The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake)
Abstract
:1. Introduction
2. Defining NDF
3. Indigestible NDF and Its Importance to Voluntary Feed Intake
4. The Use of NDF in Diet Formulation
5. Assessment of iNDF
6. Impact on the Prediction of Production
Forage Group | iNDF2.4 (%DM) | iNDF240 (%DM) | Kd (%/h) | ME Supply iNDF2.4 | Milk Yield iNDF2.4 | ME Supply iNDF240 | Milk Yield iNDF240 | Δ Milk Yield |
---|---|---|---|---|---|---|---|---|
Barley silage | 13.1 | 10.5 | 7 | 135 | 12.2 | 140 | 13.5 | +1.3 |
Sorghum silage | 12.7 | 22.4 | 5 | 117 | 6.9 | 99 | 0.6 | −6.3 |
Tropical pasture | 12.2 | 21.4 | 5 | 126 | 9.5 | 110 | 4.4 | −5.1 |
Ryegrass fresh | 7.9 | 10.3 | 9 | 146 | 12.5 | 141 | 11.2 | −1.3 |
7. Alternative Assessment of iNDF
8. Model Recommendations
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Allen, M.S.; Mertens, D.R. Evaluating constraints on fiber digestion by rumen microbes. J. Nutr. 1988, 118, 261–270. [Google Scholar] [PubMed]
- Poppi, D.P.; France, J.; McLennan, S.R. Intake, passage and digestibility. In Feeding Systems and Feed Evaluation Models; Theodorou, M.K., France, J., Eds.; CAB International: Oxfordshire, UK, 2000; pp. 35–52. [Google Scholar]
- Waldo, D.R.; Smith, L.W.; Cox, E.L. Model of cellulose disappearance from the rumen. J. Dairy Sci. 1972, 55, 125–129. [Google Scholar] [CrossRef]
- Wilkins, R.J. Potential digestibility of cellulose in grasses and its relationship with chemical and anatomical parameters. J. Agric. Sci. 1972, 78, 457–464. [Google Scholar] [CrossRef]
- Ellis, W.C.; Poppi, D.P.; Matis, J.H.; Lippke, H.; Hill, T.M.; Rouquette, F.M. Dietary-Digestive-Metabolic Interactions Determining the Nutritive Potential of Ruminant Diets; American Society of Animal Science: Champaign, IL, USA, 1999; pp. 423–481. [Google Scholar]
- Lippke, H. Regulation of voluntary intake of ryegrass and sorghum forages in cattle by indigestible neutral detergent fiber. J. Anim. Sci. 1986, 63, 1459–1468. [Google Scholar]
- Nousiainen, J.; Rinne, M.; Hellamaki, M.; Huhtanen, P. Prediction of the digestibility of the primary growth of grass silages harvested at different stages of maturity from chemical composition and pepsin-cellulase solubility. Anim. Feed Sci. Technol. 2003, 103, 97–111. [Google Scholar] [CrossRef]
- Moore, K.J.; Hatfield, R.D. Carbohydrates and Forage Quality; Alliance of crop, soul, and environmental science society: Madison, WI, USA, 1994; pp. 229–280. [Google Scholar]
- Wilson, J.R. Influence of plant anatomy on digestion and fibre breakdown. In Microbial and Plant Opportunities to Improve the Utilization of Lignocellulose by Ruminants; Akin, D.E., Ljungdahl, J.R., Wilkins, R.J., Harris, P.J., Eds.; Elsevier Science Publishing Company: New York, NY, USA, 1990; pp. 99–117. [Google Scholar]
- Wilson, J.R. Plant structures: Their digestive and physical breakdown. In Recent Advances on the Nutrition of Herbivores; Ho, Y.W., Wong, H.K., Abdullah, N., Tajudding, Z.A., Eds.; Malaysian Society of Animal Production: Kuala Lumpur, Malaysia, 1991; pp. 207–216. [Google Scholar]
- Wilson, J.R. Organization of forage plant tissues. In Forage Cell Wall Structure and Digestibility; Jung, H.G., Buxton, D.R., Hatfield, R., Ralph, J., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1993; pp. 1–32. [Google Scholar]
- Wilson, J.R.; Mertens, D.R. Cell-wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci. 1995, 35, 251–259. [Google Scholar] [CrossRef]
- Weimer, P.J. Why don’t ruminal bacteria digest cellulose faster? J. Dairy Sci. 1996, 79, 1496–1502. [Google Scholar] [CrossRef]
- Terashima, N.; Fukushima, K.; He, L.F.; Takabe, K. Comprehensive model of the lignified plant cell wall. In Forage Cell Wall Structure and Digestibility; Jung, H.G., Buxton, D.R., Hatfield, R., Ralph, J., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1993; pp. 247–270. [Google Scholar]
- Wilson, J.R.; Kennedy, P.M. Plant and animal constraints to voluntary feed intake associated with fibre characteristics and particle breakdown and passage in ruminants. Aust. J. Agric. Res. 1996, 47, 199–225. [Google Scholar] [CrossRef]
- Jung, H.G. Forage Digestibility: The Intersection of Cell Wall Lignification and Plant Tissue Anatomy. Available online: http://dairy.ifas.ufl.edu/rns/2012/12jungrns2012.pdf (accessed on 18 April 2015).
- Jung, H.G.; Engels, F.M. Alfalfa stem tissues: Rate and extent of cell-wall thinning during ruminal degradation. Neth. J. Agric. Sci. 2001, 49, 3–13. [Google Scholar] [CrossRef]
- Engels, F.M.; Jung, H.J.G. Alfalfa stem tissues: Impact of lignification and cell length on ruminal degradation of large particles. Anim. Feed Sci. Technol. 2005, 120, 309–321. [Google Scholar] [CrossRef]
- Engels, F.M. Some properties of cell wall layers determining ruminant digestion. In Physio-Chemical Characterization of Plant Residues for Industrial and Feed Use; Chesson, A., Orskov, E.R., Eds.; Elsevier Applied Science: London, UK, 1989; pp. 80–87. [Google Scholar]
- Jung, H.G. Forage lignins and their effects on fiber digestibility. Agron. J. 1989, 81, 33–38. [Google Scholar] [CrossRef]
- Chesson, A. Lignin polysaccharide complexes of the plant-cell wall and their effect on microbial-degradation in the rumen. Anim. Feed Sci. Technol. 1988, 21, 219–228. [Google Scholar] [CrossRef]
- Casler, M.D.; Jung, H.J.G. Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Sci. 1999, 39, 1866–1873. [Google Scholar] [CrossRef]
- Grabber, J.H. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 2005, 45, 820–831. [Google Scholar] [CrossRef]
- Jung, H.G.; Phillips, R.L. Putative seedling ferulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Sci. 2010, 50, 403–418. [Google Scholar] [CrossRef]
- Jung, H.G.; Raeth-Knight, M.; Linn, J.G. Forage fiber digestibility: Measurement, variability, and impact. In Proceedings of the 65th Minnesota Nutritional Conference; University of Minnesota: Minneapolis, MN, USA, 2004. Available online: http://google.sidney-aldebaran.me/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCUQFjABahUKEwju6K_2-ujHAhXHSo4KHWN5Boc&url=https%3A%2F%2Fbooks.google.com%2Fbooks%2Fabout%2F65th_Minnesota_Nutrition_Conference.html%3Fid%3Di2LXMgEACAAJ&usg=AFQjCNFrf8x1VOoIvKqeSh4UQSGLANmfFA (accessed on 9 September 2015). [Google Scholar]
- Minson, D.J. Forage in Ruminant Nutrition; Academic Press: San Diego, CA, USA, 1990; p. 483. [Google Scholar]
- Mertens, D.R. Regulation of forage intake. In Forage Quality, Evaluation, and Utilization; American Society of Agronomy: WI, USA, 1994; pp. 450–493. [Google Scholar]
- Arelovich, H.M.; Abney, C.S.; Vizcarra, J.A.; Galyean, M.L. Effects of dietary neutral detergent fiber on intakes of dry matter and net energy by dairy and beef cattle: Analysis of published data. Prof. Anim. Sci. 2008, 24, 375–383. [Google Scholar]
- Wilkins, R.J. Potential digestibility of cellulose in forage and faeces. J. Agric. Sci. 1969, 73, 57–64. [Google Scholar] [CrossRef]
- Huhtanen, P.; Nousiainen, J.; Rinne, M. Recent developments in forage evaluation with special reference to practical applications. Agr. Food Sci. 2006, 15, 293–323. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock: Ithaca, NY, USA, 1994; p. 476. [Google Scholar]
- Poppi, D.P. Nutritional constraints for grazing animals and the importance of selective grazing behaviour. In Grassland Productivity and Ecosystem Services; CABI: Wallingford, UK, 2011; pp. 19–26. [Google Scholar]
- Poppi, D.P.; Minson, D.J.; Ternouth, J.H. Studies of cattle and sheep eating leaf and stem fractions of grasses. 2. Factors controlling the retention of feed in the reticulo-rumen. Aust. J. Agric. Res. 1981, 32, 109–121. [Google Scholar] [CrossRef]
- Poppi, D.P.; Minson, D.J.; Ternouth, J.H. Studies of cattle and sheep eating leaf and stem fractions of grasses. 1. The voluntary intake, digestibility and retention time in the reticulo-rumen. Aust. J. Agric. Res. 1981, 32, 99–108. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Jung, H.G.; Allen, M.S. Characteristics of plant-cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [PubMed]
- Poppi, D.P. Predictions of food intake in ruminants from analyses of food composition. Aust. J. Agric. Res. 1996, 47, 489–504. [Google Scholar] [CrossRef]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Tylutki, T.P.; Fox, D.G.; Durbal, V.M.; Tedeschi, L.O.; Russell, J.B.; van Amburgh, M.E.; Overton, T.R.; Chase, L.E.; Pell, A.N. Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Anim. Feed Sci. Technol. 2008, 143, 174–202. [Google Scholar] [CrossRef]
- Danfaer, A.; Huhtanen, P.; Uden, P.; Sveinbjornsson, J.; Volden, H. The Nordic Dairy Cow Model, Karoline-Description; CABI Publishing: Wallingford, UK, 2006; pp. 383–406. [Google Scholar]
- Danfaer, A.; Huhtanen, P.; Uden, P.; Sveinbjornsson, J.; Volden, H. The Nordic Dairy Cow Model, Karoline-Evaluation; CABI Publishing: Wallingford, UK, 2006; pp. 407–415. [Google Scholar]
- Nocek, J.E. In situ and other methods to estimate ruminal protein and energy digestibility—A review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Damiran, D.; DelCurto, T.; Bohnert, D.W.; Pulsipher, G.D.; Findholt, S.L. Comparison of techniques and grinding size to estimate digestibility of forage base ruminant diets. Proc. West. Sect. Am. Soc. Anim. Sci. 2002, 53, 341–344. [Google Scholar]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [PubMed]
- Lund, P.; Weisbjerg, M.R.; Ahvenjarvi, S.; Huhtanen, P.; Uden, P.; Olafsson, B.; Volden, H. Nordic ringtest on INDF content and NDF degradation characteristics in three feeds. J. Anim. Feed Sci. 2004, 13, 139–142. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage fiber analyses. (Apparatus, reagents, procedures, and some applications). In Agriculture Handbook, United States Department of Agriculture; U.S. Agricultural Research Service: Washington, DC, USA, 1970; p. 20. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 2005, 123, 9–30. [Google Scholar] [CrossRef]
- Goering, H.K.; van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); ARS-USDA: Washington, DC, USA, 1970. [Google Scholar]
- Chandler, J.A.; Jewell, W.J.; Gossett, J.M.; Vansoest, P.J.; Robertson, J.B. Predicting methane fermentation biodegradability. Biotechnol. Bioeng. 1980, 22, 93–107. [Google Scholar]
- Weiss, W.P.; Conrad, H.R.; Stpierre, N.R. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Traxler, M.J.; Fox, D.G.; van Soest, P.J.; Pell, A.N.; Lascano, C.E.; Lanna, D.P.D.; Moore, J.E.; Lana, R.P.; Velez, M.; Flores, A. Predicting forage indigestible NDF from lignin concentration. J. Anim. Sci. 1998, 76, 1469–1480. [Google Scholar] [PubMed]
- Van Soest, P.J.; Van Amburgh, M.E.; Robertson, J.B.; Knaus, W.F. Validation of the 2.4 times lignin factor for ultimate extent of NDF digestion, and curve peeling rate of fermentation curves into pools. In Proceedings of the Cornell Nutrition Conference for Feed Manufactures, East Syracuse, New York, NY, USA, 18–20 October 2005; Cornell University: Ithaca, NY, USA, 2005; pp. 139–149. [Google Scholar]
- Harper, K.J.; Barber, D.G.; Callow, M.; McNeill, D.M.; Poppi, D.P. Assessment of the iNDF of Subtropical Pastures. Available online: http://espace.library.uq.edu.au/view/UQ:354480 (accessed on 18 April 2015).
- Nousiainen, J.; Ahvenjarvi, S.; Rinne, M.; Hellamaki, M.; Huhtanen, P. Prediction of indigestible cell wall fraction of grass silage by near infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 2004, 115, 295–311. [Google Scholar] [CrossRef]
- Raffrenato, E.; Fievisohn, R.; Cotanch, K.W.; Grant, R.J.; Chase, L.E.; Amburgh, M.E.V. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo NDF digestibility of forages and potential energy yield. In Proceedings of the Energy and Protein Metabolism and Nutrition. 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September 2010; Crovetto, G.M., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; pp. 723–724. [Google Scholar]
- Harper, K.J.; McNeill, D.M. Direct in vitro measurement of iNDF to improve the prediction of milk production from subtropical forages. In Proceedings of the 8th International Workshop on Modelling Nutrient Digestion and Utilization in Farm Animals, Cairns, Australia, 15–17 September 2014; McNeill, D.M., Bell, A., Eds.; CSIRO Publishing: Victoria, Australia, 2014; p. 21. [Google Scholar]
- Deboever, J.L.; Cottyn, B.G.; Vanacker, J.M.; Boucque, C.V. The use of NIRS to predict the chemical-composition and the energy value of compound feeds for cattle. Anim. Feed Sci. Technol. 1995, 51, 243–253. [Google Scholar] [CrossRef]
- Kramer, M.; Weisbjerg, M.R.; Lund, P. Estimation of indigestible NDF in feedstuffs for ruminants. Available online: http://forskningsbasen.deff.dk/Share.external?sp=Sce3d98ad-7aaa-444b-b101-2c4e7b1490ab&sp=Sau (accessed on 18 April 2015).
- Norris, K.H.; Barnes, R.F.; Moore, J.E.; Shenk, J.S. Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 1976, 43, 889–897. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O.; Hoover, M.R. Analysis of forages by infrared reflectance. J. Dairy Sci. 1979, 62, 807–812. [Google Scholar] [CrossRef]
- Abrams, S.M.; Shenk, J.S.; Westerhaus, M.O.; Barton, F.E. Determination of forage quality by near-infrared reflectance spectroscopy—Efficacy of broad-based calibration equations. J. Dairy Sci. 1987, 70, 806–813. [Google Scholar] [CrossRef]
- Mentink, R.L.; Hoffman, P.C.; Bauman, L.M. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. J. Dairy Sci. 2006, 89, 2320–2326. [Google Scholar] [CrossRef]
- Harper, K.J.; Isherwood, P.; Barber, D.G.; Callow, M.; McNeill, D.M.; Poppi, D.P. Prediction of iNDF of subtropical forages by Near Infrared Reflectance Spectroscopy. Available online: http://espace.library.uq.edu.au/view/UQ:354481 (accessed on 18 April 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778-790. https://doi.org/10.3390/agriculture5030778
Harper KJ, McNeill DM. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture. 2015; 5(3):778-790. https://doi.org/10.3390/agriculture5030778
Chicago/Turabian StyleHarper, Karen J., and David M. McNeill. 2015. "The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake)" Agriculture 5, no. 3: 778-790. https://doi.org/10.3390/agriculture5030778
APA StyleHarper, K. J., & McNeill, D. M. (2015). The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture, 5(3), 778-790. https://doi.org/10.3390/agriculture5030778