Evaluation of Scrapie Test Results of Native and Endangered Hungarian Sheep Breeds for Further Breeding
Abstract
:1. Introduction
2. Materials and Methods
Risk Group | Genotype | Degree of Resistance/Susceptibility |
---|---|---|
R1 | ARR/ARR | The individual and the offspring have a very low probability of developing the disease. That group is genetically most resistant to scrapie. The chance of infection is extremely low. |
R2 | ARR/AHQ | The individual and the offspring are unlikely to develop the disease. That group are genetically resistant to scrapie but will need careful selection when used for further breeding. The chance of infection is low if paired with an R1 or R2 individual. |
ARR/ARH | ||
ARR/ARQ | ||
R3 | AHQ/AHQ | The individual is less likely to have the disease, but some of the offspring may be at risk depending on the genotype of the other parent. That group genetically have little resistance to scrapie but needs careful selection. Increased risk especially in the case of ARQ animals. |
AHQ/ARH | ||
AHQ/ARQ | ||
ARH/ARH | ||
ARH/ARQ | ||
ARQ/ARQ | ||
R4 | ARR/VRQ | Individuals may develop scrapie, and the risk of disease in offspring is higher than in the R3 group. That group are genetically susceptible to scrapie and should not be used for breeding, except in the context of a controlled breeding program. High risk for certain animals and for half of the offspring. |
R5 | AHQ/VRQ | The risk of the disease is the highest for that group. Animals are susceptible to scrapie and should not be used for breeding. The risk of infection is very high. |
ARH/VRQ | ||
ARQ/VRQ | ||
VRQ/VRQ |
3. Results
Groups | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Haplotypes | (n = 138) Chi2 = 7.608; p = 0.55 | (n = 128) Chi2 = 9.112; p = 0.058 | (n = 114) Chi2 = 10.137; p = 0.038 | (n = 280) Chi2 = 7.904; p = 0.095 | (n = 900) Chi2 = 11.873; p = 0.018 |
ARR | 20.29 | 28.91 | 27.19 | 23.93 | 47.00 |
AHQ | 9.42 | 3.13 | 0.88 | 17.68 | 4.56 |
ARH | 0.00 | 1.56 | - | 12.14 | 0.56 |
ARQ | 70.29 | 65.63 | 70.18 | 42.50 | 46.11 |
VRQ | 0.00 | 0.78 | 1.75 | 3.57 | 1.78 |
Genotypes | (n = 69); Chi2 = 13.768; p = 0.032 | (n = 64) Chi2 = 15.574; p = 0.077 | (n = 57) Chi2 = 16.017; p = 0.042 | (n = 140) Chi2 = 22.221; p = 0.052 | (n = 450) Chi2 = 28.272; p = 0.003 |
ARR/ARR | 1.45 | 3.13 | 5.26 | 5.00 | 21.11 |
ARR/AHQ | 4.35 | 6.25 | - | 6.43 | 7.33 |
ARR/ARH | - | - | - | 4.29 | 0.67 |
ARR/ARQ | 33.33 | 45.31 | 42.11 | 25.00 | 40.89 |
AHQ/AHQ | - | - | - | 4.29 | - |
AHQ/ARH | - | - | - | 7.14 | - |
AHQ/ARQ | 14.49 | - | 1.75 | 12.14 | 1.78 |
ARH/ARH | - | - | - | 0.71 | - |
ARH/ARQ | - | 3.13 | - | 10.00 | 0.44 |
ARQ/ARQ | 46.38 | 40.62 | 47.38 | 17.86 | 24.22 |
ARR/VRQ | - | - | 1.75 | 2.14 | 2.89 |
AHQ/VRQ | - | - | - | 1.43 | - |
ARH/VRQ | - | - | - | 1.43 | - |
ARQ/VRQ | - | 1.56 | 1.75 | 2.14 | 0.67 |
VRQ/VRQ | - | - | - | - | - |
Risk groups | (n = 69) Chi2 = 8.451; p = 0.038 | (n = 64) Chi2 = 7.877; p = 0.96 | (n = 57) Chi2 = 7.640; p = 0.106 | (n= 140) Chi2 = 9.055; p = 0.060 | (n = 450) Chi2 = 11.335; p = 0.023 |
R1 | 1.45 | 3.13 | 5.26 | 5.00 | 21.11 |
R2 | 37.68 | 51.56 | 42.11 | 35.71 | 48.89 |
R3 | 60.87 | 43.75 | 49.13 | 52.15 | 26.44 |
R4 | - | - | 1.75 | 2.14 | 2.89 |
R5 | - | 1.56 | 1.75 | 5.00 | 0.67 |
Groups | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Haplotypes | (n = 1102) | (n = 5834) | (n = 1238) | (n = 3654) | (n = 15,856) | (n = 3564) |
ARR | −4.95 | +32.87 | +48.73 | +21.53 | +35.93 | +18.97 |
AHQ | −1.62 | −0.51 | +0.82 | +0.71 | −2.33 | −6.29 |
ARH | - | −1.34 | +0.65 | −2.15 | −0.19 | −5.49 |
ARQ | +6.48 | −30.47 | −50.15 | −17.46 | −31.77 | −4.73 |
VRQ | +0.1 | −0.56 | −0.05 | −2.45 | −1.65 | −2.28 |
Genotypes | (n = 551) | (n = 2917) | (n = 619) | (n = 1827) | (n = 7928) | (n = 1782) |
ARR/ARR | +1.82 | +37.05 | +54.19 | +16.83 | +47.67 | +12.62 |
ARR/AHQ | −2.17 | −2.65 | +2.42 | +9.66 | −3.76 | +1.54 |
ARR/ARH | - | +0.31 | +1.13 | +3.87 | −0.16 | +2.16 |
ARR/ARQ | −11.37 | −6.3 | −15.01 | −3.11 | −16.92 | +10.07 |
AHQ/AHQ | +0.9 | +0.07 | - | +0.03 | +0.03 | −2.89 |
AHQ/ARH | - | - | - | −3.24 | +0.06 | −2.88 |
AHQ/ARQ | −2.88 | +1.51 | −0.78 | −4.37 | −1.01 | −4.62 |
ARH/ARH | - | - | - | +0.6 | +0.01 | −0.01 |
ARH/ARQ | - | −2.99 | +0.16 | −4.91 | −0.29 | −9.05 |
ARQ/ARQ | +13.51 | −25.88 | −42.05 | −10.47 | −22.33 | −2.43 |
ARR/VRQ | - | +0.27 | +0.52 | −1.04 | −2.64 | −1.07 |
AHQ/VRQ | - | - | - | −1.05 | - | −1.22 |
ARH/VRQ | - | - | - | −1.21 | - | −1.23 |
ARQ/VRQ | +0.2 | −1.39 | −0.62 | −1.54 | −0.66 | −1.02 |
VRQ/VRQ | - | - | - | - | - | - |
Risk groups | (n = 551) | (n = 2917) | (n = 619) | (n = 1827) | (n = 7928) | (n = 1782) |
R1 | +1.82 | +37.05 | +54.19 | +16.83 | +47.67 | +12.62 |
R2 | −13.55 | −8.64 | −11.42 | +10.43 | −20.83 | +13.78 |
R3 | +11.53 | −27.29 | −42.67 | −22.35 | −23.54 | −21.85 |
R4 | - | +0.27 | +0.52 | −1.04 | −2.64 | −1.07 |
R5 | +0.2 | −1.39 | −0.62 | −3.85 | −0.66 | −3.48 |
Groups | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
Haplotypes | (n = 1102) | (n = 5834) | (n = 1238) | (n = 3654) | (n = 15,856) | (n = 3564) | (n = 492) |
ARR | +1.15 | +15.97 | +18.94 | +9.98 | +15.86 | +12.03 | +15 |
AHQ | −2.9 | −0.68 | −1.22 | −3.53 | −2.25 | +3.17 | −1.07 |
ARH | −0.13 | −0.2 | −1.38 | −5.35 | +0.09 | −2.46 | −2.61 |
ARQ | +1.84 | −14.65 | −14.74 | −0.4 | −13.52 | −11.08 | −9.56 |
VRQ | +0.05 | −0.44 | −1.6 | −2.49 | −0.18 | −1.66 | −1.76 |
Genotypes | (n = 551) | (n = 2917) | (n = 619) | (n = 1827) | (n = 7928) | (n = 1782) | (n = 246) |
ARR/ARR | +0.82 | +18.13 | +24.17 | +8.56 | +23.79 | +8.25 | +11.72 |
ARR/AHQ | −0.61 | −0.55 | −0.63 | +2.11 | −2.53 | +2.45 | −0.44 |
ARR/ARH | - | −0.16 | −1.66 | −1.44 | +0.09 | +0.93 | +1.42 |
ARR/ARQ | +1.26 | −3.03 | −7.16 | +5.3 | −13.33 | +4.51 | +5.56 |
AHQ/AHQ | −0.41 | −0.02 | - | −2.32 | −0.25 | +0.89 | - |
AHQ/ARH | - | - | −0.25 | −3.21 | +0.04 | +2.98 | −0.48 |
AHQ/ARQ | −4.37 | −0.66 | −1.57 | −0.76 | −1.49 | −0.31 | −0.97 |
ARH/ARH | - | - | - | −0.7 | +0.01 | −0.33 | −0.48 |
ARH/ARQ | −0.26 | −0.24 | −0.6 | −3.44 | +0.03 | −7.78 | −4.75 |
ARQ/ARQ | +3.47 | −12.59 | −9.14 | +0.64 | −6 | −8.32 | −8.18 |
ARR/VRQ | - | −0.58 | −1.03 | −1.15 | −0.09 | −0.34 | +0.02 |
AHQ/VRQ | - | −0.09 | - | −0.57 | −0.02 | −0.56 | −0.24 |
ARH/VRQ | - | - | −0.25 | −1.2 | - | −0.44 | −0.44 |
ARQ/VRQ | −0.11 | −0.21 | −1.92 | −1.53 | −0.25 | −1.96 | −2.61 |
VRQ/VRQ | - | - | - | −0.24 | - | - | −0.12 |
Risk groups | (n = 551) | (n = 2917) | (n = 619) | (n = 1827) | (n = 7928) | (n = 1782) | (n = 246) |
R1 | +0.82 | +18.12 | +24.17 | +8.56 | +23.79 | +8.25 | +11.72 |
R2 | +0.64 | −3.73 | −9.41 | +5.97 | −15.76 | +7.89 | +6.54 |
R3 | −1.57 | −13.51 | −11.56 | −9.77 | −7.67 | −12.83 | −14.86 |
R4 | - | −0.58 | −1.03 | −1.15 | −0.09 | −0.34 | +0.02 |
R5 | −0.11 | −0.3 | −2.17 | −3.59 | −0.27 | −2.97 | −3.42 |
3.1. The Cikta Sheep
3.2. The Tsigai Sheep
3.3. The Transylvanian Racka Sheep
3.4. Hungarian Racka Sheep, White Colour Variant
3.5. The Hungarian Merino Sheep
3.6. Hungarian Racka Sheep, Black Colour Variant
3.7. The Dairy Tsigai Sheep
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dexler, H. Traberkrankheit. In Tierheilkunde und Tierzucht: Eine Enzyklopädie der Praktischen Nutztierkunde; Stang, V., Wirth, D., Eds.; Urban & Schwarzenberg: Berlin, Germany; Wien, Austria, 1931; p. 807. [Google Scholar]
- Rusvai, M. Fertőző betegségek—Vírusos eredetű betegségek. In A Bárány- és a Juhhús Fenntarthatósága; Kukovics, S., Ed.; Juh Terméktanács-Interovic: Budapest, Hungary, 2021; pp. 171–194. [Google Scholar]
- McHugh, N.; O’Brien, A.C.; Pabiou, T.; McDermott, K.; Berry, D.P. Association between the prion protein genotype and animal performance traits in a large multibreed sheep population. Animal 2022, 16, 100587. [Google Scholar] [CrossRef]
- Act No. XXX of 2012 Concerning Hungarian National Values and Hungaricums. 11 April 2012. Available online: https://leap.unep.org/en/countries/hu/national-legislation/act-no-xxx-2012-concerning-hungarian-national-values-and (accessed on 22 November 2024).
- Dzialas, F. Die Entwicklung und die Bedeutung der Schafhaltung in der Deutschen Landwirtschaft Während des 19 Jahrhunderts. Ph.D. Thesis, Hohen Philosophischen Fakultät der Universität Jena, Budapest, Hungary, 1897. [Google Scholar]
- Reckzeh, C. Immunhistochemische Untersuchungen zum Vorkommen von Scrapie Prionprotein in Ovinen Geweben. Ph.D. Thesis, Freien Universität Berlin, Berlin, Germany, 2010. [Google Scholar]
- Áldássy, P.; Süveges, T. A juhok surlókórjának hazai előfordulása. Hun. Vet. J. 1964, 19, 463–465. [Google Scholar]
- Soós, F. XII. A juhok egészségtana. In Juhtenyésztés A-tól Z-ig; Jávor, A., Kukovics, S., Molnár, G., Eds.; Mezőgazda Kiadó: Budapest, Hungary, 2006; pp. 288–311. [Google Scholar]
- Kovács, E.; Mitro, S.; Tempfli, K.; Zenke, P.; Maróti-Agóts, Á.; Sáfár, L.; Bali Papp, Á.; Gáspárdy, A. A specific selection programme is required in the autochthonous Cikta Sheep which is endangered by own frequent ARQ prion haplotype? Appl. Agric. For. Res. 2017, 67, 141–146. [Google Scholar] [CrossRef]
- Rabenau, H.F. Teil III. Spezielle Mikrobiologische Diagnostik, 2 Prionen: 28 Diagnostik prionbedingter Erkrankungen, TSE-Erreger, Übertragungswege bei Tieren. In Mikrobiologische Diagnostik: Bakteriologie-Mykologie-Virologie-Parasitologie; Neumeister, B., Geiss, H.K., Braun, R.W., Kimmig, P., Eds.; Thieme Verlag: Stuttgart, Germany, 2009; pp. 635–639. [Google Scholar]
- NÉBIH: Fertőző Szivacsos Agyvelőbántalmakkal Kapcsolatos Tájékoztató Anyag. 2024. Available online: https://portal.nebih.gov.hu/-/fertozo-szivacsos-agyvelobantalmakkal-kapcsolatos-tajekoztato-anyag (accessed on 25 November 2024).
- Andréoletti, O.; Orge, L.; Benestad, S.L.; Beringue, V.; Litaise, C.; Simon, S.; Le Dur, A.; Laude, H.; Simmons, H.; Lugan, S.; et al. Atypical/Nor98 scrapie infectivity in sheep peripheral tissues. PLoS Pathog. 2011, 7, e1001285. [Google Scholar] [CrossRef]
- FVM (2003): 69/2003. (VI.25.) FVM Rendelet a Fertőző Szivacsos Agyvelőbántalmak Megelőzéséről, az Ellenük Való Védekezésről, Illetve a Leküzdésükről. Available online: https://net.jogtar.hu/jogszabaly?docid=A0300069.FVM&txtreferer=99700041.FM (accessed on 13 January 2010).
- FVM (2009): 179/2009. (XII.29.) FVM Rendelet a Fertőző Szivacsos Agyvelőbántalmak Megelőzéséről, az Ellenük Való Védekezésről, Illetve a Leküzdésükről. Available online: https://net.jogtar.hu/jogszabaly?docid=a0900179.fvm (accessed on 1 January 2023).
- Anton, I.; Zsolnai, A.; Fésüs, L.; Kovács, A.; Kukovics, S.; Molnár, A.; Oláh, J.; Jávor, A. A juhok surlókórja 4. A priongenotípusok gyakorisága muflonban, valamint szőrös és vedlőgyapjas házijuhokban. Hun. Vet. J. 2007, 129, 610–614. [Google Scholar]
- Agrobiogen GmBH: Scrapie Resistenz. Agrobiogen GmbH Biotechnologie. Available online: https://www.agrobiogen.de/leistungen/schaf/scrapie-resistenz (accessed on 7 November 2024).
- EK: Regulation (EC) No. 999/2001 of the European Parliament and of the Council of 22 May 2001 Laying Down Rules for the Prevention, Control and Eradication of Certain Transmissible Spongiform Encephalopathies. Available online: http://data.europa.eu/eli/reg/2001/999/oj (accessed on 11 April 2024).
- Kovács, E.; Tempfli, K.; Harmat, L.; Zenke, P.; Maróti-Agóts, Á.; Bali Papp, Á.; Sáfár, L.; Gáspárdy, A. A cikta juh hímivarú részpopulációjának surlókór elleni genetikai rezisztenciája a mentesítés másfél évtizedét követően. Anim. Breed. Feed. 2020, 69, 101–110. [Google Scholar]
- Gáspárdy, A.; Holly, V.; Zenke, P.; Martóti-Agóts, Á.; Sáfár, L.; Bali-Papp, Á.; Kovács, E. The response of prion genic variation to selection for scrapie resistance in Hungarian indigenous sheep breeds. Acta Vet. Hung. 2018, 66, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Fésüs, L.; Anton, I.; Zsolnai, A. A juhok surlókórja (genetikai vonatkozások)—Irodalmi áttekintés. Hun. Vet. J. 2002, 124, 726–729. [Google Scholar]
- Fésüs, L.; Zsolnai, A.; Anton, I.; Sáfár, L. Breeding for scrapie resistance in the Hungarian sheep population. Acta Vet. Hung. 2008, 56, 173–180. [Google Scholar] [CrossRef]
- Sartore, S.; Rasero, R.; Colussi, S.; Acutis, P.L.; Peletto, S.; Soglia, D.; Maione, S.; Spalenza, V.; Sacchi, P. Effect of selection for scrapie resistance on genetic diversity in a rare and locally adapted sheep breed: The case of Sambucana. Livest. Sci. 2013, 157, 75–80. [Google Scholar] [CrossRef]
- Vitale, M.; Migliore, S.; La Giglia, M.; Alberti, P.; Di Marco, L.; Presti, V.; Langeveld, J.P. Scrapie incidence and PRNP polymorphisms: Rare small ruminant breeds of Sicily with TSE protecting genetic reservoirs. BMC Vet. Res. 2016, 12, 141. [Google Scholar] [CrossRef]
- Balkema-Buschmann, A. Verteilung von Infektiosität und Krankheitsassoziiertem Prion-Protein in Geweben von mit Klassischen Oder Atypischen TSE-Erregern Infizierten Rindern und Schafen; Institut für Neue und Neuartige Tierseuchenerreger am Friedrich-Loeffler-Institut und dem Institut für Virologie der Stiftung Tierärztliche Hochschule Hannover: Hannover, Germany, 2011. [Google Scholar]
- Goldmann, W.; Hunter, N.; Smith, G.; Foster, J.; Hope, J. PrP genotype and agent effects in scrapie: Change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J. Gen. Virol. 1994, 75, 989–995. [Google Scholar] [CrossRef]
- Belt, P.B.; Muileman, I.H.; Schreuder, B.E.; Bos-de Ruijter, J.; Gielkens, A.L.; Smits, M.A. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 1995, 76, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.; Hoinville, L.J.; Hunter, N. Guidance on the use of PrP genotyping as an aid to the control of clinical scrapie. Scrapie Information Group. Veter. Rec. 1998, 142, 623–625. [Google Scholar]
- von Distl, O. Züchterische Kontrolle der Empfanglichkeit für die Traberkrankheit (Scrapie) beim Schaf über Molekulargenetische Testverfahren. Tierärztl. Umschau 2000, 55, 609–623. [Google Scholar]
- Baylis, M.; Chihota, C.; Stevenson, E.; Goldmann, W.; Smith, A.; Sivam, K.; Tongue, S.Ł.; Gravenor, M.B. Risk of scrapie in British sheep of different prion protein genotype. J. Gen. Virol. 2004, 85, 2735–2740. [Google Scholar] [CrossRef] [PubMed]
- HSGBA: Hungarian Sheep and Goat Breeders’ Association’s (HSGBA) Breeding Plan. Available online: https://mjksz.hu/tenyesztes/tenyesztesi-program (accessed on 12 December 2024).
- NÉBIH: Tájékoztató a Fertőző Szivacsos Agyvelőbántalmakról. Available online: https://portal.nebih.gov.hu/aktualitasok/hirek/friss-hirek/hirek2/-/asset_publisher/4ndba0yRXvQX/content/tajekoztato-a-fertozo-szivacsos-agyvelobantalmakrol/pop_up (accessed on 7 November 2024).
- Biscarini, F.; Nicolazzi, E.L.; Stella, A.; Boettcher, P.J.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015, 6, 33. [Google Scholar] [CrossRef]
- Gandini, G.; Turri, F.; Rizzi, R.; Crotta, M.; Minozzi, G.; Pizzi, F. Economic evaluation of genetic improvement in local breeds: The case of the Verzaschese goat. Ital. J. Anim. Sci. 2017, 16, 199–207. [Google Scholar] [CrossRef]
- Perucho, L. Rôle des Pratiques de Gestion Génétique dans L’adéquation Entre Troupeaux de Races Locales et Conduites Pastorales. Ph.D. Thesis, Sciences du Vivant [q-bio], Montpellier SupAgro, Montpelier, France, 2018. [Google Scholar]
- Tsiokos, D.; Ligda, C. Monitoring inbreeding and selection on scrapie resistance in a closed nucleus of Florina sheep breed. Small Rumin. Res. 2021, 201, 106422. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2023. EFSA J. 2024, 22, e9097. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Transmissible Spongiform Encephalopathies (TSEs) Effective Monitoring Keeps TSEs Under Control. 21 October 2024. Available online: https://storymaps.arcgis.com/stories/f3dc669cc2994fcfa35526ccdb696df2 (accessed on 12 February 2025).
- Aphis. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/sheep-goat/scrapie (accessed on 28 November 2024).
- Drögemüller, C.; Leeb, T.; Distl, O. PrP genotype frequencies in German breeding sheep and the potential to breed for resistance to scrapie. Veter. Rec. 2001, 149, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Kovács, E.; Tempfli, K.; Shannon, A.; Zenke, P.; Maróti-Agóts, Á.; Sáfár, L.; Bali Papp, Á.; Gáspárdy, A. STR diversity of a historical sheep breed bottlenecked, the Cikta. J. Anim. Plant Sci. 2019, 29, 41–47. [Google Scholar]
- Posta, J.; Kovács, E.; Tempfli, K.; Sáfár, L.; Bali-Papp, Á.; Gáspárdy, A. A kis létszámban átmentett Cikta juh származási adatainak értékelése különös tekintettel a családokra. Magy. Állatorvosok Lapja 2019, 141, 171–180. [Google Scholar]
- Cameron, C.; Bell-Rogers, P.; McDowall, R.; Rebelo, A.R.; Cai, H.Y. Prion protein genotypes of sheep as determined from 3343 samples submitted from Ontario and other provinces of Canada from 2005 to 2012. Can. J. Vet. Res. 2014, 78, 260–266. [Google Scholar]
- Rashaydeh, F.S.; Yildiz, M.A.; Alharthi, A.S.; Hani, H.; Al-Baadani, H.H.; Alhidary, I.A.; Meydan, H. Novel Prion Protein Gene Polymorphisms in Awassi Sheep in Three Regions of the Fertile Crescent. Vet. Sci. 2023, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Bordin, F.; Zulian, L.; Granato, A.; Caldon, M.; Colamonico, R.; Mutinelli, F. Prion protein (PRNP) gene polymorphisms analysis and susceptibility to scrapie of native sheep breeds from North-Eastern Italy. Large Anim. Rev. 2022, 28, 33–40. [Google Scholar]
- Jánosi, J.Z.; Matyóka, K.; Sáfár, L. Cikta. In Régenhonos juh- és Kecskefajtáink; Sáfár, L., Ed.; HVG Press: Budapest, Hungary, 2017; pp. 106–138. ISBN 978-963-12-8668-7. [Google Scholar]
- Schandl, J. Juhtenyésztés; Mezőgazdasági Kiadó: Budapest, Hungary, 1955; p. 264. [Google Scholar]
- Korom, I. Juhtenyésztés; Debreceni Agrártudományi Egyetem: Debrecen, Hungary, 1980; p. 280. [Google Scholar]
- Jávor, A. A cikta juh. In Régi Magyar Juhfajták; Jávor, A., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 2006; pp. 90–101. [Google Scholar]
- Koppány, G. The Cikta sheep. In Living Heritage: Old Historical Hungarian Livestock; Bodó, I., Ed.; Agroinform: Budapest, Hungary, 2000; pp. 58–59. [Google Scholar]
- Gáspárdy, A.; Sáfár, L. Őshonos Juhfajtáink. In Cigája és Tejelő Cigája; HVG Press: Budapest, Hungary, 2014; p. 43. [Google Scholar]
- Gáspárdy, A. A cigája vagy berke. (The Tsigai or Hungarian Berke). In ˝Eleven örökség˝ (Living Heritage); Bodó, I., Ed.; Agroinform Kiadó és Nyomda Kft: Budapest, Hungary, 2000; pp. 60–62. ISBN 963 502 720 6. [Google Scholar]
- Mihálka, T.; Veress, L. Juhtenyésztés. In Állattenyésztés II. Kötet; Horn, A., Ed.; Mezőgazdasági Kiadó: Budapest, Hungary, 1976; pp. 229–335. [Google Scholar]
- Veress, L.; Jávor, A. A Juh Tenyésztése és Tartása; Debreceni Agrártudományi Egyetem: Debrecen, Hungary, 1990; p. 198. [Google Scholar]
- Gáspárdy, A.; Eszes, F.; Bodó, I.; Koppány, G.; Keszthelyi, T.; Márton, F. A cigája (berke) juhfajta hazai változatainak alkattani összehasonlító vizsgálata/Type comparison of different Hungarian Tsigai/Berke/sheep variants. Anim. Br. F-(Állatteny és Tak.) 2001, 50, 33–42. [Google Scholar]
- Kukovics, S. A cigája juh. In Régi Magyar Juhfajták; Jávor, A., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 2006; pp. 37–89. [Google Scholar]
- Gáspárdy, A.; Sáfár, L. Cigája és tejelő cigája. In Régenhonos juh- és Kecskefajtáink; Sáfár, L., Ed.; HVG Press: Budapest, Hungary, 2017; pp. 64–105. ISBN 978-963-12-8668-7. [Google Scholar]
- Kukovics, S. Tejelő cigája. In Tenyésztési- és Fajtahasználati Útmutató/Guidebook for Breeding and Breed Utilization; Jávor, A., Fésűs, L., Eds.; Lícium-Art Könyvkiadó- és Kereskedelmi Kft.: Debrecen, Hungary, 2000; pp. 81–82. [Google Scholar]
- Veress, L. Juhfajták. In Juhtenyésztők Kézikönyve; Veress, L., Jankowski, S.T., Schwark, H.J., Eds.; Mezőgazdasági Kiadó: Budapest, Hungary, 1982; pp. 79–118. [Google Scholar]
- Kukovics, S. A tenyésztett fajták, és a fajtapolitikát befolyásoló tényezők. In Juhtenyésztés haladóknak az Extenzívtől a Precíziósig; Jávor, A., Ed.; Debreceni Egyetem–Juh Terméktanács: Debrecen, Hungary, 2022; pp. 78–161. [Google Scholar]
- Földi, D.; Földi, G.y.; Sáfár, L. Gyimesi racka. In Régenhonos juh- és Kecskefajtáink; Sáfár, L., Ed.; HVG Press: Budapest, Hungary, 2017; pp. 139–179. ISBN 978-963-12-8668-7. [Google Scholar]
- Mucsi, I. Fajták. In Juhtenyésztés és -Tartás; Mezőgazda Kiadó: Budapest, Hungary, 1997; pp. 30–51. [Google Scholar]
- Sáfár, L.; Domanovszki, Á. Magyar merinó. In Tenyésztési- és Fajtahasználati Útmutató; Jávor, A., Fésűs, L., Eds.; Lícium-Art Könyvkiadó- és Kereskedelmi Kft.: Debrecen, Hungary, 2000; pp. 17–20. [Google Scholar]
- Yousefi, V.; Kóbori, J. A Merinói Juhok Tenyésztése és Kiválasztása; Szaktudás Kiadó Ház Rt.: Budapest, Hungary, 2002; p. 200. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bácsi, E.I.; Klein, R.; Lévai, A.; Kenyon, F.; Oláh, J. Evaluation of Scrapie Test Results of Native and Endangered Hungarian Sheep Breeds for Further Breeding. Agriculture 2025, 15, 880. https://doi.org/10.3390/agriculture15080880
Bácsi EI, Klein R, Lévai A, Kenyon F, Oláh J. Evaluation of Scrapie Test Results of Native and Endangered Hungarian Sheep Breeds for Further Breeding. Agriculture. 2025; 15(8):880. https://doi.org/10.3390/agriculture15080880
Chicago/Turabian StyleBácsi, Eszter Ilona, Renáta Klein, András Lévai, Fiona Kenyon, and János Oláh. 2025. "Evaluation of Scrapie Test Results of Native and Endangered Hungarian Sheep Breeds for Further Breeding" Agriculture 15, no. 8: 880. https://doi.org/10.3390/agriculture15080880
APA StyleBácsi, E. I., Klein, R., Lévai, A., Kenyon, F., & Oláh, J. (2025). Evaluation of Scrapie Test Results of Native and Endangered Hungarian Sheep Breeds for Further Breeding. Agriculture, 15(8), 880. https://doi.org/10.3390/agriculture15080880