Approach to Selenium Application in Different Soil Concentrations for Encouraged Yield, Distribution, and Biofortification of Common Buckwheat Seeds (Fagopyrum esculentum Moench)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material and Design
2.2. Experimental Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hawrylak-Nowak, B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 2013, 70, 149–157. [Google Scholar] [CrossRef]
- Moncada, A.; Miceli, A.; Sabatino, L.; Iapichino, G.; D’Anna, F.; Vetrano, F. Effect of molybdenum rate on yield and quality of lettuce, escarole, and curly endive grown in a floating system. Agronomy 2018, 8, 171. [Google Scholar] [CrossRef]
- Rayman, M. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and itsrole for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef]
- Sabatino, L.; D’Anna, F.; Iapichino, G.; Moncada, A.; D’Anna, E.; De Pasquale, C. Interactive effects of genotype and molybdenum supply on yield and overall fruit quality of tomato. Front. Plant Sci. 2019, 9, 1922. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, L.; Huang, Q.; Li, H.; Wan, Y. Uptake and translocation mechanisms of different forms of organic selenium in rice (Oryza sativa L.). Front. Plant Sci. 2022, 13, 970480. [Google Scholar] [CrossRef]
- World Health Organization; Hallberg, L.; Jones, G.; Karmarkar, M.; Levine, M.; McCormick, D.; Mills, C.; Nordin, C.; Oyarzum, M.T.; Pandav, C.; et al. Food and Agriculture Organization of the United Nations. Vitam. Miner. Requir. Hum. Nutr. 2004, 1998, 20. [Google Scholar]
- El-Ramady, H.; Domokos-Szabolcsy, É.; Shalaby, T.; Prokisch, J.; Fári, M. Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium. In CO2 Sequestration, Biofuels and Depollution; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2015; Volume 5. [Google Scholar] [CrossRef]
- Vinceti, M.; Mandrioli, J.; Borella, P.; Michalke, B.; Tsatsakis, A.; Finkelstein, Y. Selenium neurotoxicity in humans: Bridging laboratory and epidemiologic studies. Toxicol. Lett. 2014, 230, 295–303. [Google Scholar] [CrossRef]
- de Souza Cardoso, A.A.; de Lima Gomes, F.T.; Antonio, J.R.R.; Guilherme, L.R.G.; Liu, J.; Li, L.; de Souza Silva, M.L. Sulfate availability and soil selenate adsorption alleviate selenium toxicity in rice plants. Environ. Exp. Bot. 2022, 201, 104971. [Google Scholar] [CrossRef]
- Wang, M.; Ali, F.; Qi, M.; Peng, Q.; Wang, M.; Bañuelos, G.S.; Miao, S.; Li, Z.; Dinh, Q.T.; Liang, D. Insights into uptake, accumulation, and subcellular distribution of selenium among eight wheat (Triticum aestivum L.) cultivars supplied with selenite and selenate. Ecotoxicol. Environ. Saf. 2021, 207, 111544. [Google Scholar] [CrossRef]
- Elrashidi, M.A.; Adriano, D.C.; Workman, S.M.; Lindsay, W.L. Chemical equilibria of selenium in soils: A theoretical development. Soil Sci. 1987, 144, 274–280. [Google Scholar] [CrossRef]
- Srikanth Lavu, R.V.; Van De Wiele, T.; Pratti, V.L.; Tack, F.; Du Laing, G. Selenium bioaccessibility in stomach, small intestine and colon: Comparison between pure Se compounds, Se-enriched food crops and food supplements. Food Chem. 2016, 197, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Siueia Júnior, M.; Ferreira da Silva, D.; Cipriano, P.E.; Rodrigues de Souza, R.; Faquin, V.; de Souza Silva, M.L.; Guimarães Guilherme, L.R. Residual selenate and selenite in the soil: Effect on the accumulation of selenium, macronutrients, and gas exchange in arugula. Sci. Hortic. 2024, 337, 113569. [Google Scholar] [CrossRef]
- Cartes, P.; Gianfreda, L.; Mora, M.L. Uptake of Selenium and its Antioxidant Activity in Ryegrass When Applied as Selenate and Selenite Forms. Plant Soil. 2005, 276, 359–367. [Google Scholar] [CrossRef]
- Keskinen, R.; Taurakainen, M.; Hartikainen, H. Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil. 2010, 333, 301–313. [Google Scholar] [CrossRef]
- Ramos, S.J.; Faguin, V.; Guilharme, L.R.G.; Castro, E.M.; Avila, F.W.; Carvalho, G.S.; Bastos, C.E.A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010, 56, 584–588. [Google Scholar] [CrossRef]
- Vogrinčič, M.; Cuderman, P.; Kreft, I.; Stibilj, V. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench). Anal. Sci. 2009, 25, 1357–1363. [Google Scholar] [CrossRef]
- Marques, A.C.; Lidon, F.C.; Coelho, A.R.F.; Pessoa, C.C.; Luís, I.C.; Scotti-Campos, P.; Simões, M.; Almeida, A.S.; Legoinha, P.; Pessoa, M.F.; et al. Quantification and tissue localization of selenium in rice (Oryza sativa L., Poaceae) grains: A perspective of agronomic biofortification. Plants 2020, 9, 1670. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z.; Rinklebe, J.; Tsang, D.C.W.; Tack, F.M.G.; Abbasi, G.H.; Hussain, A.; Igalavithana, A.D.; Lee, B.C.; et al. Effects of selenium on the uptake of toxic trace elements by crop plants: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2531–2566. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Jiang, Y.; El Mehdawi, A.F.; Tripti Lima, L.W.; Stonehouse, G.; Fakra, S.C.; Hu, Y.; Qi, H.; Pilon-Smits, E.A.H. Characterization of Selenium Accumulation, Localization and Speciation in Buckwheat–Implications for Biofortification. Front. Plant Sci. 2018, 9, 1583. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Pilon-Smits, E.A.H. The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol. 2017, 213, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zeng, Z.H.; Bu, Y.; Ren, C.Z.; Li, J.Z.; Han, J.J.; Tao, C.; Zhang, K.; Wang, X.X.; Lu, G.X.; et al. Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ. 2015, 61, 371–377. [Google Scholar] [CrossRef]
- Linkeš, V.; Pestún, V.; Džatko, M. Príručka pre Používanie Máp Bonitovaných Pôdno-Ekologických Jednotiek: Príručka pre Bonitáciu Poľnohospodárskych Pôd; Výskumný Ústav Pôdnej Úrodnosti: Bratislava, Slovakia, 1996; p. 103. ISBN 9788085361193. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Galinha, C.; Freitas, M.C.; Pacheco, A.M.G.; Kameník, J.; Kučera, J.; Anawar, H.M.; Coutinho, J.; Maçãs, B.; Almeida, A.S. Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis. J. Radioanal. Nucl. Chem. 2011, 294, 349–354. [Google Scholar] [CrossRef]
- Germ, M.; Gaberščik, A. The Effect of Environmental Factors on Buckwheat. In Molecular Breeding and Nutritional Aspects of Buckwheat; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Kolarić, L.; Popović, V.; Živanović, L.; Ljubičić, N.; Stevanović, P.; Šarčević Todosijević, L.; Simić, D.; Ikanović, J. Buckwheat Yield Traits Response as Influenced by Row Spacing, Nitrogen, Phosphorus, and Potassium Management. Agronomy 2021, 11, 2371. [Google Scholar] [CrossRef]
- Podolska, G. Chapter Twenty Two—The Effect of Habitat Conditions and Agrotechnical Factors on the Nutritional Value of Buckwheat. In Molecular Breeding and Nutritional Aspects of Buckwheat; Zhou, M., Kreft, I., Woo, S.-H., Chrungoo, N., Wieslander, G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 283–297. ISBN 9780128036921. [Google Scholar] [CrossRef]
- Ducsay, L.; Ložek, O.; Marček, M.; Varényiová, M.; Hozlár, P.; Lošák, T. Possibility of selenium biofortification of winter wheat grain. Plant Soil Environ. 2016, 62, 379–383. [Google Scholar] [CrossRef]
- Ducsay, L.; Zapletalová, A.; Slepčan, M.; Vicianová, M.; Hozlár, P.; Bušo, R. Selenium effect on wheat grain yield and quality applied in different growth stages. Plant Soil Environ. 2021, 67, 147–153. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Hao, J.; Fan, S.; Dong, R.; Zeng, H.; Liu, C.; Han, Y. Effects of selenate and selenite on selenium accumulation and speciation in lettuce. Plant Physiol. Biochem. 2022, 192, 162–171. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Nahar, K.; Fujita, M. Selenium toxicity in plants and environment: Biogeochemistry and remediation possibilities. Plants 2020, 9, 1711. [Google Scholar] [CrossRef]
- Cappa, J.J.; Cappa, P.J.; El Mehdawi, A.F.; McAleer, J.M.; Simmons, M.P.; Pilon-Smits, E.A. Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common-garden experiment. Am. J. Bot. 2014, 101, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Schneberg, K.A.; Pilon-Smits, E.A. Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 2014, 239, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Mazej, D.; Osvald, J.; Stibilj, V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 2008, 107, 75–83. [Google Scholar] [CrossRef]
- Xie, M.; Sun, X.; Li, P.; Shen, X.; Fang, Y. Selenium in cereals: Insight into species of the element from total amount. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2914–2940. [Google Scholar] [CrossRef]
- Jia, R.; Zhao, X.Q.; Liu, J.X.; Liu, Y.M.; Zhang, M.; Fang, Y.J.; Ma, N. Influence of Climate Change on the Buckwheat Growth Period and Yield in Semi-arid Region of the Loess Plateau. Chin. J. Agrometeorol. 2023, 44, 782–794. [Google Scholar] [CrossRef]
- Liu, P.; Song, L.; Hao, S.; Qin, J.; Yang, C.; Yang, W.; Feng, M.; Zhang, M.; Wang, C.; Song, X. Effects of selenium application concentration, period and method on the selenium content and grain yield of Tartary buckwheat of different varieties. J. Sci. Food Agric. 2022, 102, 6868–6876. [Google Scholar] [CrossRef]
- Sofi, S.A.; Ahmed, N.; Farooq, A.; Rafiq, S.; Zargar, S.M.; Kamran, F.; Dar, T.A.; Mir, S.A.; Dar, B.N.; Mousavi Khaneghah, A. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci. Nutr. 2022, 11, 2256–2276. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Soil reaction pH/KCl (0.2 mol/dm3 KCl) Soil reaction pH/H | 6.88–7.20 (pH units) |
1.67–1.84 mmol/kg | |
Carbonates content Dry unit weight | 4.45–4.50% |
1500–1600 kg/m3 | |
Porosity Humus content | 36–39% |
1.9–2.09% |
Element and Method of Its Determination | Year | Content in Soil (mg/kg) |
---|---|---|
pH/KCl (0.2 mol/dm3 KCl) (pH units) | 2022 | 6.88 |
2023 | 7.20 | |
Nan (sum of N-NH4+ and N-NO3−) | 2022 | 8.8 |
2023 | 5.4 | |
N-NH4+ (colorimetrically, Nessler’s reagent) | 2022 | 5.0 |
2023 | 3.0 | |
N-NO3− (colorimetrically, phenol 2,4—disulfonic acid) | 2022 | 3.8 |
2023 | 2.4 | |
P—available (colorimetrically, Mehlich III): | 2022 | 7.5 |
2023 | 10.0 | |
K—available (flame photometry, Mehlich III): | 2022 | 165 |
2023 | 132.5 | |
Mg—available (AAS, Mehlich III): | 2022 | 460 |
2023 | 426 | |
Ca—available (flame photometry, Mehlich III): | 2022 | 7450 |
2023 | 7450 | |
Se total | 2022 | 0.20 |
(HG-AAS atomic absorption spectrometry) | 2023 | 0.20 |
% of humus | 2022 | 1.22 |
2023 | 0.94 |
Applicated Content | Se Application Dose with Water Per Pot |
---|---|
Control | 500 mL of deionized water |
Se4+ V1 (150 g sodium selenite) | 0.74 mL Se4+ and deionized water |
Se4+ V2 (300 g sodium selenite | 1.48 mL Se4+ and deionized water |
Se4+ V3 (600 g sodium selenite) | 2.96 mL Se4+ and deionized water |
Se6+ V1 (150 g sodium selenate) | 0.74 mL Se6+ and deionized water |
Se6+ V2 (300 g sodium selenate) | 1.48 mL Se6+ and deionized water |
Se6+ V3 (600 g sodium selenate) | 2.96 mL Se6+ and deionized water |
Se in Roots (mg/kg) | Se in Stems (mg/kg) | Se in Seeds (mg/kg) | Se in Soil (mg/kg) | Yield of Seeds (t/ha) | |
---|---|---|---|---|---|
Year | 0.0000 ** | 0.0000 ** | 0.0000 ** | 0.5569 | 0.0000 ** |
Treatment | 0.0000 ** | 0.0000 ** | 0.0000 ** | 0.0000 ** | 0.0000 ** |
Year x Treatment | 0.0000 ** | 0.0000 ** | 0.0000 ** | 0.0002 * | 0.0000 ** |
2022 | 2.53 ± 1.07 a | 2.69 ± 3.08 a | 2.74 ± 2.03 a | 0.21 ± 0.05 a | 1.26 ± 0.12 a |
2023 | 2.84 ± 1.21 b | 3.45 ± 3.26 b | 3.10 ± 2.20 b | 0.22 ± 0.11 a | 1.93 ± 0.39 b |
Control | 0.57 ± 0.14 a | 0.18 ± 0.07 a | 0.17 ± 0.06 a | 0.19 ± 0.03 a | 1.55 ± 0.20 bc |
Se4+ V1 | 2.20 ± 0.14 b | 0.60 ± 0.37 b | 1.58 ± 0.10 b | 0.17 ± 0.01 a | 1.72 ± 0.50 de |
Se4+ V2 | 2.69 ± 0.28 c | 1.90 ± 0.77 c | 1.87 ± 0.09 c | 0.24 ± 0.06 a | 1.78 ± 0.51 de |
Se4+ V3 | 3.59 ± 0.12 d | 2.45 ± 0.82 d | 2.53 ± 0.16 d | 0.36 ± 0.11 b | 1.67 ± 0.62 cd |
Se6+ V1 | 2.15 ± 0.72 b | 1.83 ± 0.26 c | 3.30 ± 0.46 e | 0.18 ± 0.03 a | 1.85 ± 0.50 e |
Se6+ V2 | 2.37 ± 1.06 b | 4.74 ± 0.73 e | 3.84 ± 0.31 f | 0.19 ± 0.05 a | 1.44 ± 0.21 b |
Se6+ V3 | 4.10 ± 0.46 e | 9.83 ± 0.44 f | 7.18 ± 0.34 g | 0.18 ± 0.04 a | 1.18 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapletalová, A.; Kolenčík, M.; Ducsay, L.; Vicianová, M.; Vician, T.; Černý, I.; Bušo, R. Approach to Selenium Application in Different Soil Concentrations for Encouraged Yield, Distribution, and Biofortification of Common Buckwheat Seeds (Fagopyrum esculentum Moench). Agriculture 2025, 15, 891. https://doi.org/10.3390/agriculture15080891
Zapletalová A, Kolenčík M, Ducsay L, Vicianová M, Vician T, Černý I, Bušo R. Approach to Selenium Application in Different Soil Concentrations for Encouraged Yield, Distribution, and Biofortification of Common Buckwheat Seeds (Fagopyrum esculentum Moench). Agriculture. 2025; 15(8):891. https://doi.org/10.3390/agriculture15080891
Chicago/Turabian StyleZapletalová, Alexandra, Marek Kolenčík, Ladislav Ducsay, Mária Vicianová, Tomáš Vician, Ivan Černý, and Rastislav Bušo. 2025. "Approach to Selenium Application in Different Soil Concentrations for Encouraged Yield, Distribution, and Biofortification of Common Buckwheat Seeds (Fagopyrum esculentum Moench)" Agriculture 15, no. 8: 891. https://doi.org/10.3390/agriculture15080891
APA StyleZapletalová, A., Kolenčík, M., Ducsay, L., Vicianová, M., Vician, T., Černý, I., & Bušo, R. (2025). Approach to Selenium Application in Different Soil Concentrations for Encouraged Yield, Distribution, and Biofortification of Common Buckwheat Seeds (Fagopyrum esculentum Moench). Agriculture, 15(8), 891. https://doi.org/10.3390/agriculture15080891