0.833 |
AC2 | 0.861 | 4.746 | ||||
AC3 | 0.952 | 4.929 | ||||
AR | AR1 | 0.926 | 5.215 | 0.892 | 0.933 | 0.824 |
AR2 | 0.847 | 5.036 | ||||
AR3 | 0.947 | 5.267 | ||||
BI | BI1 | 0.931 | 4.906 | 0.897 | 0.936 | 0.831 |
BI2 | 0.862 | 4.715 | ||||
BI3 | 0.939 | 4.929 | ||||
EE | EE1 | 0.842 | 4.561 | 0.836 | 0.891 | 0.674 |
EE2 | 0.819 | 4.540 | ||||
EE3 | 0.900 | 4.620 | ||||
EE4 | 0.712 | 4.087 | ||||
FC | FC1 | 0.876 | 4.512 | 0.841 | 0.904 | 0.759 |
FC2 | 0.843 | 4.398 | ||||
FC3 | 0.893 | 4.746 | ||||
FCF | FCF1 | 0.914 | 4.901 | 0.883 | 0.928 | 0.811 |
FCF2 | 0.862 | 4.715 | ||||
FCF3 | 0.925 | 4.861 | ||||
PE | PE1 | 0.899 | 4.998 | 0.862 | 0.916 | 0.785 |
PE2 | 0.838 | 4.818 | ||||
PE3 | 0.919 | 5.010 | ||||
PN | PN1 | 0.927 | 5.210 | 0.869 | 0.920 | 0.794 |
PN2 | 0.849 | 4.997 | ||||
PN3 | 0.895 | 5.059 | ||||
SI | SI1 | 0.907 | 4.706 | 0.875 | 0.924 | 0.802 |
SI2 | 0.834 | 4.525 | ||||
SI3 | 0.943 | 4.748 |
FC | AR | BI | AC | EE | FCF | PE | PN | SI | |
---|---|---|---|---|---|---|---|---|---|
FC1 | 0.876 | 0.320 | 0.510 | 0.514 | 0.532 | 0.580 | 0.498 | 0.393 | 0.661 |
FC2 | 0.843 | 0.341 | 0.571 | 0.512 | 0.569 | 0.560 | 0.511 | 0.440 | 0.565 |
FC3 | 0.893 | 0.432 | 0.571 | 0.578 | 0.542 | 0.594 | 0.506 | 0.471 | 0.561 |
AR1 | 0.404 | 0.926 | 0.599 | 0.661 | 0.407 | 0.605 | 0.574 | 0.787 | 0.445 |
AR2 | 0.285 | 0.847 | 0.511 | 0.544 | 0.328 | 0.483 | 0.503 | 0.725 | 0.326 |
AR3 | 0.444 | 0.947 | 0.617 | 0.651 | 0.432 | 0.611 | 0.598 | 0.799 | 0.473 |
BI1 | 0.604 | 0.608 | 0.931 | 0.679 | 0.541 | 0.695 | 0.668 | 0.685 | 0.613 |
BI2 | 0.541 | 0.572 | 0.862 | 0.688 | 0.503 | 0.650 | 0.636 | 0.679 | 0.548 |
BI3 | 0.581 | 0.560 | 0.939 | 0.655 | 0.541 | 0.672 | 0.660 | 0.656 | 0.561 |
AC1 | 0.574 | 0.600 | 0.667 | 0.922 | 0.515 | 0.719 | 0.700 | 0.647 | 0.654 |
AC2 | 0.515 | 0.638 | 0.678 | 0.861 | 0.504 | 0.73 | 0.687 | 0.696 | 0.580 |
AC3 | 0.59 | 0.636 | 0.679 | 0.952 | 0.528 | 0.732 | 0.709 | 0.656 | 0.636 |
EE1 | 0.585 | 0.430 | 0.531 | 0.534 | 0.842 | 0.515 | 0.558 | 0.486 | 0.556 |
EE2 | 0.546 | 0.381 | 0.515 | 0.503 | 0.819 | 0.509 | 0.523 | 0.428 | 0.532 |
EE3 | 0.612 | 0.425 | 0.569 | 0.579 | 0.900 | 0.573 | 0.601 | 0.498 | 0.627 |
EE4 | 0.287 | 0.147 | 0.255 | 0.197 | 0.712 | 0.186 | 0.181 | 0.180 | 0.223 |
FCF1 | 0.595 | 0.573 | 0.679 | 0.751 | 0.495 | 0.914 | 0.697 | 0.647 | 0.665 |
FCF2 | 0.557 | 0.571 | 0.639 | 0.703 | 0.448 | 0.862 | 0.649 | 0.622 | 0.598 |
FCF3 | 0.640 | 0.550 | 0.674 | 0.697 | 0.556 | 0.925 | 0.677 | 0.605 | 0.648 |
PE1 | 0.509 | 0.591 | 0.652 | 0.686 | 0.529 | 0.659 | 0.899 | 0.644 | 0.601 |
PE2 | 0.503 | 0.537 | 0.607 | 0.662 | 0.493 | 0.661 | 0.838 | 0.603 | 0.534 |
PE3 | 0.529 | 0.511 | 0.649 | 0.686 | 0.523 | 0.671 | 0.919 | 0.588 | 0.629 |
PN1 | 0.456 | 0.820 | 0.653 | 0.668 | 0.467 | 0.617 | 0.615 | 0.927 | 0.516 |
PN2 | 0.363 | 0.762 | 0.575 | 0.586 | 0.358 | 0.567 | 0.577 | 0.849 | 0.396 |
PN3 | 0.511 | 0.688 | 0.742 | 0.691 | 0.495 | 0.667 | 0.652 | 0.895 | 0.577 |
SI1 | 0.626 | 0.423 | 0.566 | 0.628 | 0.559 | 0.671 | 0.603 | 0.516 | 0.907 |
SI2 | 0.586 | 0.386 | 0.544 | 0.561 | 0.477 | 0.581 | 0.581 | 0.477 | 0.834 |
SI3 | 0.626 | 0.425 | 0.583 | 0.646 | 0.580 | 0.646 | 0.604 | 0.509 | 0.943 |
AR | AC | BI | EE | FC | FCF | PE | PN | SI | |
---|---|---|---|---|---|---|---|---|---|
AR | 0.908 | ||||||||
AC | 0.683 | 0.913 | |||||||
BI | 0.636 | 0.738 | 0.911 | ||||||
EE | 0.430 | 0.565 | 0.580 | 0.821 | |||||
FC | 0.419 | 0.614 | 0.632 | 0.629 | 0.871 | ||||
FCF | 0.626 | 0.796 | 0.738 | 0.556 | 0.664 | 0.901 | |||
PE | 0.616 | 0.765 | 0.718 | 0.582 | 0.580 | 0.749 | 0.886 | ||
PN | 0.849 | 0.729 | 0.738 | 0.496 | 0.499 | 0.693 | 0.690 | 0.891 | |
SI | 0.460 | 0.684 | 0.630 | 0.603 | 0.684 | 0.707 | 0.665 | 0.559 | 0.896 |
Hypothesis | Path Coefficients (β) | p-Value |
---|---|---|
H1: PN→BI | 0.347 | 0.000 |
H2: AR→PN | 0.192 | 0.000 |
H3: AC→PN | 0.661 | 0.000 |
H4: AC→AR | 0.683 | 0.000 |
H5: PE→BI | 0.175 | 0.000 |
H6: EE→BI | 0.083 | 0.029 |
H7: EE→PE | 0.582 | 0.000 |
H8: SI→BI | 0.018 | 0.683 |
H9: SI→PN | 0.124 | 0.000 |
H10: FC→BI | 0.158 | 0.001 |
H11: FCF→BI | 0.202 | 0.002 |
Indirect Effect | Direct Effect | Total Effect | |
---|---|---|---|
PN→BI | _ | 0.347 *** | 0.347 *** |
AR→BI | 0.229 *** | _ | 0.229 *** |
AC→BI | 0.224 *** | _ | 0.224 *** |
FCF→BI | _ | 0.202 ** | 0.202 ** |
EE→BI | 0.102 *** | 0.083 * | 0.185 *** |
PE→BI | _ | 0.175 *** | 0.175 *** |
FC→BI | _ | 0.158 *** | 0.158 *** |
SI→BI | 0.043 *** | 0.018 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhang, S.; Li, M.; Li, T.; Wang, Y.-J. Farmers’ Acceptance of Water–Fertilizer Integration Technology: Theory and Evidence. Agriculture 2025, 15, 841. https://doi.org/10.3390/agriculture15080841
Wang N, Zhang S, Li M, Li T, Wang Y-J. Farmers’ Acceptance of Water–Fertilizer Integration Technology: Theory and Evidence. Agriculture. 2025; 15(8):841. https://doi.org/10.3390/agriculture15080841
Chicago/Turabian StyleWang, Naihui, Shuqi Zhang, Mo Li, Tianxiao Li, and Yi-Jia Wang. 2025. "Farmers’ Acceptance of Water–Fertilizer Integration Technology: Theory and Evidence" Agriculture 15, no. 8: 841. https://doi.org/10.3390/agriculture15080841
APA StyleWang, N., Zhang, S., Li, M., Li, T., & Wang, Y.-J. (2025). Farmers’ Acceptance of Water–Fertilizer Integration Technology: Theory and Evidence. Agriculture, 15(8), 841. https://doi.org/10.3390/agriculture15080841