Enhanced Accumulation of Vitamins, Nutraceuticals and Minerals in Lettuces Associated with Arbuscular Mycorrhizal Fungi (AMF): A Question of Interest for Both Vegetables and Humans
Abstract
:1. Introduction
2. Nutraceuticals, Vitamins and Minerals in Mycorrhizal Lettuce Plants
2.1. Chlorophylls (Chl)
2.2. Carotenoids
2.3. Phenolic Compounds
2.4. Vitamins
2.5. Minerals
Treatments | N | Ca | K | P | Mg | Cu | Zn | Fe | Mn | ||
---|---|---|---|---|---|---|---|---|---|---|---|
--------------------------------- (mg·g−1 FW) ------------------------------- | --------------------------------- (ppm) -------------------------------- | ||||||||||
2/3 FC | NM | Outer leaves | 2.6 ± 0.12 cd | 0.67 ± 0.02 bc | 6.5 ± 0.16 bc | 0.08 ± 0.00 e | 0.28 ± 0.01 c | 0.32 ± 0.06 bc | 4.4 ± 0.80 ab | 8.3 ± 0.96 b | 17.8 ± 1.02 b |
Inner leaves | 2.5 ± 0.12 d | 0.36 ± 0.03 d | 4.6 ± 0.28 e | 0.15 ± 0.01 c | 0.14 ± 0.01 e | 0.08 ± 0.02 e | 2.8 ± 0.29 cd | 4.1 ± 0.50 d | 7.1 ± 0.60 e | ||
M | Outer leaves | 3.0 ± 0.16 bc | 0.65 ± 0.08 c | 6.5 ± 0.47 bc | 0.10 ± 0.00 e | 0.30 ± 0.03 bc | 0.41 ± 0.01 ab | 2.3 ± 0.30 d | 7.2 ± 0.42 bc | 12.8 ± 1.31 c | |
Inner leaves | 3.2 ± 0.25 b | 0.40 ± 0.03 d | 4.9 ± 0.27 de | 0.22 ± 0.01 a | 0.19 ± 0.01 de | 0.23 ± 0.03 cd | 3.0 ± 0.16 cd | 6.4 ± 0.21 c | 6.6 ± 0.76 e | ||
NM | Outer leaves | 3.7 ± 0.18 a | 0.83 ± 0.02 a | 8.7 ± 0.44 a | 0.11 ± 0.00 d | 0.36 ± 0.02 ab | 0.51 ± 0.07 a | 5.6 ± 0.32 a | 9.5 ± 0.36 b | 25.7 ± 1.31 a | |
1/2 FC | Inner leaves | 3.4 ± 0.16 ab | 0.46 ± 0.05 d | 5.8 ± 0.38 cd | 0.20 ± 0.00 b | 0.17 ± 0.02 de | 0.18 ± 0.04 de | 3.7 ± 0.52 bc | 5.5 ± 0.38 cd | 11.4 ± 1.53 cd | |
M | Outer leaves | 3.4 ± 0.08 ab | 0.77 ± 0.04 ab | 7.9 ± 0.12 ab | 0.13 ± 0.01 cd | 0.38 ± 0.03 a | 0.50 ± 0.07 a | 3.7 ± 0.23 bc | 14.9 ± 1.65 a | 17.5 ± 0.43 b | |
Inner leaves | 3.5 ± 0.34 ab | 0.42 ± 0.04 d | 5.3 ± 0.64 de | 0.22 ± 0.02 a | 0.20 ± 0.02 de | 0.15 ± 0.04 de | 3.4 ± 0.40 bc | 7.1 ± 0.35 bc | 9.4 ± 0.85 de | ||
Drought (degree) | *** | ** | *** | ** | * | ns | ** | ns | *** | ||
AMF | ns | ns | ns | *** | ns | ns | ** | ns | *** | ||
Position of leaves (PL) | ns | *** | *** | *** | *** | *** | * | * | *** | ||
Drought × AMF | * | ns | ns | ns | ns | ns | ns | ns | ns | ||
Drought × PL | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
AMF × PL | ns | ns | ns | * | ns | ns | ** | ns | ** | ||
Drought × AMF × PL | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | N | Ca | K | P | Mg | Cu | Zn | Fe | Mn | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
-------------------------------------- (mg g−1 FW) ------------------------------ | --------------------------------- (ppm ) --------------------------- | |||||||||||
2/3 FC | NM | Outer leaves | 2.5 ± 0.19 d | 0.90 ± 0.02 ab | 6.1 ± 0.12 a | 0.08 ± 0.00 b | 0.26 ± 0.01 b | 0.20 ± 0.04 a | 2.2 ± 0.12 c | 4.9 ± 0.72 c | 18.0 ± 0.95 b | |
Inner leaves | 2.9 ± 0.12 bc | 0.55 ± 0.03 c | 4.4 ± 0.15 b | 0.19 ± 0.02 a | 0.16 ± 0.01 d | 0.18 ± 0.03 ab | 3.0 ± 0.12 b | 6.3 ± 0.31 bc | 7.9 ± 0.06 d | |||
M | Outer leaves | 2.6 ± 0.29 cd | 0.94 ± 0.02 ab | 6.7 ± 0.41 a | 0.10 ± 0.00 b | 0.28 ± 0.02 ab | 0.12 ± 0.04 b | 2.0 ± 0.27 c | 4.8 ± 0.41 c | 13.8 ± 1.82 c | ||
Inner leaves | 2.8 ± 0.15 bcd | 0.57 ± 0.03 c | 4.3 ± 0.18 b | 0.19 ± 0.01 a | 0.19 ± 0.01 cd | 0.17 ± 0.04 ab | 3.0 ± 0.16 b | 5.6 ± 0.33 bc | 7.2 ± 0.35 d | |||
NM | Outer leaves | 2.8 ± 0.13 bcd | 0.99 ± 0.09 a | 6.4 ± 0.29 a | 0.10 ± 0.01 b | 0.34 ± 0.04 a | 0.19 ± 0.04 a | 3.4 ± 0.31 b | 6.3 ± 0.83 bc | 22.5 ± 1.58 a | ||
1/2 FC | Inner leaves | 3.8 ± 0.41 a | 0.79 ± 0.15 b | 5.9 ± 0.63 a | 0.23 ± 0.04 a | 0.26 ± 0.03 b | 0.18 ± 0.03 ab | 5.4 ± 0.65 a | 7.5 ± 0.91 a | 13.2 ± 1.26 c | ||
M | Outer leaves | 2.6 ± 0.04 cd | 0.82 ± 0.01 b | 6.5 ± 0.11 a | 0.09 ± 0.00 b | 0.28 ± 0.01 ab | 0.16 ± 0.04 ab | 2.0 ± 0.23 c | 6.6 ± 0.72 abc | 15.0 ± 0.87 c | ||
Inner leaves | 3.2 ± 0.51 ab | 0.57 ± 0.06 c | 4.3 ± 0.50 b | 0.19 ± 0.02 a | 0.19 ± 0.02 cd | 0.19 ± 0.21 a | 3.1 ± 0.28 b | 6.9 ± 0.74 ab | 8.5 ± 1.16 d | |||
Drought (degree) | ns | ns | ns | ns | ns | ns | ** | * | ** | |||
AMF | ns | ns | ns | ns | ns | ns | *** | ns | *** | |||
Position of leaves (PL) | * | *** | *** | *** | ** | ns | *** | ns | *** | |||
Drought × AMF | ns | * | ns | ns | * | ns | ** | ns | * | |||
Drought × PL | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||
AMF × PL | ns | ns | ns | ns | ns | ns | ns | ns | ns | |||
Drought × AMF × PL | ns | ns | ns | ns | ns | ns | ns | ns | ns |
3. Conclusions and Future Prospects
Acknowledgments
References and Note
- Edreva, A.; Velikova, V.; Tsonev, T.; Dagnon, S.; Gürel, A.; Aktaş, L.; Gesheva, E. Stress-protective role of secondary metabolites: Diversity of functions and mechanisms. Gen. Appl. Plant Physiol. 2008, 34, 67–78. [Google Scholar]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Redefining dietary recommendations and food safety. World Rev. Nutr. Diet. 1998, 83, 219–222. [Google Scholar] [CrossRef]
- Calvo, M.M. Lutein: A valuable ingredient of fruit and vegetables. Crit. Rev. Food Sci. 2005, 45, 671–696. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Serafini, M.; Bugianesi, R.; Salucci, M.; Azzini, E.; Raguzzini, A.; Maiani, G. Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br. J. Nutr. 2002, 88, 615–623. [Google Scholar] [CrossRef]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef]
- Borghi, S. Special: IV range (vegetables). Colt. Protette 2003, 32, 21–43. [Google Scholar]
- Mou, B. Nutrient content of lettuce and its improvement. Curr. Nutr. Food Sci. 2009, 5, 242–248. [Google Scholar] [CrossRef]
- Kader, A.A. Fresh-Cut Produce: Tracks and Trends. In Fresh-Cut Fruits and Vegetables: Science, Technology, and Market; Lamikanra, O., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 21–30. [Google Scholar]
- Jain, A.K.; Nessler, C.L. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breed. 2000, 6, 73–78. [Google Scholar] [CrossRef]
- Yabuta, Y.; Tanaka, H.; Yoshimura, S.; Suzuki, A.; Tamoi, M.; Maruta, T.; Shigeoka, S. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res. 2012. [Google Scholar] [CrossRef]
- Goto, F.; Yoshihara, T.; Saiki, H. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor. Appl. Genet. 2000, 100, 658–664. [Google Scholar] [CrossRef]
- Smith, F.A.; Smith, S.E. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 2011, 348, 63–79. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Gollote, A.; Binet, M.-N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef]
- Hause, B.; Mrosk, C.; Isayenkov, S.; Strack, D. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 2007, 68, 101–110. [Google Scholar]
- Walter, M.H.; Floss, D.S.; Strack, D. Apocarotenoids: Hormones, mycorrhizal metabolites and aroma volatiles. Planta 2010, 232, 1–17. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, A.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- Garmendia, I.; Goicoechea, N.; Aguirreolea, J. Antioxidant metabolism in asymptomatic leaves of Verticillium-infected pepper associated with an arbuscular mycorrhizal fungus. J. Phytopathol. 2004, 152, 593–599. [Google Scholar] [CrossRef]
- Vosátka, M.; Látr, A.; Gianinazzi, S.; Albrechtová, J. Development of arbuscular mycorrhizal biotechnology and industry: Current achievements and bottlenecks. Symbiosis 2013. [Google Scholar] [CrossRef]
- Fitter, A.H.; Helgason, T.; Hodge, A. Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biol. Rev. 2011, 25, 68–72. [Google Scholar] [CrossRef]
- Mulabagal, V.; Ngouajio, M.; Nair, A.; Zhang, Y.; Gottumukkala, A.L.; Nair, M.G. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem. 2010, 118, 300–306. [Google Scholar] [CrossRef]
- Afek, U.; Rinaldelli, E.; Menge, J.A.; Johnson, E.L.V.; Pond, E. Mycorrhizal species, root age, and position of mycorrhizal inoculum influence colonization of cotton, onion, and pepper Seedlings. J. Am. Soc. Hort. Sci. 1990, 115, 938–942. [Google Scholar]
- Borkowska, B. Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta. Physiol. Plant 2002, 24, 365–370. [Google Scholar] [CrossRef]
- Bolandnazar, S.A.; Neyshabouri, M.R.; Aliasgharzad, N.; Chaparzadeh, N. Effects of mycorrhizal colonization on growth parameters of onion under different irrigation and soil conditions. Pak. J. Biol. Sci. 2007, 10, 1491–1495. [Google Scholar] [CrossRef]
- Sohrabia, Y.; Heidaria, G.; Weisanya, W.; Ghasemi-Golezanib, K.; Mohammadic, K. Some physiological responses of chickpea cultivars to arbuscular mycorrhiza under drought stress. Russ. J. Plant Physl. 2012, 59, 708–716. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N. Evaluating effectiveness of four inoculation methods with arbuscular mycorrhizal fungi on trifoliate orange seedlings. Int. J. Agric. Biol. 2012, 14, 266–270. [Google Scholar]
- Selvaraj, T.; Nisha, M.C.; Rajeshkumar, S. Effect of indigenous arbuscular mycorrhizal fungi on some growth parameters and phytochemical constituents of Pogostemon patchouli Pellet. Maejo. Int. J. Sci. Technol. 2009, 3, 222–234. [Google Scholar]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse grown lettuce. J. Agric. Food Chem. 2011, 59, 5504–5515. [Google Scholar]
- Baslam, M.; Esteban, R.; García-Plazaola, J.I.; Goicoechea, N. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl. Microbiol. Biotechnol. 2012. [Google Scholar] [CrossRef]
- Baslam, M.; Pascual, I.; Sánchez-Díaz, M.; Erro, J.; García-Mina, J.M.; Goicoechea, N. Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J. Agric. Food Chem. 2011, 59, 11129–11140. [Google Scholar]
- Baslam, M.; Goicoechea, N. Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 2012, 22, 347–359. [Google Scholar] [CrossRef]
- Demming-Adams, B.; Adams, W.W., III. Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field. Aust. J. Plant Physiol. 1996, 23, 649–659. [Google Scholar] [CrossRef]
- Cazzonelli, D.I. Carotenoids in nature: Insights from plants and beyond. Funct. Plant Biol. 2011, 38, 833–847. [Google Scholar] [CrossRef]
- Cazzonelli, C.I.; Pogson, B.J. Source to sink: Regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010, 15, 266–274. [Google Scholar] [CrossRef]
- Sommer, A.; Davidson, F.R. Assessment and control of vitamin A deficiency: The Annecy Accords. J. Nutr. 2002, 132, 2845S–2850S. [Google Scholar]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Voutilainen, S.; Nurmi, T.; Mursu, J.; Rissanen, T. Carotenoids and cardiovascular health. Am. J. Clin. Nutr. 2006, 83, 1265–1271. [Google Scholar]
- Paiva, S.A.R.; Russell, R.M. β-Carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar]
- Strack, D.; Fester, T. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol. 2006, 172, 22–34. [Google Scholar] [CrossRef]
- Walter, M.H.; Floss, D.S.; Hans, J.; Fester, T.; Strack, D. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: Contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry 2007, 68, 130–138. [Google Scholar]
- Ulrichs, C.; Fischer, G.; Büttner, C.; Mewis, I. Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron. Colomb. 2008, 26, 40–46. [Google Scholar]
- Mena-Violante, H.G.; Ocampo-Jiménez, O.; Dendooven, L.; Martínez-Soto, G.; González-Castañeda, J.; Davies, F.T., Jr.; Olalde-Portugal, V. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 2006, 16, 261–267. [Google Scholar] [CrossRef]
- Giovannetti, M.; Avio, L.; Barale, R.; Ceccarelli, N.; Cristofani, R.; Lezzi, A.; Mignolli, F.; Picciarelli, P.; Pinto, B.; Reali, D.; et al. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Brit. J. Nutr. 2012, 107, 242–251. [Google Scholar] [CrossRef]
- Kainulainen, P.; Utriainen, J.; Holopainen, J.K.; Oksanen, J.; Holopainen, T. Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system: Effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compouds. Glob. Change Biol. 2000, 6, 335–344. [Google Scholar] [CrossRef]
- Valladares, F.; García Plazaola, J.I.; Morales, F.; Niinemets, U. Photosynthetic Responses to Radiation. In Terrestrial Photosynthesis in a Changing Environment. A Molecular, Physiological, and Ecological Approach; Flexas, J., Loreto, F., Medrano, H., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 239–256. [Google Scholar]
- Ma, L.; Lin, X.M. Effects of lutein and zeaxanthin on aspects of eye health. J. Sci. Food Agric. 2010, 90, 2–12. [Google Scholar] [CrossRef]
- Caldwell, C.R.; Britz, S.J. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J. Food Compos. Anal. 2006, 19, 637–644. [Google Scholar] [CrossRef]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Elevated CO2 may impair the beneficial effect of arbuscular mycorrhizal fungi (AMF) on the mineral and phytochemical quality of lettuce. Ann. Appl. Biol. 2012, 161, 180–191. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 11, 317–333. [Google Scholar]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of Phenolics in the Resistance Mechanisms of Plants against Fungal Pathogens and Insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; Research Signpost: Kerala, India, 2006; pp. 23–67. [Google Scholar]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Francisco, A.; Tomás-Barberán, F.A.; Juan, C.E. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Ganz, T.R.; Kailis, S.G.; Abbott, L.K. Mycorrhizal colonization and its effect on growth phosphorus uptake and tissue phenolic content in the European olive (Olea europaea L.). Adv. Hortic. Sci. 2002, 16, 109–116. [Google Scholar]
- Toussaint, J.P.; Smith, F.A.; Smith, S.E. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 2007, 17, 291–297. [Google Scholar] [CrossRef]
- Lee, J.M.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Castellanos-Morales, V.; Villegas, J.; Wendelin, S.; Vierheilig, H.; Eder, R.; Cárdenas-Navarro, R. Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria ananassa Duch.) at different nitrogen levels. J. Sci. Food Agric. 2010, 90, 1774–1782. [Google Scholar]
- Cavagnaro, T.R.; Gleadow, R.M.; Miller, R.E. Plant nutrient acquisition and utilization in a high carbon dioxide world. Funct. Plant Biol. 2011, 38, 87–96. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef]
- Janagath, I.B.; Crozier, A. Dietary Flavonoids and Phenolic Compounds. In Plant Phenolics and Human Health. Biochemistry, Nutrition, and Pharmacology; Fraga, C.G., Ed.; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–50. [Google Scholar]
- Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Poulton, J.L.; Koide, R.T.; Stephenson, A.G. Effects of mycorrhizal infection and soil phosphorus availability on in vitro and in vivo pollen performance in Lycopersicon esculentum (Solanaceae). Am. J. Bot. 2001, 88, 1786–1793. [Google Scholar] [CrossRef]
- Smirnoff, N.; Wheeler, G.L. Ascorbic acid in plants: Biosynthesis and function. CRC Crit. Rev. Biochem. Mol. Biol. 2000, 35, 291–314. [Google Scholar] [CrossRef]
- Arrigoni, O.; de Tullio, M.C. The role of ascorbic acid in cell metabolism: Between gene-directed functions and unpredictable chemical reactions. J. Plant Physiol. 2000, 157, 481–488. [Google Scholar] [CrossRef]
- Smirnoff, N. Ascorbate biosynthesis and function in photoprotection. Philos. Trans. R. Soc. Lond. BBiol. Sci. 2000, 355, 1455–1464. [Google Scholar] [CrossRef]
- Davey, M.W.; van Montagu, M.; Inzé, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant l-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Marshall, J.R. Prevention of colorectal cancer: Diet, chemoprevention and lifestyle. Gastroenterol. Clin. N 2008, 37, 73–82. [Google Scholar] [CrossRef]
- Davidson, P.G.; Touger-Decker, R. Chemopreventive role of fruits and vegetables in oropharyngeal cancer. Nutr. Clin. Pract. 2009, 24, 250–260. [Google Scholar] [CrossRef]
- Qiang-Sheng, W.; Ren-Xue, X.; Ying-Ning, Z. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol. 2006, 163, 1101–1110. [Google Scholar] [CrossRef]
- Oh, M.-M.; Trick, H.N.; Rajashekar, C.B. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J. Plant Physiol. 2009, 166, 180–191. [Google Scholar] [CrossRef]
- Potters, G.; Horemans, N.; Jansen, M.A.K. The cellular redox state in plant stress biology—A charging concept. Plant Physiol. Bioch. 2010, 48, 292–300. [Google Scholar] [CrossRef]
- Kohler, J.; Hernández, J.A.; Caravaca, F.; Roldán, A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 2009, 65, 245–252. [Google Scholar] [CrossRef]
- Falk, J.; Munné-Bosch, S. Tocochromanol functions in plants: Antioxidation and beyond. J. Exp. Bot. 2010, 61, 1549–1566. [Google Scholar] [CrossRef]
- Bramley, P.M.; Elmadfa, I.; Kafatos, A.; Kelly, F.J.; Manios, Y.; Roxborough, H.E.; Schuch, W.; Sheehy, P.J.A.; Wagner, K.H. Review: Vitamin E. J. Sci. Food Agric. 2000, 80, 913–938. [Google Scholar] [CrossRef]
- Clarke, M.W.; Burnett, J.R.; Croft, K.D. Vitamin E in human health and disease. Crit. Rev. Clin. Lab. Sci. 2008, 45, 417–450. [Google Scholar] [CrossRef]
- Lira, F.S.; Rosa, J.C.; Cunha, C.A.; Ribeiro, E.B.; Oller do Nascimento, C.; Oyama, L.M.; Mota, J.F. Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids Health Dis. 2011, 10, 37. [Google Scholar] [CrossRef]
- Lizarazo, K.; Fernández-Marín, B.; Becerril, J.M.; García-Plazaola, J.I. Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. J. Sci. Food Agric. 2010, 90, 1994–1999. [Google Scholar]
- Garmendia, I.; Goicoechea, N.; Aguirreolea, J. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biol. Control 2004, 31, 296–305. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef]
- Graham, R.D.; Welch, R.M.; Bouis, H.E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv. Agronom. 2001, 70, 77–142. [Google Scholar] [CrossRef]
- ACC/SCN (Administrative Committee on Coordination, Subcommitee on Nutrition); International Food Policy Research Institute, Fourth Report on the World Nutrition Situation: United Nations, 2000.
- Brown, K.H.; Wuehler, S.E. Zinc and Human Health: The Results of Recent Trials and Implications for Programmed Interventions and Research; The Micronutrient Initiative/International Development Research Centre: Ottawa, Canada, 2000. [Google Scholar]
- Copper Development Association. Copper in Human Health. Available online: http://www.copperinfo.co.uk/health/ (accessed on 5 November 2012).
- Clark, R.B.; Zeto, S.K. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 2000, 23, 867–902. [Google Scholar] [CrossRef]
- Kothari, S.K.; Marschner, H.; Römheld, V. Contribution of VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 1991, 131, 177–185. [Google Scholar] [CrossRef]
- Li, X.L.; Marschner, H.; George, E. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 1991, 136, 49–57. [Google Scholar] [CrossRef]
- Azcón, R.; Ambrosano, E.; Charest, C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 2003, 165, 1137–1145. [Google Scholar] [CrossRef]
- Goicoechea, N.; Antolín, M.C.; Sánchez-Díaz, M. Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 1997, 192, 261–268. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Zuccarini, P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ. 2007, 53, 283–289. [Google Scholar]
- Loladze, I. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 2002, 17, 457–461. [Google Scholar] [CrossRef]
- Jifon, J.L.; Graham, J.H.; Drouillard, D.L.; Syvertsen, J.P. Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytol. 2002, 153, 133–142. [Google Scholar] [CrossRef]
- Treseder, K.K.; Allen, M.F. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol. 2000, 147, 189–200. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Baslam, M.; Garmendia, I.; Goicoechea, N. Enhanced Accumulation of Vitamins, Nutraceuticals and Minerals in Lettuces Associated with Arbuscular Mycorrhizal Fungi (AMF): A Question of Interest for Both Vegetables and Humans. Agriculture 2013, 3, 188-209. https://doi.org/10.3390/agriculture3010188
Baslam M, Garmendia I, Goicoechea N. Enhanced Accumulation of Vitamins, Nutraceuticals and Minerals in Lettuces Associated with Arbuscular Mycorrhizal Fungi (AMF): A Question of Interest for Both Vegetables and Humans. Agriculture. 2013; 3(1):188-209. https://doi.org/10.3390/agriculture3010188
Chicago/Turabian StyleBaslam, Marouane, Idoia Garmendia, and Nieves Goicoechea. 2013. "Enhanced Accumulation of Vitamins, Nutraceuticals and Minerals in Lettuces Associated with Arbuscular Mycorrhizal Fungi (AMF): A Question of Interest for Both Vegetables and Humans" Agriculture 3, no. 1: 188-209. https://doi.org/10.3390/agriculture3010188
APA StyleBaslam, M., Garmendia, I., & Goicoechea, N. (2013). Enhanced Accumulation of Vitamins, Nutraceuticals and Minerals in Lettuces Associated with Arbuscular Mycorrhizal Fungi (AMF): A Question of Interest for Both Vegetables and Humans. Agriculture, 3(1), 188-209. https://doi.org/10.3390/agriculture3010188