A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description and Data Sources
2.2. Data Preprocessing
2.3. Calculation of Reference Crop Evapotranspiration (ET0)
2.4. Meteorological Scenarios
2.5. Deep Learning Methods
2.5.1. Long Short-Term Memory
- Step 1: Compute the Forget Gate
- Step 2: Compute the Input Gate and Candidate Cell State
- Step 3: Update the Cell State
- Step 4: Compute the Output Gate and Hidden State
2.5.2. Informer
Self-Attention Mechanism Improvement
2.5.3. Improved Informer
- Star Aggregate Redistribute Module (STAR): The STAR module, inspired by server–client communication architectures in the Series-cOre Fused Time Series forecaster (SOFTS) model [37], replaces the sparse attention mechanism in Informer’s encoder layer. It introduces a core global representation that acts as a shared intermediary for all channels, facilitating indirect interactions between sequences. This design not only enhances the efficiency of extracting sequence correlations but also overcomes the limitations of traditional distributed interaction modules. The computational complexity of STAR is linear with respect to the number of channels C and sequence length L, i.e., O(CL + CH), where H is the dimension of the representation. This linear complexity ensures superior computational efficiency when handling large-scale data.
- Residual Cycle Forecasting (RCF): A technique designed to capture periodic patterns in time-series data, which is essential for accurate ET0 prediction. The RCF module from the CycleNet model [38] is integrated into the Informer model. It operates through two key steps. 1. Remove Cycle: By learning and removing the periodic components from the original time series, the model can focus on the dynamic features of non-periodic variations. 2. Restore Cycle: The periodic components are reintegrated into the prediction results after forecasting the residuals, thereby capturing both periodic and non-periodic variations. RCF is a plug-and-play module that requires minimal additional parameters. It models the inherent periodic patterns in the data and enhances the model’s adaptability to periodic regularities. The selection of the cycle length (cycle_len) is critical for the effectiveness of RCF. In this study, the cycle length was determined through autocorrelation function (ACF) analysis to ensure accurate detection of periodic features.
- Frequency Adaptive Normalization (FAN): Traditional normalization methods often fail to address non-stationarity in time-series data. FAN, proposed by Weiwei Ye et al. [39], overcomes this limitation by leveraging Fourier transforms to identify and remove dominant frequency components (e.g., trends and seasonal variations) from the data during the normalization step. This process reduces non-stationarity, allowing the model to focus on learning stable features. During the denormalization step, the non-stationary components are reintegrated into the prediction results using a multi-layer perceptron (MLP). FAN effectively handles dynamic trends and seasonal patterns.
2.6. Training Configuration
2.7. Evaluating the Models
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Water Resources. 2023. China Water Resources Bulletin. Available online: http://www.mwr.gov.cn/sj/tjgb/szygb/ (accessed on 14 June 2024).
- Bwire, D.; Watanabe, F.; Suzuki, S.; Suzuki, K. Improving Irrigation Water Use Efficiency and Maximizing Vegetable Yields with Drip Irrigation and Poly-Mulching: A Climate-Smart Approach. Water 2024, 16, 3458. [Google Scholar] [CrossRef]
- Mgendi, G. Unlocking the potential of precision agriculture for sustainable farming. Discov. Agric. 2024, 2, 87. [Google Scholar] [CrossRef]
- Ali, M.; Nayahi, J.V.; Abdi, E.; Ghorbani, M.A.; Mohajeri, F.; Farooque, A.A.; Alamery, S. Improving daily reference evapotranspiration forecasts: Designing AI-enabled recurrent neural networks based long short-term memory. Ecol. Inform. 2025, 85, 102995. [Google Scholar] [CrossRef]
- Buri, E.S.; Keesara, V.R.; Loukika, K.; Sridhar, V. An Integrated Framework for Optimal Allocation of Land and Water Resources in an Agricultural Dominant Basin. Water Resour. Manag. 2024, 39, 1435–1451. [Google Scholar] [CrossRef]
- Acharki, S.; Raza, A.; Vishwakarma, D.K.; Amharref, M.; Bernoussi, A.S.; Singh, S.K.; Al-Ansari, N.; Dewidar, A.Z.; Al-Othman, A.A.; Mattar, M.A. Comparative assessment of empirical and hybrid machine learning models for estimating daily reference evapotranspiration in sub-humid and semi-arid climates. Sci. Rep. 2025, 15, 2542. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, R.; Almazah, M.M.A.; Hussain, I.; Al-Rezami, A.Y.; Raza, A.; Ray, R.L. Improving Reference Evapotranspiration Predictions with Hybrid Modeling Approach. Earth Syst. Environ. 2025. [Google Scholar] [CrossRef]
- Kong, X.; Chen, Z.; Liu, W.; Ning, K.; Zhang, L.; Marier, S.M.; Liu, Y.; Chen, Y.; Xia, F. Deep Learning for Time Series Forecasting: A Survey. Int. J. Mach. Learn. Cybern. 2025. [Google Scholar] [CrossRef]
- Del-Coco, M.; Leo, M.; Carcagnì, P. Machine Learning for Smart Irrigation in Agriculture: How Far along Are We? Information 2024, 15, 306. [Google Scholar] [CrossRef]
- Kumar, D.; Adamowski, J.; Suresh, R.; Ozga-Zielinski, B. Estimating evapotranspiration using an extreme learning machine model: Case study in north Bihar, India. J. Irrig. Drain. Eng. 2016, 142, 04016032. [Google Scholar] [CrossRef]
- Talib, A.; Desai, A.R.; Huang, J.; Griffis, T.J.; Reed, D.E.; Chen, J. Evaluation of prediction and forecasting models for evapotranspiration of agricultural lands in the Midwest US. J. Hydrol. 2021, 600, 126579. [Google Scholar] [CrossRef]
- Dolaptsis, K.; Pantazi, X.E.; Paraskevas, C.; Arslan, S.; Tekin, Y.; Bantchina, B.B.; Ulusoy, Y.; Gündoğdu, K.S.; Qaswar, M.; Bustan, D.; et al. A Hybrid LSTM Approach for Irrigation Scheduling in Maize Crop. Agriculture 2024, 14, 210. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Kotb Abd-Elmabod, S.; Zhang, Z.; Merwad, A.-R.M.A. Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions. Sustainability 2023, 15, 15494. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, F.; Yue, C.; Sun, S. Residual-time gated recurrent unit. Neurocomputing 2025, 624, 129396. [Google Scholar] [CrossRef]
- Umutoni, L.; Samadi, V. Application of machine learning approaches in supporting irrigation decision making: A review. Agric. Water Manag. 2024, 294, 108710. [Google Scholar] [CrossRef]
- Liyew, C.M.; Di Nardo, E.; Ferraris, S.; Meo, R.J.A.a.S. Hyperparameter Optimization of Machine Learning Models for Predicting Actual Evapotranspiration. Available online: https://ssrn.com/abstract=5123630 (accessed on 4 February 2025).
- Gao, Z.; Gao, Z.; Zhang, X.; Cao, S.; Zhou, B.; Liu, Y.; Liu, D.; Liu, W. Integrated Seasonal-Trend Decomposition Using Loess for Multi-Head Self-Attention Mechanism and Bidirectional Long Short-Term Memory Based Reference Evapotranspiration Prediction. Available online: https://ssrn.com/abstract=5118476 (accessed on 1 January 2025).
- Kandadi, T.; Shankarlingam, G. Drawbacks of Lstm Algorithm: A Case Study. Available online: https://ssrn.com/abstract=5080605 (accessed on 3 January 2025).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Abed, M.; Imteaz, M.A.; Ahmed, A.N.; Huang, Y.F. A novel application of transformer neural network (TNN) for estimating pan evaporation rate. Appl. Water Sci. 2023, 13, 31. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. Aaai Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Shang, J.; Zhao, B.; Hua, H.; Wei, J.; Qin, G.; Chen, G. Application of Informer Model Based on SPEI for Drought Forecasting. Atmosphere 2023, 14, 951. [Google Scholar] [CrossRef]
- Nagappan, M.; Gopalakrishnan, V.; Alagappan, M. Prediction of reference evapotranspiration for irrigation scheduling using machine learning. Hydrol. Sci. J. 2020, 65, 2669–2677. [Google Scholar] [CrossRef]
- Chen, P.; Li, C.; Chen, S.; Li, Z.; Zhang, H.; Zhao, C. Tea Cultivation Suitability Evaluation and Driving Force Analysis Based on AHP and Geodetector Results: A Case Study of Yingde in Guangdong, China. Remote Sens. 2022, 14, 2412. [Google Scholar] [CrossRef]
- Qi, N.; Yang, H.; Shao, G.; Chen, R.; Wu, B.; Xu, B.; Feng, H.; Yang, G.; Zhao, C. Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China. Comput. Electron. Agric. 2023, 212, 108108. [Google Scholar] [CrossRef]
- Martin Nascimento, G.F.; Wurtz, F.; Kuo-Peng, P.; Delinchant, B.; Jhoe Batistela, N. Outlier Detection in Buildings’ Power Consumption Data Using Forecast Error. Energies 2021, 14, 8325. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Yuan, J.; Wang, D.; Liu, X. Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory. Water 2024, 16, 83. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sun, S.; Wang, Y.; Wang, Q.; Zhang, X. Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation. Comput. Electron. Agric. 2020, 169, 105206. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Wang, Y.; Zha, Y. Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis. Agric. Water Manag. 2024, 305, 109120. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, J.; Chai, K.; Zhao, C. Time Series Analysis Based on Informer Algorithms: A Survey. Symmetry 2023, 15, 951. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 636–644. [Google Scholar]
- Xu, Y.; Zhao, J.; Wan, B.; Cai, J.; Wan, J. Flood Forecasting Method and Application Based on Informer Model. Water 2024, 16, 765. [Google Scholar] [CrossRef]
- Han, L.; Chen, X.-Y.; Ye, H.-J.; Zhan, D.-C. Softs: Efficient multivariate time series forecasting with series-core fusion. arXiv 2024, arXiv:2404.14197. [Google Scholar]
- Lin, S.; Lin, W.; Hu, X.; Wu, W.; Mo, R.; Zhong, H.J. Cyclenet: Enhancing time series forecasting through modeling periodic patterns. Adv. Neural Inf. Process. Syst. 2025, 37, 106315–106345. [Google Scholar]
- Ye, W.; Deng, S.; Zou, Q.; Gui, N. Frequency adaptive normalization for non-stationary time series forecasting. Adv. Neural Inf. Process. Syst. 2025, 37, 31350–31379. [Google Scholar]
Location | Longitude | Latitude | Start Date | End Date | Temporal Resolution |
---|---|---|---|---|---|
Yingde, Qingyuan City | 113.36 | 24.21 | 1 January 2015 | 1 October 2024 | daily |
Variable | Min | Max | Mean | Std |
---|---|---|---|---|
Total shortwave radiation (MJ ) | 1.12 | 28.65 | 14.30 | 6.05 |
Sunshine duration (h) | 0.00 | 12.83 | 7.38 | 3.97 |
10 m wind direction (°) | 1.00 | 360.00 | 110.24 | 86.99 |
Maximum wind speed at 10 m (m ) | 0.81 | 7.19 | 3.37 | 1.25 |
Maximum temperatures at 2 m (°C) | 6.20 | 38.60 | 25.65 | 6.53 |
Minimum temperatures at 2 m (°C) | −1.30 | 28.90 | 18.45 | 6.69 |
Average temperatures at 2 m (°C) | 3.52 | 32.86 | 21.71 | 6.42 |
ET0 (mm ) | 0.35 | 6.68 | 2.98 | 1.29 |
Total precipitation (mm) | 0.00 | 143.65 | 5.47 | 9.17 |
Relative humidity at 2 m (%) | 31.72 | 98.71 | 78.62 | 10.99 |
Surface pressure (KPa) | 98.77 | 102.94 | 100.83 | 0.72 |
Soil moisture at depths of 28 to 100 cm () | 0.15 | 0.45 | 0.33 | 0.07 |
Soil temperature at depths of 28 to 100 cm (°C) | 11.90 | 29.90 | 22.4 | 4.62 |
Variable | Scenario | |||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
Total shortwave radiation | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Sunshine duration | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Maximum temperature at 2 m | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Soil temperature at depths of 28 to 100 cm | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Surface pressure | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Relative humidity at 2 m | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Total precipitation | ✓ | ✓ | ✓ | ✓ | ||||
10 m wind direction | ✓ | ✓ | ✓ | |||||
Soil moisture at depths of 28 to 100 cm | ✓ | ✓ | ||||||
Maximum wind speed at 10 m | ✓ |
Parameter | Value | Description |
---|---|---|
freq | D | Daily time-series frequency |
seq_len | 10 | Input sequence length |
label_len | 5 | Label length for attention learning |
pred_len | 1 | Forecast horizon |
batch_size | 64 | Batch size |
num_epochs | 100 | Training iterations |
learning_rate | 0.004 | Adam optimizer learning rate |
dropout | 0.1 | Dropout for regularization |
d_model | 1 | Transformer hidden dimension |
d_ff | 32 | Feedforward network size |
e_layers | 2 | Number of Informer encoder layers |
enc_in | data.shape [1] | Encoder input dimensions |
dec_in | data.shape [1] | Decoder input dimensions |
cycle_len | 365 | Periodicity parameter for RCF |
d_core | 512 | STAR module core embedding dimension |
Metric | Model | Scenario | |||||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | ||
LSTM | 0.637 | 0.656 | 0.628 | 0.634 | 0.617 | 0.631 | 0.640 | 0.651 | |
MAE | Informer | 0.172 | 0.174 | 0.171 | 0.171 | 0.172 | 0.185 | 0.189 | 0.186 |
Informer-FAN | 0.088 | 0.089 | 0.077 | 0.074 | 0.075 | 0.079 | 0.081 | 0.084 | |
Informer-STAR | 0.172 | 0.179 | 0.162 | 0.167 | 0.169 | 0.186 | 0.180 | 0.191 | |
Informer-RCF | 0.166 | 0.173 | 0.161 | 0.165 | 0.167 | 0.191 | 0.193 | 0.193 | |
Informer-FAN-STAR | 0.079 | 0.086 | 0.069 | 0.065 | 0.065 | 0.083 | 0.072 | 0.072 | |
Informer-FAN-RCF | 0.075 | 0.081 | 0.067 | 0.066 | 0.065 | 0.081 | 0.081 | 0.076 | |
Informer-STAR-RCF | 0.176 | 0.174 | 0.167 | 0.167 | 0.164 | 0.186 | 0.200 | 0.190 | |
Improved Informer | 0.083 | 0.074 | 0.065 | 0.069 | 0.066 | 0.074 | 0.075 | 0.070 | |
LSTM | 0.678 | 0.675 | 0.642 | 0.643 | 0.629 | 0.802 | 0.681 | 0.703 | |
MSE | Informer | 0.060 | 0.059 | 0.060 | 0.061 | 0.057 | 0.068 | 0.068 | 0.068 |
Informer-FAN | 0.012 | 0.013 | 0.010 | 0.010 | 0.010 | 0.011 | 0.012 | 0.013 | |
Informer-STAR | 0.055 | 0.062 | 0.052 | 0.056 | 0.057 | 0.067 | 0.062 | 0.069 | |
Informer-RCF | 0.056 | 0.060 | 0.056 | 0.056 | 0.055 | 0.068 | 0.078 | 0.073 | |
Informer-FAN-STAR | 0.011 | 0.014 | 0.009 | 0.008 | 0.008 | 0.012 | 0.010 | 0.010 | |
Informer-FAN-RCF | 0.010 | 0.011 | 0.008 | 0.008 | 0.007 | 0.012 | 0.112 | 0.010 | |
Informer-STAR-RCF | 0.062 | 0.058 | 0.055 | 0.054 | 0.054 | 0.066 | 0.076 | 0.069 | |
Improved Informer | 0.012 | 0.011 | 0.007 | 0.009 | 0.008 | 0.010 | 0.042 | 0.008 | |
RMSE | LSTM | 0.824 | 0.821 | 0.801 | 0.802 | 0.793 | 0.802 | 0.825 | 0.839 |
Informer | 0.245 | 0.242 | 0.244 | 0.246 | 0.241 | 0.261 | 0.261 | 0.261 | |
Informer-FAN | 0.110 | 0.115 | 0.102 | 0.101 | 0.102 | 0.105 | 0.105 | 0.113 | |
Informer-STAR | 0.234 | 0.249 | 0.227 | 0.237 | 0.239 | 0.259 | 0.259 | 0.263 | |
Informer-RCF | 0.237 | 0.245 | 0.236 | 0.237 | 0.234 | 0.261 | 0.261 | 0.271 | |
Informer-FAN-STAR | 0.105 | 0.121 | 0.095 | 0.894 | 0.091 | 0.108 | 0.108 | 0.099 | |
Informer-FAN-RCF | 0.101 | 0.105 | 0.091 | 0.089 | 0.084 | 0.108 | 0.108 | 0.100 | |
Informer-STAR-RCF | 0.249 | 0.241 | 0.234 | 0.233 | 0.232 | 0.257 | 0.257 | 0.259 | |
Improved Informer | 0.108 | 0.106 | 0.074 | 0.093 | 0.089 | 0.098 | 0.098 | 0.092 | |
LSTM | 0.585 | 0.588 | 0.608 | 0.608 | 0.616 | 0.607 | 0.585 | 0.571 | |
Informer | 0.962 | 0.964 | 0.963 | 0.963 | 0.964 | 0.958 | 0.958 | 0.958 | |
Informer-FAN | 0.992 | 0.992 | 0.994 | 0.994 | 0.994 | 0.993 | 0.993 | 0.992 | |
Informer-STAR | 0.966 | 0.961 | 0.968 | 0.965 | 0.965 | 0.958 | 0.962 | 0.958 | |
Informer-RCF | 0.965 | 0.963 | 0.966 | 0.965 | 0.967 | 0.958 | 0.952 | 0.955 | |
Informer-FAN-STAR | 0.993 | 0.991 | 0.994 | 0.995 | 0.995 | 0.993 | 0.994 | 0.994 | |
Informer-FAN-RCF | 0.993 | 0.993 | 0.995 | 0.995 | 0.996 | 0.993 | 0.993 | 0.994 | |
Informer-STAR-RCF | 0.962 | 0.964 | 0.966 | 0.967 | 0.967 | 0.959 | 0.953 | 0.959 | |
Improved Informer | 0.993 | 0.993 | 0.995 | 0.995 | 0.995 | 0.994 | 0.994 | 0.995 | |
LSTM | 23.01 | 25.05 | 22.86 | 24.04 | 22.21 | 23.30 | 23.14 | 23.42 | |
MAPE | Informer | 7.702 | 7.868 | 7.696 | 7.576 | 7.595 | 8.200 | 8.141 | 8.194 |
Informer-FAN | 4.042 | 4.230 | 3.551 | 3.366 | 3.423 | 3.650 | 3.526 | 3.722 | |
Informer-STAR | 8.008 | 8.082 | 7.183 | 7.471 | 7.550 | 8.181 | 7.840 | 8.561 | |
Informer-RCF | 7.584 | 7.998 | 7.232 | 7.362 | 7.527 | 8.595 | 8.280 | 8.525 | |
Informer-FAN-STAR | 3.543 | 3.8614 | 3.145 | 2.987 | 3.008 | 3.622 | 3.239 | 3.378 | |
Informer-FAN-RCF | 3.296 | 3.623 | 2.938 | 3.092 | 2.964 | 3.459 | 3.481 | 3.376 | |
Informer-STAR-RCF | 7.914 | 7.852 | 7.395 | 7.410 | 7.346 | 8.332 | 8.488 | 8.440 | |
Improved Informer | 3.566 | 3.278 | 2.965 | 3.226 | 2.913 | 3.210 | 3.433 | 3.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Yu, L.; Zhou, B.; Zhao, J. A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer. Agriculture 2025, 15, 933. https://doi.org/10.3390/agriculture15090933
Pan J, Yu L, Zhou B, Zhao J. A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer. Agriculture. 2025; 15(9):933. https://doi.org/10.3390/agriculture15090933
Chicago/Turabian StylePan, Junrui, Long Yu, Bo Zhou, and Junhong Zhao. 2025. "A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer" Agriculture 15, no. 9: 933. https://doi.org/10.3390/agriculture15090933
APA StylePan, J., Yu, L., Zhou, B., & Zhao, J. (2025). A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer. Agriculture, 15(9), 933. https://doi.org/10.3390/agriculture15090933