Foundation Models in Agriculture: A Comprehensive Review
Abstract
:1. Introduction
- We systematically introduce the development of general-purpose foundation models in computer science, including their technical evolution and core architectures (Figure 1, Table 1 and Table 2), providing essential background for non-computer science researchers to understand these transformative AI technologies.
- We comprehensively review existing AFMs and analyze their agricultural applications in knowledge Q&A, disease detection, and decision support (Table 3), offering practical insights for domain experts.
- We identify unique challenges in developing AFMs, including agricultural data heterogeneity, temporal shifts in field conditions, and deployment constraints for smallholder farms.
- We propose future directions emphasizing multimodal integration and intelligent decision systems to bridge AI innovation with agricultural needs.
2. Overview of FM Development
2.1. History of FMs
Model Type | Model Name | Model Creators | Release Year | # Architecture | # Parameters |
---|---|---|---|---|---|
NLP-based | GPT-1 [34] | OpenAI | 2018 | Decoder only | 117M |
GPT-2 [6] | OpenAI | 2019 | Decoder only | 117 M, 345 M, 762 M, 1.5 B | |
GPT-3 [7] | OpenAI | 2020 | Decoder only | 175 B | |
GLM-130B [35] | Tsinghua University | 2022 | Encoder–decoder | 130 B | |
BERT [36] | 2018 | Encoder only | 340 M | ||
RoBERTa [37] | Meta | 2019 | Encoder only | 340 M | |
T5 [38] | 2019 | Encoder–decoder | 60 M, 220 M, 770 M, 3 B, 11 B | ||
Gemma [39] | 2024 | Decoder only | 2 B, 7 B | ||
PaLM [40] | 2022 | Decoder only | 8 B, 62 B, 540 B | ||
PaLM-2 [41] | 2023 | Decoder only | 340 B | ||
BLOOM [42] | BigScience | 2022 | Decoder only | 3 B, 7.1 B, 176 B | |
ERNIE 3.0 [43] | Baidu | 2021 | Encoder only | 27 M, 75 M, 118 M | |
Llama [9] | Meta | 2023 | Decoder only | 7 B, 13 B, 33 B, 65 B | |
Llama 2 [9] | Meta | 2023 | Decoder only | 7 B, 13 B, 34 B, 70 B | |
Llama 3 [44] | Meta | 2024 | Decoder only | 8 B, 70 B, 400 B | |
Vicuna [45] | Hugging Face | 2023 | Decoder only | 7 B, 13 B | |
Alpaca [46] | Stanford and UC Berkeley | 2023 | Decoder only | 7 B | |
DeepSeek LLM [47] | DeepSeek AI | 2024 | Decoder only | 7 B, 67 B | |
DeepSeek-V2 [48] | DeepSeek AI | 2024 | Decoder only | 236 B | |
DeepSeek-V3 [48] | DeepSeek AI | 2024 | Decoder only | 671 B | |
DeepSeek-R1 [49] | DeepSeek AI | 2025 | Decoder only | 671 B | |
Vision-based | LLaVA [50] | UC Berkeley and Microsoft | 2023 | Encoder only | 13 B |
BLIP-2 [51] | Alibaba | 2023 | Encoder only | 12 B | |
Flamingo [52] | 2022 | Encoder only | 3 B, 9 B, 80 B | ||
Florence [53] | Microsoft | 2021 | Encoder only | 893 M | |
Florence 2 [54] | Microsoft | 2024 | Encoder–decoder | 0.2 B, 0.7 B | |
Segment Anything Model (SAM) [12] | Meta | 2023 | Encoder–decoder | 375 M, 1.25 G, 2.56 G | |
UFO [55] | Baidu | 2022 | Encoder only | 17 B | |
INTERN [56] | SenseTime | 2023 | Encoder–decoder | 20 B | |
DALL·E [32] | OpenAI | 2021 | Encoder–decoder | 12 B | |
DeepSeek-VL [57] | DeepSeek AI | 2024 | Decoder only | 1.3 B, 7 B | |
DeepSeek-VL2 [58] | DeepSeek AI | 2024 | Decoder only | 1.0 B, 2.8 B, 4.5 B | |
Multimodal | GPT-4 [59] | OpenAI | 2023 | Decoder only | 1.8 T |
Sora [60] | OpenAI | 2024 | Encoder–decoder | - | |
Claude 3 [61] | Anthropic | 2024 | Decoder only | 20 B, 70 B, 2 T | |
Video-LLaMA [62] | Princeton & Microsoft | 2023 | Encoder only | - | |
Gemini 1.5 [63] | 2024 | Decoder only | Nano 1.8 B/3.25 B | ||
PaLM-E [64] | 2023 | Decoder only | 562 B | ||
PandaGPT [65] | Baidu | 2023 | Decoder only | - | |
SpeechGPT [66] | Tsinghua University | 2023 | Decoder only | 13 B | |
Frozen [67] | Microsoft | 2021 | Decoder only | 7 B |
Model Name | I->O Modality | Open Source | Key Applications | Pre-Train Data Scale | Agri-Trained | Agri-Applicable |
---|---|---|---|---|---|---|
GPT-1 | Text -> Text | ✓ | Text generation, language modeling | - | × | × |
GPT-2 | Text -> Text | ✓ | Text generation, language modeling | - | × | × |
GPT-3 | Text -> Text | ✓ | Text generation, language modeling | 5 G | × | × |
GLM-130 B | Text -> Text | ✓ | Text generation, question answering | - | × | × |
BERT | Text -> Text | × | Text generation, question answering, summarization | 570 G | × | × |
RoBERTa | Text -> Text | ✓ | Language understanding, text classification, NER | - | × | × |
T5 | Text -> Text | ✓ | Text generation, question answering, summarization | - | × | × |
Gemma | Text -> Text | ✓ | Multi-language text generation, understanding | 366 B | × | × |
PaLM | Text -> Text | ✓ | Text generation, summarization, translation | 750 G | × | × |
PaLM-2 | Text -> Text | ✓ | Text generation, summarization, creative writing | 3 T, 6 T | × | × |
BLOOM | Text -> Text | ✓ | Text classification, question answering | - | × | × |
ERNIE 3.0 | Text -> Text | × | Text understanding, knowledge-enhanced tasks | - | × | × |
Llama | Text -> Text | ✓ | Cross-lingual tasks, text generation | 780 B | × | × |
Llama 2 | Text -> Text | ✓ | Cross-lingual tasks, text generation | 3.6 T | × | × |
Llama 3 | Text -> Text | ✓ | Text generation, question answering | 2 T | × | ✓ |
Vicuna | Text -> Text | ✓ | Chatbot, dialogue systems | - | × | × |
Alpaca | Text -> Text | ✓ | Text generation, question answering | 1.4 T | × | ✓ |
DeepSeek LLM | Text -> Text | ✓ | Text generation, question answering | 15 T | × | ✓ |
DeepSeek-V2 | Text -> Text | ✓ | Chatbot, dialogue systems | 70 K samples | × | × |
DeepSeek-V3 | Text -> Text | ✓ | Instruction-following tasks | 52 K samples | × | × |
DeepSeek-R1 | Text -> Text | ✓ | Text generation, dialogue systems | 2T | × | × |
LLaVA | Image + Text -> Text | ✓ | Vision and language understanding, image captioning | 158 K | × | × |
BLIP-2 | Image + Text -> Text | ✓ | Visual Question Answering (VQA), image captioning | 129 M | × | ✓ |
Flamingo | Text + Image -> Text | ✓ | Reasoning, math, code generation | - | × | × |
Florence | Image -> Image | × | Image recognition, visual understanding | - | × | × |
Florence 2 | Image -> Image | × | Image recognition, visual understanding | - | × | × |
Segment Anything Model (SAM) | Image -> Segmentation masks | ✓ | Object segmentation, masking, image manipulation | 1 B | × | ✓ |
UFO | Image -> Image | × | Industrial visual inspection, object detection | - | × | × |
INTERN | Image -> Image | × | Image recognition, visual understanding | - | × | × |
DALL·E | Text -> Image | ✓ | Image generation from text descriptions | - | × | × |
DeepDeepSeek-VL2Seek-VL | Image + Text -> Text | ✓ | Vision-language tasks | - | × | × |
Image + Text -> Text | ✓ | Vision-language tasks | - | × | × | |
GPT-4 | Text + Image -> Text | × | Text generation, image understanding | 1.8 T | × | ✓ |
Sora | Text -> Video | × | Video generation | - | × | × |
Claude 3 | Text -> Text | × | Text generation, complex reasoning | - | × | × |
Video-LLaMA | Video + Text -> Text | ✓ | Video understanding, video captioning | - | × | × |
Gemini 1.5 | Text + Image -> Text | × | Multimodal understanding | - | × | × |
PaLM-E | Text + Image -> Text | ✓ | Robotics, multimodal reasoning | - | × | × |
PandaGPT | Text + Image -> Text | ✓ | Multimodal understanding | - | × | × |
SpeechGPT | Speech + Text -> Text | ✓ | Speech recognition and synthesis | 60 K h | × | × |
Frozen | Text + Image -> Text | ✓ | Multimodal learning | - | × | × |
2.2. Process of Building FMs
2.2.1. Data Selection and Processing
2.2.2. FMs Architectures
2.2.3. Training and Optimization
- Instruction Tuning: Instruction tuning [81] focuses on enhancing the model’s ability to follow specific instructions across a variety of tasks. This process can be further categorized into full-parameter fine-tuning [82] and Parameter-Efficient Fine-Tuning (PEFT) [83]. Full fine-tuning updates all the parameters in the model to optimize performance for a specific task, but its high computational cost and resource requirements limit its practicality for many use cases. In contrast, PEFT methods achieve task-specific adaptation by updating a small subset of parameters, thereby significantly reducing computational overhead. A notable example of PEFT is LoRA (Low-Rank Adaptation) [84], which applies low-rank matrix approximations to weight updates, further reducing the number of trainable parameters and enhancing scalability.
- Alignment Fine-Tuning: Alignment fine-tuning [24] is designed to refine the model’s behavior to align with human values and expectations. This approach often employs reinforcement learning techniques that incorporate feedback signals to guide the model’s adjustments. A widely used method is Reinforcement Learning with Human Feedback (RLHF) [85], where human-provided feedback, such as preference rankings or annotations, serves as a reward signal for training the model. RLHF has been instrumental in improving the alignment of FMs with user preferences, ensuring that the generated outputs are more relevant and aligned with human expectations. A complementary approach, Reinforcement Learning with AI Feedback (RLAIF) [86], replaces human feedback with AI-generated signals, reducing reliance on human labor while maintaining training efficiency. This approach is particularly valuable for scaling alignment processes in FMs, where collecting human feedback at scale may be impractical.
2.2.4. Evaluation Metrics
2.3. Applications and Challenges of FMs
2.3.1. Applications of FMs
2.3.2. Challenges of FMs
3. FMs in Agriculture
Model Name | Year | Architecture | Dataset | Pre-training Method | Fine-tuning Method | Input → Output |
---|---|---|---|---|---|---|
AgriBERT ([107]) | 2022 | BERT | Agricultural journals, USDA datasets | MLM trained from scratch | Adding external knowledge, fine-tuning | Text → classification labels, generated text |
ITLMLP ([109]) | 2023 | ViT-S/16 or ViT-B/16, CLIP | Cucumber, Apple, PlantVillage datasets | Image–text multimodal pre-training | Transfer pre-training, fine-tuning classification head | Image, text, labels → disease category labels |
AgRoBERTa ([108]) | 2024 | RoBERTa | Agricultural promotion corpus, AgXQA dataset | MLM pre-trained on AEC 1.1 | Traditional fine-tuning, LoRA fine-tuning | Text → answer text |
ChatAgri ([110]) | 2023 | GPT3.5 (Transformer architecture) | Amazon Food, PestObserver, Agri-News, etc. | Pre-trained on ChatGPT results | Multiple prompt strategies and answer alignment strategies for fine-tuning | Text → classification labels |
PLLaMa ([111]) | 2024 | Based on LLaMa-2 (Transformer architecture) | Plant science academic papers, RedPajama dataset | Continued pre-training on plant science corpus | Fine-tuned on 1030 instructions | Text → question answers |
Chains-BERT ([112]) | 2023 | BERT | Agricultural information database, Shandong farm management dataset | Transfer learning, training on unlabeled data | Contrastive learning based on text matching, semi-supervised learning | Text → classification labels, generated text |
SAM ([113]) | 2023 | ViT | Cage-free chicken dataset, broiler chicken dataset | - | - | Images → segmentation results, bounding box info (tracking) |
SAM ([114]) | 2023 | ViT | Leaf counting and segmentation challenge dataset | - | - | Image → segmentation masks |
WDLM ([115]) | 2024 | Transformer-based VLM | Wheat disease dataset, CGIAR dataset | Utilized pre-trained VLM results | LoRA fine-tuning, fine-tuned on disease dataset | Image, text prompts → disease classification, treatment suggestions |
4. Challenges of AFMs
4.1. Diversity and Heterogeneity of Agricultural Data
4.2. Agricultural Data Acquisition
4.3. Agricultural Data Shift
4.4. Time Lag Issues
4.5. Practical Deployment Challenges
5. Development Directions for AFMs
5.1. Leveraging Multimodal FMs in Agriculture
5.2. Integrating AFMs Across the Agricultural and Food Sectors
5.3. Intelligent Decision-Making Systems Based on AFMs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Botero-Valencia, J.; García-Pineda, V.; Valencia-Arias, A.; Valencia, J.; Reyes-Vera, E.; Mejia-Herrera, M.; Hernández-García, R. Machine Learning in Sustainable Agriculture: Systematic Review and Research Perspectives. Agriculture 2025, 15, 377. [Google Scholar] [CrossRef]
- Li, J.; Xu, M.; Xiang, L.; Chen, D.; Zhuang, W.; Yin, X.; Li, Z. Foundation models in smart agriculture: Basics, opportunities, and challenges. Comput. Electron. Agric. 2024, 222, 109032. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S. On the Opportunities and Risks of Foundation Models. arXiv 2021, arXiv:2108.07258. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744. [Google Scholar]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 10684–10695. [Google Scholar]
- Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv 2022, arXiv:2204.06125. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 4015–4026. [Google Scholar]
- Kang, M.; Zhu, J.Y.; Zhang, R.; Park, J.; Shechtman, E.; Paris, S.; Park, T. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 10124–10134. [Google Scholar]
- Reed, S.; Zolna, K.; Parisotto, E.; Colmenarejo, S.G.; Novikov, A.; Barth-Maron, G.; Gimenez, M.; Sulsky, Y.; Kay, J.; Springenberg, J.T.; et al. A generalist agent. arXiv 2022, arXiv:2205.06175. [Google Scholar]
- Team, A.A.; Bauer, J.; Baumli, K.; Baveja, S.; Behbahani, F.; Bhoopchand, A.; Bradley-Schmieg, N.; Chang, M.; Clay, N.; Collister, A.; et al. Human-timescale adaptation in an open-ended task space. arXiv 2023, arXiv:2301.07608. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 485–508. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Madani, A.; Arnaout, R.; Mofrad, M.; Arnaout, R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit. Med. 2018, 1, 6. [Google Scholar] [CrossRef]
- Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, S.; Su, M.; Lin, C.; Li, A.; Gao, J. Harnessing large vision and language models in agriculture: A review. arXiv 2024, arXiv:2407.19679. [Google Scholar]
- Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682. [Google Scholar]
- Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws for neural language models. arXiv 2020, arXiv:2001.08361. [Google Scholar]
- Hadi, M.U.; Qureshi, R.; Shah, A.; Irfan, M.; Zafar, A.; Shaikh, M.B.; Akhtar, N.; Wu, J.; Mirjalili, S. A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Preprints 2023, 3. [Google Scholar]
- Simonyan, K. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021. [Google Scholar]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In Proceedings of the International Conference on machine Learning, Virtual, 18–24 July 2021; PMLR: Birmingham, UK, 2021; pp. 8821–8831. [Google Scholar]
- Wu, J.; Gan, W.; Chen, Z.; Wan, S.; Philip, S.Y. Multimodal large language models: A survey. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2247–2256. [Google Scholar]
- Radford, A. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 14 January 2025).
- Zeng, A.; Liu, X.; Du, Z.; Wang, Z.; Lai, H.; Ding, M.; Yang, Z.; Xu, Y.; Zheng, W.; Xia, X.; et al. GLM-130B: An Open Bilingual Pre-trained Model. In Proceedings of the 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers); Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [Google Scholar]
- Liu, Y. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Team, G.; Mesnard, T.; Hardin, C.; Dadashi, R.; Bhupatiraju, S.; Pathak, S.; Sifre, L.; Rivière, M.; Kale, M.S.; Love, J.; et al. Gemma: Open models based on gemini research and technology. arXiv 2024, arXiv:2403.08295. [Google Scholar]
- Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.; et al. Palm: Scaling language modeling with pathways. J. Mach. Learn. Res. 2023, 24, 1–113. [Google Scholar]
- Anil, R.; Dai, A.M.; Firat, O.; Johnson, M.; Lepikhin, D.; Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; et al. Palm 2 technical report. arXiv 2023, arXiv:2305.10403. [Google Scholar]
- Luccioni, A.S.; Viguier, S.; Ligozat, A.-L. Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model. J. Mach. Learn. Res. 2023, 24, 1–15. [Google Scholar]
- Sun, Y.; Wang, S.; Feng, S.; Ding, S.; Pang, C.; Shang, J.; Liu, J.; Chen, X.; Zhao, Y.; Lu, Y.; et al. Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation. arXiv 2021, arXiv:2107.02137. [Google Scholar]
- Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.; Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan, A.; et al. The llama 3 herd of models. arXiv 2024, arXiv:2407.21783. [Google Scholar]
- Chiang, W.L.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.; Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J.E.; et al. Vicuna: An Open-Source Chatbot Impressing gpt-4 with 90%* Chatgpt Quality. 2023. Available online: https://vicuna.lmsys.org (accessed on 14 April 2023).
- Taori, R.; Gulrajani, I.; Zhang, T.; Dubois, Y.; Li, X.; Guestrin, C.; Liang, P.; Hashimoto, T.B. Alpaca: A strong, replicable instruction-following model. Stanf. Cent. Res. Found. Model. 2023, 3, 7. Available online: https://crfm.stanford.edu/2023/03/13/alpaca.html (accessed on 15 May 2024).
- Bi, X.; Chen, D.; Chen, G.; Chen, S.; Dai, D.; Deng, C.; Ding, H.; Dong, K.; Du, Q.; Fu, Z.; et al. Deepseek llm: Scaling open-source language models with longtermism. arXiv 2024, arXiv:2401.02954. [Google Scholar]
- Liu, A.; Feng, B.; Wang, B.; Wang, B.; Liu, B.; Zhao, C.; Dengr, C.; Ruan, C.; Dai, D.; Guo, D.; et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv 2024, arXiv:2405.04434. [Google Scholar]
- Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv 2025, arXiv:2501.12948. [Google Scholar]
- Liu, H.; Li, C.; Wu, Q.; Lee, Y.J. Visual instruction tuning. Adv. Neural Inf. Process. Syst. 2024, 36, 1–8. [Google Scholar]
- Li, J.; Li, D.; Savarese, S.; Hoi, S. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; PMLR: Birmingham, UK, 2023; pp. 19730–19742. [Google Scholar]
- Alayrac, J.B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Hasson, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M.; et al. Flamingo: A visual language model for few-shot learning. Adv. Neural Inf. Process. Syst. 2022, 35, 23716–23736. [Google Scholar]
- Yuan, L.; Chen, D.; Chen, Y.L.; Codella, N.; Dai, X.; Gao, J.; Hu, H.; Huang, X.; Li, B.; Li, C.; et al. Florence: A new foundation model for computer vision. arXiv 2021, arXiv:2111.11432. [Google Scholar]
- Xiao, B.; Wu, H.; Xu, W.; Dai, X.; Hu, H.; Lu, Y.; Zeng, M.; Liu, C.; Yuan, L. Florence-2: Advancing a unified representation for a variety of vision tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 4818–4829. [Google Scholar]
- Xi, T.; Sun, Y.; Yu, D.; Li, B.; Peng, N.; Zhang, G.; Zhang, X.; Wang, Z.; Chen, J.; Wang, J.; et al. UFO: Unified feature optimization. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 472–488. [Google Scholar]
- Shao, J.; Chen, S.; Li, Y.; Wang, K.; Yin, Z.; He, Y.; Teng, J.; Sun, Q.; Gao, M.; Liu, J.; et al. Intern: A new learning paradigm towards general vision. arXiv 2021, arXiv:2111.08687. [Google Scholar]
- Lu, H.; Liu, W.; Zhang, B.; Wang, B.; Dong, K.; Liu, B.; Sun, J.; Ren, T.; Li, Z.; Yang, H.; et al. Deepseek-vl: Towards real-world vision-language understanding. arXiv 2024, arXiv:2403.05525. [Google Scholar]
- Wu, Z.; Chen, X.; Pan, Z.; Liu, X.; Liu, W.; Dai, D.; Gao, H.; Ma, Y.; Wu, C.; Wang, B.; et al. DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding. arXiv 2024, arXiv:2412.10302. [Google Scholar]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Liu, Y.; Zhang, K.; Li, Y.; Yan, Z.; Gao, C.; Chen, R.; Yuan, Z.; Huang, Y.; Sun, H.; Gao, J.; et al. Sora: A review on background, technology, limitations, and opportunities of large vision models. arXiv 2024, arXiv:2402.17177. [Google Scholar]
- Anthropic, A. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card 2024, 1. [Google Scholar]
- Zhang, H.; Li, X.; Bing, L. Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations; Association for Computational Linguistics: Singapore, 2023; pp. 543–553. [Google Scholar]
- Team, G.; Georgiev, P.; Lei, V.I.; Burnell, R.; Bai, L.; Gulati, A.; Tanzer, G.; Vincent, D.; Pan, Z.; Wang, S.; et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv 2024, arXiv:2403.05530. [Google Scholar]
- Driess, D.; Xia, F.; Sajjadi, M.S.M.; Lynch, C.; Chowdhery, A.; Ichter, B.; Wahid, A.; Tompson, J.; Vuong, Q.; Yu, T.; et al. PaLM-E: An Embodied Multimodal Language Model. In Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; PMLR: Cambridge, MA, USA, 2023; Volume 202, pp. 8469–8488. Available online: https://arxiv.org/pdf/2303.03378 (accessed on 14 January 2025).
- Su, Y.; Lan, T.; Li, H.; Xu, J.; Wang, Y.; Cai, D. PandaGPT: One Model To Instruction-Follow Them All. In Proceedings of the 1st Workshop on Taming Large Language Models: Controllability in the era of Interactive Assistants! Prague, Czech Republic, 12 September 2023; pp. 11–23. Available online: https://arxiv.org/pdf/2305.16355 (accessed on 14 January 2025).
- Zhang, D.; Li, S.; Zhang, X.; Zhan, J.; Wang, P.; Zhou, Y.; Qiu, X. SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 6–10 December 2023; pp. 15757–15773. Available online: https://arxiv.org/pdf/2305.11000 (accessed on 14 January 2025).
- Tsimpoukelli, M.; Menick, J.L.; Cabi, S.; Eslami, S.; Vinyals, O.; Hill, F. Multimodal few-shot learning with frozen language models. Adv. Neural Inf. Process. Syst. 2021, 34, 200–212. [Google Scholar]
- Liu, Y.; Zhu, G.; Zhu, B.; Song, Q.; Ge, G.; Chen, H.; Qiao, G.; Peng, R.; Wu, L.; Wang, J. Taisu: A 166m large-scale high-quality dataset for chinese vision-language pre-training. Adv. Neural Inf. Process. Syst. 2022, 35, 16705–16717. [Google Scholar]
- Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-Voss, A.; Lee, K.; Roberts, A.; Brown, T.; Song, D.; Erlingsson, U.; et al. Extracting training data from large language models. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021; pp. 2633–2650. [Google Scholar]
- Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 1715–1725. Available online: https://arxiv.org/pdf/1508.07909 (accessed on 14 January 2025).
- Schuster, M.; Nakajima, K. Japanese and korean voice search. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 5149–5152. [Google Scholar]
- Kudo, T. Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 66–75. Available online: https://arxiv.org/pdf/1804.10959 (accessed on 14 January 2025).
- Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.D.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al. Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374. [Google Scholar]
- Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.; Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Dal Lago, A.; et al. Competition-level code generation with alphacode. Science 2022, 378, 1092–1097. [Google Scholar] [CrossRef]
- Vaswani, A. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://arxiv.org/pdf/1706.03762 (accessed on 14 January 2025).
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880. [Google Scholar]
- Dai, A.M.; Le, Q.V. Semi-supervised sequence learning. Adv. Neural Inf. Process. Syst. 2015, 28, 5110–5118. [Google Scholar]
- Felsten, G.; Wasserman, G.S. Visual masking: Mechanisms and theories. Psychol. Bull. 1980, 88, 329. [Google Scholar] [CrossRef] [PubMed]
- Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.; Hinton, G.; Dean, J. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. In Proceedings of the 5th International Conference on Learning Representations (ICLR), Palais des Congrès Neptune, Toulon, France, 24–26 April 2017. [Google Scholar]
- Han, Z.; Gao, C.; Liu, J.; Zhang, J.; Zhang, S.Q. Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey. Trans. Mach. Learn. Res. 2024. Available online: https://arxiv.org/pdf/2403.14608 (accessed on 14 January 2025).
- Zhang, S.; Dong, L.; Li, X.; Zhang, S.; Sun, X.; Wang, S.; Li, J.; Hu, R.; Zhang, T.; Wu, F.; et al. Instruction tuning for large language models: A survey. arXiv 2023, arXiv:2308.10792. [Google Scholar]
- Lv, K.; Yang, Y.; Liu, T.; Guo, Q.; Qiu, X. Full Parameter Fine-tuning for Large Language Models with Limited Resources. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, ON, Canada, 9–14 July 2024; Available online: https://arxiv.org/pdf/2306.09782 (accessed on 14 January 2025).
- Mangrulkar, S.; Gugger, S.; Debut, L.; Belkada, Y.; Paul, S.; Bossan, B. Peft: State-of-the-Art Parameter-Efficient Fine-Tuning Methods. 2022. Available online: https://github.com/huggingface/peft (accessed on 14 January 2025).
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. Lora: Low-rank adaptation of large language models. arXiv 2021, arXiv:2106.09685. [Google Scholar]
- Bai, Y.; Jones, A.; Ndousse, K.; Askell, A.; Chen, A.; DasSarma, N.; Drain, D.; Fort, S.; Ganguli, D.; Henighan, T.; et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv 2022, arXiv:2204.05862. [Google Scholar]
- Lee, H.; Phatale, S.; Mansoor, H.; Lu, K.R.; Mesnard, T.; Ferret, J.; Bishop, C.; Hall, E.; Carbune, V.; Rastogi, A. Rlaif: Scaling Reinforcement Learning from Human Feedback with AI Feedback. 2023. Available online: https://arxiv.org/pdf/2309.00267 (accessed on 14 January 2025).
- Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Wang, H. Retrieval-augmented generation for large language models: A survey. arXiv 2023, arXiv:2312.10997. [Google Scholar]
- Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Proceedings of the Text Summarization Branches Out, Barcelona, Spain, 25–26 July 2004; pp. 74–81. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318. [Google Scholar]
- Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart, S.; Tang, E.; Song, D.; Steinhardt, J. Measuring Mathematical Problem Solving With the MATH Dataset. Sort 2021, 2, 1–5. [Google Scholar]
- Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In Proceedings of the 7th International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. Superglue: A stickier benchmark for general-purpose language understanding systems. Adv. Neural Inf. Process. Syst. 2019, 32. Available online: https://arxiv.org/pdf/1905.00537 (accessed on 14 January 2025).
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Raji, I.D.; Denton, E.; Bender, E.M.; Hanna, A.; Paullada, A. AI and the Everything in the Whole Wide World Benchmark. In Proceedings of the Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Datasets and Benchmarks Track, Virtual, 28 November–9 December 2022; Available online: https://arxiv.org/pdf/2111.15366 (accessed on 14 January 2025).
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.t.; Rocktäschel, T.; et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Adv. Neural Inf. Process. Syst. 2020, 33, 9459–9474. [Google Scholar]
- Kojima, T.; Gu, S.S.; Reid, M.; Matsuo, Y.; Iwasawa, Y. Large language models are zero-shot reasoners. Adv. Neural Inf. Process. Syst. 2022, 35, 22199–22213. [Google Scholar]
- Snow, R.; O’connor, B.; Jurafsky, D.; Ng, A.Y. Cheap and fast–but is it good? Evaluating non-expert annotations for natural language tasks. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA, 25–27 October 2008; pp. 254–263. [Google Scholar]
- Kachuee, M.; Ahuja, S.; Kumar, V.; Xu, P.; Liu, X. Improving Tool Retrieval by Leveraging Large Language Models for Query Generation. In Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, Abu Dhabi, United Arab Emirates, 19–24 January 2025; pp. 29–38. [Google Scholar]
- Jumper, J.M.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xie, J.; Hu, C.; Zou, H.; Fan, J.; Tong, W.; Wen, Y.; Wu, S.; Deng, H.; Li, Z.; et al. DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving. arXiv 2023, arXiv:2312.09245. [Google Scholar]
- Wu, Q.; Gu, J. Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind. Tech 2017, 28, 125–128. [Google Scholar]
- Tu, X.; He, Z.; Huang, Y.; Zhang, Z.H.; Yang, M.; Zhao, J. An overview of large AI models and their applications. Vis. Intell. 2024, 2, 34. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, M.; Ji, S.; Yang, M. Privacy Risks of General-Purpose Language Models. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1314–1331. [Google Scholar]
- Touch, V.; Tan, D.K.; Cook, B.R.; Li Liu, D.; Cross, R.; Tran, T.A.; Utomo, A.; Yous, S.; Grunbuhel, C.; Cowie, A. Smallholder farmers’ challenges and opportunities: Implications for agricultural production, environment and food security. J. Environ. Manag. 2024, 370, 122536. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud-Univ.-Comput. Inf. Sci. 2022, 34, 1595–1623. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Rezayi, S.; Liu, Z.; Wu, Z.; Dhakal, C.; Ge, B.; Zhen, C.; Liu, T.; Li, S. AgriBERT: Knowledge-Infused Agricultural Language Models for Matching Food and Nutrition. In Proceedings of the IJCAI, Vienna, Austria, 23–29 July 2022; pp. 5150–5156. [Google Scholar]
- Kpodo, J.; Kordjamshidi, P.; Nejadhashemi, A.P. AgXQA: A benchmark for advanced Agricultural Extension question answering. Comput. Electron. Agric. 2024, 225, 109349. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, L.; Yuan, Y.; Sun, G. Cucumber disease recognition with small samples using image-text-label-based multi-modal language model. Comput. Electron. Agric. 2023, 211, 107993. [Google Scholar] [CrossRef]
- Zhao, B.; Jin, W.; Del Ser, J.; Yang, G. ChatAgri: Exploring potentials of ChatGPT on cross-linguistic agricultural text classification. Neurocomputing 2023, 557, 126708. [Google Scholar] [CrossRef]
- Yang, X.; Gao, J.; Xue, W.; Alexandersson, E. Pllama: An open-source large language model for plant science. arXiv 2024, arXiv:2401.01600. [Google Scholar]
- Huang, Y.; Liu, J.; Lv, C. Chains-BERT: A High-Performance Semi-Supervised and Contrastive Learning-Based Automatic Question-and-Answering Model for Agricultural Scenarios. Appl. Sci. 2023, 13, 2924. [Google Scholar] [CrossRef]
- Yang, X.; Dai, H.; Wu, Z.; Bist, R.; Subedi, S.; Sun, J.; Lu, G.; Li, C.; Liu, T.; Chai, L. Sam for poultry science. arXiv 2023, arXiv:2305.10254. [Google Scholar]
- Williams, D.; Macfarlane, F.; Britten, A. Leaf only SAM: A segment anything pipeline for zero-shot automated leaf segmentation. Smart Agric. Technol. 2024, 8, 100515. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, L.; Cui, B.; Li, X.; Zhang, B.; Xie, N. Visual large language model for wheat disease diagnosis in the wild. Comput. Electron. Agric. 2024, 227, 109587. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2023, 14, 47. [Google Scholar] [CrossRef]
- Mohamed, T.M.K.; Gao, J.; Tunio, M. Development and experiment of the intelligent control system for rhizosphere temperature of aeroponic lettuce via the Internet of Things. Int. J. Agric. Biol. Eng. 2022, 15, 225–233. [Google Scholar]
- Kuska, M.T.; Wahabzada, M.; Paulus, S. Ai-Chatbots for Agriculture-Where Can Large Language Models Provide Substantial Value? Comput. Electron. Agric. 2024, 221, 108924. [Google Scholar] [CrossRef]
- Jia, W.; Zheng, Y.; Zhao, D.; Yin, X.; Liu, X.; Du, R. Preprocessing method of night vision image application in apple harvesting robot. Int. J. Agric. Biol. Eng. 2018, 11, 158–163. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, S.; Mao, H.; Wu, X.; Li, Q. Classification of black beans using visible and near infrared hyperspectral imaging. Int. J. Food Prop. 2016, 19, 1687–1695. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, L.; Wu, H.; Li, L. Advanced agricultural disease image recognition technologies: A review. Inf. Process. Agric. 2022, 9, 48–59. [Google Scholar] [CrossRef]
- Martínez-Peña, R.; Castillo-Gironés, S.; Álvarez, S.; Vélez, S. Tracing pistachio nuts’ origin and irrigation practices through hyperspectral imaging. Curr. Res. Food Sci. 2024, 9, 100835. [Google Scholar] [CrossRef] [PubMed]
- Solangi, K.A.; Siyal, A.A.; Wu, Y.; Abbasi, B.; Solangi, F.; Lakhiar, I.A.; Zhou, G. An assessment of the spatial and temporal distribution of soil salinity in combination with field and satellite data: A case study in Sujawal District. Agronomy 2019, 9, 869. [Google Scholar] [CrossRef]
- Ganeshkumar, C.; David, A.; Sankar, J.G.; Saginala, M. Application of drone Technology in Agriculture: A predictive forecasting of Pest and disease incidence. In Applying Drone Rechnologies and Robotics for Agricultural Sustainability; IGI Global: New York, NY, USA, 2023; pp. 50–81. [Google Scholar]
- Lu, E.; Xu, L.; Li, Y.; Tang, Z.; Ma, Z. Modeling of working environment and coverage path planning method of combine harvesters. Int. J. Agric. Biol. Eng. 2020, 13, 132–137. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z.; Han, Z.; Sun, W.; He, L. A Decision-Making System for Cotton Irrigation Based on Reinforcement Learning Strategy. Agronomy 2023, 14, 11. [Google Scholar] [CrossRef]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network. Eng. Appl. Artif. Intell. 2024, 131, 107881. [Google Scholar] [CrossRef]
- Iatrou, M.; Karydas, C.; Tseni, X.; Mourelatos, S. Representation learning with a variational autoencoder for predicting nitrogen requirement in rice. Remote. Sens. 2022, 14, 5978. [Google Scholar] [CrossRef]
- Mittal, A.; Gupta, H. A Systematic Literature Survey on Generative Adversarial Network Based Crop Disease Identification. In Proceedings of the 2021 International Conference on Technological Advancements and Innovations (ICTAI), Tashkent, Uzbekistan, 10–12 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 394–399. [Google Scholar]
- Barman, U.; Sarma, P.; Rahman, M.; Deka, V.; Lahkar, S.; Sharma, V.; Saikia, M.J. Vit-SmartAgri: Vision transformer and smartphone-based plant disease detection for smart agriculture. Agronomy 2024, 14, 327. [Google Scholar] [CrossRef]
- Momaya, M.; Khanna, A.; Sadavarte, J.; Sankhe, M. Krushi–the farmer chatbot. In Proceedings of the 2021 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Mattila, M. Synthetic Image Generation Using GANs: Generating Class Specific Images of Bacterial Growth. 2021. Available online: https://www.diva-portal.org/smash/get/diva2:1564297/FULLTEXT01.pdf (accessed on 14 January 2025).
- Tai, C.Y.; Wang, W.J.; Huang, Y.M. Using time-series generative adversarial networks to synthesize sensing data for pest incidence forecasting on sustainable agriculture. Sustainability 2023, 15, 7834. [Google Scholar] [CrossRef]
- Bouteska, A.; Sharif, T.; Bhuiyan, F.; Abedin, M.Z. Impacts of the changing climate on agricultural productivity and food security: Evidence from Ethiopia. J. Clean. Prod. 2024, 449, 141793. [Google Scholar] [CrossRef]
- Kollia, I.; Stevenson, J.; Kollias, S. Ai-enabled efficient and safe food supply chain. Electronics 2021, 10, 1223. [Google Scholar] [CrossRef]
- Fernandes, E.A.; Sarries, G.A.; Mazola, Y.T.; Lima, R.C.; Furlan, G.N.; Bacchi, M.A. Machine learning to support geographical origin traceability of Coffea Arabica. Adv. Artif. Intell. Mach. Learn. Res. 2022, 2, 273–287. [Google Scholar] [CrossRef]
- Yang, Q.; Du, X.; Wang, Z.; Meng, Z.; Ma, Z.; Zhang, Q. A review of core agricultural robot technologies for crop productions. Comput. Electron. Agric. 2023, 206, 107701. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Kumaraperumal, R.; Shanmugapriya, P.; Sudarmanian, N.; Sivamurugan, A.; Satheesh, S. Quantification of biophysical parameters and economic yield in cotton and rice using drone technology. Agriculture 2023, 13, 1668. [Google Scholar] [CrossRef]
- Yang, J.; Gao, M.; Li, Z.; Gao, S.; Wang, F.; Zheng, F. Track anything: Segment anything meets videos. arXiv 2023, arXiv:2304.11968. [Google Scholar]
- Liu, Y.; Hou, J.; Li, C.; Wang, X. Intelligent soft robotic grippers for agricultural and food product handling: A brief review with a focus on design and control. Adv. Intell. Syst. 2023, 5, 2300233. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J.; Fu, W. Growth, photosynthesis, and nutrient uptake at different light intensities and temperatures in lettuce. HortScience 2019, 54, 1925–1933. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal UAV-based RGB and multispectral images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Hussain, S.; Cheema, M.J.M.; Li, W.; Song, R.; Liu, C. Comparative evaluation of land surface temperature images from unmanned aerial vehicle and satellite observation for agricultural areas using in situ data. Agriculture 2022, 12, 184. [Google Scholar] [CrossRef]
- Cui, X.; Han, W.; Zhang, H.; Dong, Y.; Ma, W.; Zhai, X.; Zhang, L.; Li, G. Estimating and mapping the dynamics of soil salinity under different crop types using Sentinel-2 satellite imagery. Geoderma 2023, 440, 116738. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Wu, L.; Xu, L.; Xu, C.; Liang, D.; Ding, Y.; Zhang, Y.; Wang, J.; Li, G. The Yield-forming role of nitrogen in rice in the growing seasons with variable thermal conditions. Agronomy 2023, 13, 313. [Google Scholar] [CrossRef]
- Raza, A.; Saber, K.; Hu, Y.; Ray, R.L.; Ziya Kaya, Y.; Dehghanisanij, H.; Kisi, O.; Elbeltagi, A. Modelling reference evapotranspiration using principal component analysis and machine learning methods under different climatic environments. Irrig. Drain. 2023, 72, 945–970. [Google Scholar] [CrossRef]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.H.; Yuan, S. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2018, 11, 1. [Google Scholar] [CrossRef]
- Chen, X.; Hassan, M.M.; Yu, J.; Zhu, A.; Han, Z.; He, P.; Chen, Q.; Li, H.; Ouyang, Q. Time series prediction of insect pests in tea gardens. J. Sci. Food Agric. 2024, 104, 5614–5624. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea diseases detection based on fast infrared thermal image processing technology. J. Sci. Food Agric. 2019, 99, 3459–3466. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef]
- Qin, W.C.; Qiu, B.J.; Xue, X.Y.; Chen, C.; Xu, Z.F.; Zhou, Q.Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop. Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Gao, J.; Ma, M.; Guo, Y.; Tunio, M.H.; Mosha, A.H. Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach. Eur. J. Agron. 2024, 161, 127387. [Google Scholar] [CrossRef]
- Zhang, S.; Xue, X.; Chen, C.; Sun, Z.; Sun, T. Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing. Int. J. Agric. Biol. Eng. 2019, 12, 82–87. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl. Based Syst. 2021, 216, 106775. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.; Olaniyi, E.; Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Comput. Electron. Agric. 2022, 200, 107208. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Qi, X.; Li, Z.; Huang, Y.; Morris, D.; Tan, X. Label-efficient learning in agriculture: A comprehensive review. Comput. Electron. Agric. 2023, 215, 108412. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Wiles, O.; Gowal, S.; Stimberg, F.; Rebuffi, S.-A.; Ktena, I.; Dvijotham, K.D.; Cemgil, A.T. A fine-grained analysis on distribution shift. In Proceedings of the International Conference on Learning Representations (ICLR), Online, 25–29 April 2022. [Google Scholar]
- Chawla, S.; Singh, N.; Drori, I. Quantifying and alleviating distribution shifts in foundation models on review classification. In Proceedings of the NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications, Online, 13 December 2021. [Google Scholar]
- Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land cover classification via multitemporal spatial data by deep recurrent neural networks. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1685–1689. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Luus, F.P.; Salmon, B.P.; Van den Bergh, F.; Maharaj, B.T.J. Multiview deep learning for land-use classification. IEEE Geosci. Remote. Sens. Lett. 2015, 12, 2448–2452. [Google Scholar] [CrossRef]
- Yalcin, H. Plant phenology recognition using deep learning: Deep-Pheno. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Taghavi Namin, S.; Esmaeilzadeh, M.; Najafi, M.; Brown, T.B.; Borevitz, J.O. Deep phenotyping: Deep learning for temporal phenotype/genotype classification. Plant Methods 2018, 14, 1–14. [Google Scholar] [CrossRef]
- Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting apples and oranges with deep learning: A data-driven approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [Google Scholar] [CrossRef]
- Bargoti, S.; Underwood, J. Deep fruit detection in orchards. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3626–3633. [Google Scholar]
- Dyrmann, M.; Mortensen, A.K.; Midtiby, H.S.; Jørgensen, R.N. Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. In Proceedings of the International Conference on Agricultural Engineering, Aarhus, Denmark, 26–29 June 2016; pp. 26–29. [Google Scholar]
- Dyrmann, M.; Jørgensen, R.N.; Midtiby, H.S. RoboWeedSupport-Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. Adv. Anim. Biosci. 2017, 8, 842–847. [Google Scholar] [CrossRef]
- Xinshao, W.; Cheng, C. Weed seeds classification based on PCANet deep learning baseline. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 408–415. [Google Scholar]
- Wang, H.; Vasu, P.K.A.; Faghri, F.; Vemulapalli, R.; Farajtabar, M.; Mehta, S.; Rastegari, M.; Tuzel, O.; Pouransari, H. Sam-clip: Merging vision foundation models towards semantic and spatial understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 3635–3647. [Google Scholar]
- Cvejoski, K.; Sánchez, R.J.; Ojeda, C. The future is different: Large pre-trained language models fail in prediction tasks. arXiv 2022, arXiv:2211.00384. [Google Scholar]
- Xu, M.; Park, J.E.; Lee, J.; Yang, J.; Yoon, S. Plant disease recognition datasets in the age of deep learning: Challenges and opportunities. Front. Plant Sci. 2024, 15, 1452551. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.A.; Abidin, M.S.Z.; Emmanuel, A.A.; Hasan, H.S. Robotics and automation in agriculture: Present and future applications. Appl. Model. Simul. 2020, 4, 130–140. [Google Scholar]
- Gernert, B.; Schlichter, J.; Wolf, L. PotatoScanner–A mobile delay tolerant wireless sensor node for smart farming applications. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–30 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 106–113. [Google Scholar]
- Kondo, S.; Yoshimoto, N.; Nakayama, Y. Farm Monitoring System with Drones and Optical Camera Communication. Sensors 2024, 24, 6146. [Google Scholar] [CrossRef]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Nabaei, S.H.; Zheng, Z.; Chen, D.; Heydarian, A. Multimodal Data Integration for Sustainable Indoor Gardening: Tracking Anyplant with Time Series Foundation Model. arXiv 2025, arXiv:2503.21932. [Google Scholar]
- Murdyantoro, B.; Atmaja, D.S.E.; Rachmat, H. Application design of farmbot based on Internet of Things (IoT). Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 1163–1170. [Google Scholar] [CrossRef]
- Stock, P.; Fan, A.; Graham, B.; Grave, E.; Gribonval, R.; Jegou, H.; Joulin, A. Training with quantization noise for extreme model compression. In Proceedings of the International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021. [Google Scholar]
- Muslim, A.B.; Nordemann, F.; Tönjes, R. Analysis of methods for prioritizing critical data transmissions in agricultural vehicular networks. In Proceedings of the 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 12–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 80–85. [Google Scholar]
- Tzachor, A.; Devare, M.; King, B.; Avin, S.; Ó hÉigeartaigh, S. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 2022, 4, 104–109. [Google Scholar] [CrossRef]
- Chandrasiri, C.; Kiridena, S.; Dharmapriya, S.; Kulatunga, A.K. Adoption of Multi-Modal Transportation for Configuring Sustainable Agri-Food Supply Chains in Constrained Environments. Sustainability 2024, 16, 7601. [Google Scholar] [CrossRef]
- Alexander, C.S.; Yarborough, M.; Smith, A. Who is responsible for ‘responsible AI’?: Navigating challenges to build trust in AI agriculture and food system technology. Precis. Agric. 2024, 25, 146–185. [Google Scholar] [CrossRef]
- Besik, D.; Nagurney, A.; Dutta, P. An integrated multitiered supply chain network model of competing agricultural firms and processing firms: The case of fresh produce and quality. Eur. J. Oper. Res. 2023, 307, 364–381. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, X.; Aheto, J.H.; Wang, C.; Ernest, B.; Tian, X.; He, P.; Chang, X.; Wang, C. Application of volatile and spectral profiling together with multimode data fusion strategy for the discrimination of preserved eggs. Food Chem. 2021, 343, 128515. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A review on the application of computer vision and machine learning in the tea industry. Front Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Patil, R.R.; Kumar, S. Rice-fusion: A multimodality data fusion framework for rice disease diagnosis. IEEE Access 2022, 10, 5207–5222. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Wang, Z.; Chen, Q.; Ouyang, Q. Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning. J. Sci. Food Agric. 2024, 104, 5486–5494. [Google Scholar] [CrossRef]
- Huang, X.; Lv, R.; Wang, S.; Aheto, J.H.; Dai, C. Integration of computer vision and colorimetric sensor array for nondestructive detection of mango quality. J. Food Process. Eng. 2018, 41, e12873. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Li, H.; Xia, H. Design and Evaluation of A Control System for The Fertigation Device. J. ASABE 2022, 65, 1293–1302. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, M.; Xu, B.; Guo, Z. Intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics: A review. Food Biosci. 2024, 62, 105081. [Google Scholar] [CrossRef]
- Mai, G.; Huang, W.; Sun, J.; Song, S.; Mishra, D.; Liu, N.; Gao, S.; Liu, T.; Cong, G.; Hu, Y.; et al. On the opportunities and challenges of foundation models for geospatial artificial intelligence. ACM Trans. Spat. Algorithms Syst. 2024, 10, 1–46. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Ma, T.; Li, W. Estimation of summer maize biomass based on a crop growth model. Emir. J. Food Agric. (EJFA) 2021, 33, 742–750. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Jin, Z. Research on Acoustic Signal Identification Mechanism and Denoising Methods of Combine Harvesting Loss. Agronomy 2024, 14, 1816. [Google Scholar] [CrossRef]
Data Source | Data Type | Collection Method | Time Frequency | Advantages | Challenges |
---|---|---|---|---|---|
Satellite remote sensing | Climate, crop growth, etc. | Using satellite imagery for remote sensing | Daily/seasonal | Wide coverage, large-scale data acquisition | Resolution limitations, cloud interference |
Drone imagery | Crop health, pest/disease | Drone flight for image capture | Daily/seasonal | High resolution, flexible operation | High cost, weather limitations |
Ground sensors | Soil moisture, temperature, etc. | Installing sensors to monitor soil data | Real-time | Real-time data, high accuracy | High deployment and maintenance costs |
Farmer reports | Crop growth status | Regular farmer reports on crop conditions | Weekly/seasonal | Large data volume, easy to schedule | Data accuracy issues, subjective bias |
Agricultural research institutions | Specialized weather, crop growth | Based on professional models or field surveys | Seasonal | High professionalism, high-quality data | Limited data, small coverage range |
Data Type | Description | Possible Sources/Collection Methods | Application Fields |
---|---|---|---|
Climate data | Include temperature, humidity, precipitation, wind speed, etc., used to monitor the impact of climate change on agriculture. | Meteorological stations, satellite remote sensing, drones, meteorological APIs | Crop growth prediction, agricultural climate models, disaster early warning |
Soil data | Include soil pH, moisture, fertility, organic matter content, etc., used to assess soil quality. | Soil testing, IoT sensors, remote sensing technologies | Soil management, crop planting decisions |
Crop data | Include crop variety, growth stages, yield, pest/disease conditions, etc. | Ground observation, drone monitoring, satellite imagery, IoT sensors | Crop growth monitoring, pest prediction, fertilizer decision-making |
Remote sensing data | Information obtained from satellite or drone images and videos. | Satellite remote sensing, UAVs, autonomous aerial vehicles | Crop monitoring, agricultural disease detection, land use analysis |
Water resource data | Include river flow, groundwater levels, irrigation water usage, etc. | Hydrological stations, groundwater monitoring, remote sensing data | Irrigation management, water resource optimization, agricultural water analysis |
Agricultural machinery data | Include machinery operational status, efficiency, maintenance records, etc. | IoT devices, GPS, sensors, agricultural robots | Precision farming, machinery scheduling, operational efficiency optimization |
Agricultural production logs | Daily farm production activity records, such as sowing, fertilizing, spraying, etc. | Farm management systems, farmer manual records, sensor data | Agricultural management, crop production monitoring, agricultural decision support |
Market price data | Data on the price fluctuations of different crops in the market. | Market surveys, E-commerce platforms, agricultural wholesale markets | Market analysis, price prediction, sales decisions |
Agricultural environmental data | Environmental factors affecting crop growth, such as light, wind speed, and rainfall. | Environmental monitoring devices, meteorological data | Crop growth optimization, agricultural environmental analysis |
Biodiversity data | Data on the population numbers and species distribution in agricultural fields. | Species surveys, remote sensing data, field observations | Ecological protection, crop–ecosystem interaction research |
Shift Type | Definition | Manifestation in Agriculture | Example |
---|---|---|---|
Concept shift | The distribution of target variables changes over time or due to environmental changes. | Changes in crop growth cycles, yield, or other agricultural factors due to climate change or production shifts. | Certain crops may mature earlier or later due to weather changes, leading to mismatches in data features and labels [161]. |
Covariate shift | The distribution of feature variables changes, but the label remains the same. | Geographic and seasonal variations in soil types, climate conditions, and crop varieties. | A crop classification model trained in one region may perform poorly in another region due to differences in crop features such as leaf color and texture [162,163]. |
Label shift | The distribution of labels changes. | Crop yield and quality may fluctuate due to climate and environmental changes, impacting label stability. | A crop yield might decrease significantly in a given year due to extreme weather, affecting the label’s stability [164]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Xi, Y.; Zhang, X.; Sun, C.; Mao, Q. Foundation Models in Agriculture: A Comprehensive Review. Agriculture 2025, 15, 847. https://doi.org/10.3390/agriculture15080847
Yin S, Xi Y, Zhang X, Sun C, Mao Q. Foundation Models in Agriculture: A Comprehensive Review. Agriculture. 2025; 15(8):847. https://doi.org/10.3390/agriculture15080847
Chicago/Turabian StyleYin, Shuolei, Yejing Xi, Xun Zhang, Chengnuo Sun, and Qirong Mao. 2025. "Foundation Models in Agriculture: A Comprehensive Review" Agriculture 15, no. 8: 847. https://doi.org/10.3390/agriculture15080847
APA StyleYin, S., Xi, Y., Zhang, X., Sun, C., & Mao, Q. (2025). Foundation Models in Agriculture: A Comprehensive Review. Agriculture, 15(8), 847. https://doi.org/10.3390/agriculture15080847