From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America
Abstract
:1. Introduction
Biotherapy Target | Publication (First Author, Year: PubMed Identifier a) |
---|---|
Influenza [3,4,5,6,7,8,9,10,11] | [Shoji, 2015: 25483524], [Chichester, 2012: 23202523], [Shoji, 2008: 18440103], [Le Mauff, 2015: 25523794], [Ward, 2014: 25240757], [D’Aoust, 2010: 20199612], [D’Aoust, 2008: 19076615], [Mallajosyula, 2014: 24378714], [Kalthoff, 2010: 20810729], [Kanagarajan, 2012: 22442675] |
Ebola virus [12,13,14,15] | [Phoolcharoen, 2011: 21281425], [Phoolcharoen, 2011: 22143779], [Huang, 2010, 20047189], [Castilho, 2011: 22039433] |
Dengue [16,17,18,19,20] | [Kim, 2015: 25728317], [Conconi-Linares, 2013: 23499580], [Saejung, 2007: 17659815], [Martinez, 2010: 20213522], [Martinez, 2012: 22480936] |
Norovirus [21,22,23,24,25] | [Mathew, 2014: 24949472], [Santi, 2008: 18325641], [Lai, 2012: 22134876], [Mason, 1996: 8643575], [Herbst-Kralovetz, 2010: 20218858] |
HIV-AIDS [26,27,28,29,30,31,32] | [Mantoba, 2004: 15347807], [Kessens, 2013: 23506331], [Rosenberg, 2015: 25807114], [Sainsbury, 2010: 21103044], [Ma, 2015: 26147010], [O’Keefe, 2009: 19332801], [Sack, 2015: 26214282] |
Hepatitis B virus [33,34,35] | [Huang, 2009: 19309755], [Huang, 2006: 16417953], [Triguero, 2011: 21819534] |
Coronavirus SARS-CoV [36] | [Zheng, 2009: 19523911] |
Y. pestis (plague) [37,38,39,40] | [Santi, 2006: 16410352], [Chichester, 2009: 19200825], [Mett, 2007: 17287055], [Del Prete, 2009: 19309560] |
Respiratory syncytial virus [41] | [Yusibov, 2005: 15755607] |
Malaria [42,43,44,45,46,47,48] | [Jones, 2015: 25483525], [Farrance, 2011: 21715576], [Feller, 2013: 24278216], [Kapelski, 2015: 25651860], [Voepel, 2014: 25200253], [Clemente, 2012: 22911156], [Beiss, 2015: 25615702], |
West Nile Virus [49,50,51] | [Chen, 2015: 25676782], [Lai, 2014: 24975464], [He, 2014: 24675995] |
Bacillus anthracis (anthrax) [52,53,54,55,56] | [Mett, 2011: 21270531], [Roy, 2010: 20673747], [Arzola, 2011: 21954339], [Chichester, 2007: 17280756], [Wycoff, 2011: 20956592] |
Human papilloma viruses [57,58,59,60,61] | [Venuti, 2009: 19200826], [Regnard, 2010: 19929900], [Maclean, 2007: 17412974], [Pineo, 2013: 23924054], [Massa, 2007: 17280752] |
Bluetongue virus [62] | [Thuenemann, 2013: 23647743] |
Toxoplasma gondii [63] | [Albarracin, 2015: 25823559] |
Hepatitis C virus [64,65] | [Mohammadzadech, 2015: 25990925], [Nemchinov, 2000: 11205105] |
Human metapneumovirus [66] | [Marquez-Escobar, 2015: 25828350] |
Streptococcus pneumoniae [67,68] | [Starkevič, 2015: 25744664], [Smith, 2014: 24498433] |
Tuberculosis [69] | [Pepponi, 2014: 24629003] |
Rabies [70,71,72] | [van Dolleweerd, 2014: 24511101], [Yusibov, 2002: 12163267], [Lee, 2013: 23967055] |
Topical microbicides [73,74] | [Fuqua, 2015: 25887919], [O’Keefe, 2009, 19332801] |
Hepatitis A virus [75] | [Chung, 2011: 21442402], |
Nerve Agents [76,77,78] | [Geyer, 2015: 20353404], [Schneider, 2014: 24618259], [Larrimore, 2013: 23000451] |
Hookworm [79,80] | [Seid, 2015: 25905574], [Pearson, 2015: 26018444] |
Cholera [81,82,83] | [Levinson, 2015: 25865265], [Hamorksy, 2015: 25614217], [Yuki, 2013: 23601492], |
Tularemia [84] | [Banik, 2015: 26098553] |
Livestock/animal diseases [85,86,87,88,89] | [Nelson, 2012: 22554468], [Pérez, 2004: 15338319], [Monger, 2006: 17309733], [Gellért, 2012: 23285149], [Love, 2012: 22718313] |
Venom anti-toxin [90] | [Richard, 2013: 23894495] |
Asthma/allergins [91,92,93] | [Li, 2013: 23354320], [Marconi, 2012: 21904913], [Krebitz, 2000: 10877820] |
Cancer treatment [94,95,96,97,98] | [McCormick, 2008: 18645180], [Marusic, 2015: 25879373], [Grohs, 2010: 20799692], [Komarova, 2011: 21390232], [Jobsri, 2015: 25692288] |
Cocaine addiction [78] | [Larrimore, 2013: 23000451] |
Atherosclerosis [99] | [Salazar-Gonzalez, 2014: 25143122] |
Wound-healing factors [100,101] | [Feng, 2014: 24783215], Abdelghani, 2015: 25984768] |
Human growth factors [100,102] | [Deepa, 2013: 23955346], [Feng, 2014, 24783215] |
2. Production of Biotherapeutics in Tobacco: The Major Players
3. Why Use Tobacco to Express Vaccines?
4. Future Directions and Opportunities
5. The Need for U.S. Government Investments in Tobacco Research
6. Perceptions Related to Tobacco Biotechnology
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rybicki, E.P. Plant-based vaccines against viruses. Virol J. 2014, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.A.; Banuelos-Hernandez, B.; Rosales-Mendoza, S. Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol. Biol. 2015, 87, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Shoji, Y.; Prokhnevsky, A.; Leffet, B.; Vetter, N.; Tottey, S.; Satinover, S.; Musiychuk, K.; Shamloul, M.; Norikane, J.; Jones, R.M.; et al. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Human Vaccin. Immunother. 2015, 11, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Chichester, J.A.; Jones, R.M.; Green, B.J.; Stow, M.; Miao, F.; Moonsammy, G.; Streatfield, S.J.; Yusibov, V. Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: A phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 2012, 4, 3227–3244. [Google Scholar] [PubMed]
- Shoji, Y.; Chichester, J.A.; Bi, H.; Musiychuk, K.; de la Rosa, P.; Goldschmidt, L.; Horsey, A.; Ugulava, N.; Palmer, G.A.; Mett, V.; Yusibov, V. Plant-expressed ha as a seasonal influenza vaccine candidate. Vaccine 2008, 26, 2930–2934. [Google Scholar] [CrossRef] [PubMed]
- Le Mauff, F.; Mercier, G.; Chan, P.; Burel, C.; Vaudry, D.; Bardor, M.; Vezina, L.P.; Couture, M.; Lerouge, P.; Landry, N. Biochemical composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants. Plant Biotechnol. J. 2015, 13, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.J.; Landry, N.; Trepanier, S.; Mercier, G.; Dargis, M.; Couture, M.; D’Aoust, M.A.; Vezina, L.P. Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 2014, 32, 6098–6106. [Google Scholar] [CrossRef] [PubMed]
- D’Aoust, M.A.; Couture, M.M.; Charland, N.; Trepanier, S.; Landry, N.; Ors, F.; Vezina, L.P. The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 2010, 8, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Mallajosyula, J.K.; Hiatt, E.; Hume, S.; Johnson, A.; Jeevan, T.; Chikwamba, R.; Pogue, G.P.; Bratcher, B.; Haydon, H.; Webby, R.J.; McCormick, A.A. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Human Vaccin. Immunother. 2014, 10, 586–595. [Google Scholar] [CrossRef]
- Kalthoff, D.; Giritch, A.; Geisler, K.; Bettmann, U.; Klimyuk, V.; Hehnen, H.R.; Gleba, Y.; Beer, M. Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J. Virol. 2010, 84, 12002–12010. [Google Scholar] [CrossRef] [PubMed]
- Kanagarajan, S.; Tolf, C.; Lundgren, A.; Waldenstrom, J.; Brodelius, P.E. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana. PLoS ONE 2012, 7, e33010. [Google Scholar] [CrossRef] [PubMed]
- Phoolcharoen, W.; Bhoo, S.H.; Lai, H.; Ma, J.; Arntzen, C.J.; Chen, Q.; Mason, H.S. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotech. J. 2011, 9, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Phoolcharoen, W.; Dye, J.M.; Kilbourne, J.; Piensook, K.; Pratt, W.D.; Arntzen, C.J.; Chen, Q.; Mason, H.S.; Herbst-Kralovetz, M.M. A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. Proc. Natl. Acad. Sci. USA 2011, 108, 20695–20700. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Phoolcharoen, W.; Lai, H.; Piensook, K.; Cardineau, G.; Zeitlin, L.; Whaley, K.J.; Arntzen, C.J.; Mason, H.S.; Chen, Q. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol. Bioeng. 2010, 106, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Castilho, A.; Bohorova, N.; Grass, J.; Bohorov, O.; Zeitlin, L.; Whaley, K.; Altmann, F.; Steinkellner, H. Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody. PLoS ONE 2011, 6, e26040. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Reljic, R.; Kilbourne, J.; Ceballos-Olvera, I.; Yang, M.S.; Reyes-del Valle, J.; Mason, H.S. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform. Vaccine 2015, 33, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Coconi-Linares, N.; Ortega-Davila, E.; Lopez-Gonzalez, M.; Garcia-Machorro, J.; Garcia-Cordero, J.; Steinman, R.M.; Cedillo-Barron, L.; Gomez-Lim, M.A. Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 2013, 31, 2366–2371. [Google Scholar] [CrossRef] [PubMed]
- Saejung, W.; Fujiyama, K.; Takasaki, T.; Ito, M.; Hori, K.; Malasit, P.; Watanabe, Y.; Kurane, I.; Seki, T. Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine 2007, 25, 6646–6654. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.A.; Topal, E.; Giulietti, A.M.; Talou, J.R.; Mason, H. Exploring different strategies to express dengue virus envelope protein in a plant system. Biotechnol. Lett. 2010, 32, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.A.; Giulietti, A.M.; Talou, J.R. Research advances in plant-made flavivirus antigens. Biotechnol. Adv. 2012, 30, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Mathew, L.G.; Herbst-Kralovetz, M.M.; Mason, H.S. Norovirus narita 104 virus-like particles expressed in Nicotiana benthamiana induce serum and mucosal immune responses. Biomed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Batchelor, L.; Huang, Z.; Hjelm, B.; Kilbourne, J.; Arntzen, C.J.; Chen, Q.; Mason, H.S. An efficient plant viral expression system generating orally immunogenic norwalk virus-like particles. Vaccine 2008, 26, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Chen, Q. Bioprocessing of plant-derived virus-like particles of norwalk virus capsid protein under current good manufacture practice regulations. Plant Cell Rep. 2012, 31, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.S.; Ball, J.M.; Shi, J.J.; Jiang, X.; Estes, M.K.; Arntzen, C.J. Expression of norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 1996, 93, 5335–5340. [Google Scholar] [CrossRef] [PubMed]
- Herbst-Kralovetz, M.; Mason, H.S.; Chen, Q. Norwalk virus-like particles as vaccines. Expert. Rev. Vaccines 2010, 9, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Matoba, N.; Magerus, A.; Geyer, B.C.; Zhang, Y.; Muralidharan, M.; Alfsen, A.; Arntzen, C.J.; Bomsel, M.; Mor, T.S. A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proc. Natl. Acad. Sci. USA 2004, 101, 13584–13589. [Google Scholar] [CrossRef] [PubMed]
- Kessans, S.A.; Linhart, M.D.; Matoba, N.; Mor, T. Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. Plant Biotechnol. J. 2013, 11, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, Y.; Sack, M.; Montefiori, D.; Labranche, C.; Lewis, M.; Urban, L.; Mao, L.; Fischer, R.; Jiang, X. Pharmacokinetics and immunogenicity of broadly neutralizing HIV monoclonal antibodies in macaques. PLoS ONE 2015, 10, e0120451. [Google Scholar] [CrossRef] [PubMed]
- Sainsbury, F.; Sack, M.; Stadlmann, J.; Quendler, H.; Fischer, R.; Lomonossoff, G.P. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS ONE 2010, 5, e13976. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.K.; Drossard, J.; Lewis, D.; Altmann, F.; Boyle, J.; Christou, P.; Cole, T.; Dale, P.; van Dolleweerd, C.J.; Isitt, V.; Katinger, D.; et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol. J. 2015, 13, 1106–1120. [Google Scholar] [CrossRef] [PubMed]
- Sack, M.; Rademacher, T.; Spiegel, H.; Boes, A.; Hellwig, S.; Drossard, J.; Stoger, E.; Fischer, R. From gene to harvest: Insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol. J. 2015, 13, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Tacket, C.O.; Mason, H.S.; Losonsky, G.; Estes, M.K.; Levine, M.M.; Arntzen, C.J. Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 2000, 182, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, Q.; Hjelm, B.; Arntzen, C.; Mason, H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng. 2009, 103, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Santi, L.; LePore, K.; Kilbourne, J.; Arntzen, C.J.; Mason, H.S. Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 2006, 24, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Triguero, A.; Cabrera, G.; Rodriguez, M.; Soto, J.; Zamora, Y.; Perez, M.; Wormald, M.R.; Cremata, J.A. Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice. Plant Biotechnol. J. 2011, 9, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Xia, R.; Yang, C.; Yin, B.; Li, Y.; Duan, C.; Liang, L.; Guo, H.; Xie, Q. Boosted expression of the SARS-coV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 2009, 27, 5001–5007. [Google Scholar] [CrossRef] [PubMed]
- Santi, L.; Giritch, A.; Roy, C.J.; Marillonnet, S.; Klimyuk, V.; Gleba, Y.; Webb, R.; Arntzen, C.J.; Mason, H.S. Protection conferred by recombinant yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc. Natl. Acad. Sci. USA 2006, 103, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Chichester, J.A.; Musiychuk, K.; Farrance, C.E.; Mett, V.; Lyons, J.; Mett, V.; Yusibov, V. A single component two-valent LcrV-F1 vaccine protects non-human primates against pneumonic plague. Vaccine 2009, 27, 3471–3474. [Google Scholar] [CrossRef] [PubMed]
- Mett, V.; Lyons, J.; Musiychuk, K.; Chichester, J.A.; Brasil, T.; Couch, R.; Sherwood, R.; Palmer, G.A.; Streatfield, S.J.; Yusibov, V. A plant-produced plague vaccine candidate confers protection to monkeys. Vaccine 2007, 25, 3014–3017. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, G.; Santi, L.; Andrianaivoarimanana, V.; Amedei, A.; Domarle, O.; D’Elios, M.M.; Arntzen, C.J.; Rahalison, L.; Mason, H.S. Plant-derived recombinant F1, V, and F1-V fusion antigens of Yersinia pestis activate human cells of the innate and adaptive immune system. Int. J. Immunopathol. Pharmacol. 2009, 22, 133–143. [Google Scholar] [PubMed]
- Yusibov, V.; Mett, V.; Mett, V.; Davidson, C.; Musiychuk, K.; Gilliam, S.; Farese, A.; Macvittie, T.; Mann, D. Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine 2005, 23, 2261–2265. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Chichester, J.A.; Manceva, S.; Gibbs, S.K.; Musiychuk, K.; Shamloul, M.; Norikane, J.; Streatfield, S.J.; van de Vegte-Bolmer, M.; Roeffen, W.; et al. A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Hum Vaccin Immunother. 2015, 11, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Farrance, C.E.; Rhee, A.; Jones, R.M.; Musiychuk, K.; Shamloul, M.; Sharma, S.; Mett, V.; Chichester, J.A.; Streatfield, S.J.; et al. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clin. Vaccine Immunol. 2011, 18, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Feller, T.; Thom, P.; Koch, N.; Spiegel, H.; Addai-Mensah, O.; Fischer, R.; Reimann, A.; Pradel, G.; Fendel, R.; Schillberg, S.; et al. Plant-based production of recombinant Plasmodium surface protein pf38 and evaluation of its potential as a vaccine candidate. PLoS ONE 2013, 8, e79920. [Google Scholar] [CrossRef] [PubMed]
- Kapelski, S.; Boes, A.; Spiegel, H.; de Almeida, M.; Klockenbring, T.; Reimann, A.; Fischer, R.; Barth, S.; Fendel, R. Fast track antibody V-gene rescue, recombinant expression in plants and characterization of a PfMSP4-specific antibody. Malar. J. 2015, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Voepel, N.; Boes, A.; Edgue, G.; Beiss, V.; Kapelski, S.; Reimann, A.; Schillberg, S.; Pradel, G.; Fendel, R.; Scheuermayer, M.; et al. Malaria vaccine candidate antigen targeting the pre-erythrocytic stage of Plasmodium falciparum produced at high level in plants. Biotechnol. J. 2014, 9, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.; Corigliano, M.G. Overview of plant-made vaccine antigens against malaria. J. Biomed. Biotechnol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Beiss, V.; Spiegel, H.; Boes, A.; Kapelski, S.; Scheuermayer, M.; Edgue, G.; Sack, M.; Fendel, R.; Reimann, A.; Schillberg, S.; et al. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein. Biotechnol. Bioeng. 2015, 112, 1297–1305. [Google Scholar] [CrossRef]
- Chen, Q. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol. J. 2015, 10, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; He, J.; Hurtado, J.; Stahnke, J.; Fuchs, A.; Mehlhop, E.; Gorlatov, S.; Loos, A.; Diamond, M.S.; Chen, Q. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol. J. 2014, 12, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lai, H.; Engle, M.; Gorlatov, S.; Gruber, C.; Steinkellner, H.; Diamond, M.S.; Chen, Q. Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS ONE 2014, 9, e93541. [Google Scholar] [CrossRef] [PubMed]
- Mett, V.; Chichester, J.A.; Stewart, M.L.; Musiychuk, K.; Bi, H.; Reifsnyder, C.J.; Hull, A.K.; Albrecht, M.T.; Goldman, S.; Baillie, L.W.; et al. A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. Anthracis spore challenge. Human vaccin. 2011, 7, 183–190. [Google Scholar] [CrossRef]
- Roy, G.; Weisburg, S.; Rabindran, S.; Yusibov, V. A novel two-component tobacco mosaic virus-based vector system for high-level expression of multiple therapeutic proteins including a human monoclonal antibody in plants. Virology 2010, 405, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Arzola, L.; Chen, J.; Rattanaporn, K.; Maclean, J.M.; McDonald, K.A. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 2011, 12, 4975–4990. [Google Scholar] [CrossRef] [PubMed]
- Chichester, J.A.; Musiychuk, K.; de la Rosa, P.; Horsey, A.; Stevenson, N.; Ugulava, N.; Rabindran, S.; Palmer, G.A.; Mett, V.; Yusibov, V. Immunogenicity of a subunit vaccine against bacillus anthracis. Vaccine 2007, 25, 3111–3114. [Google Scholar] [CrossRef] [PubMed]
- Wycoff, K.L.; Belle, A.; Deppe, D.; Schaefer, L.; Maclean, J.M.; Haase, S.; Trilling, A.K.; Liu, S.; Leppla, S.H.; Geren, I.N.; et al. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob. Agents Chemother. 2011, 55, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Venuti, A.; Massa, S.; Mett, V.; Vedova, L.D.; Paolini, F.; Franconi, R.; Yusibov, V. An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 2009, 27, 3395–3397. [Google Scholar] [CrossRef] [PubMed]
- Regnard, G.L.; Halley-Stott, R.P.; Tanzer, F.L.; Hitzeroth, I.I.; Rybicki, E.P. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol. J. 2010, 8, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Maclean, J.; Koekemoer, M.; Olivier, A.J.; Stewart, D.; Hitzeroth, I.I.; Rademacher, T.; Fischer, R.; Williamson, A.L.; Rybicki, E.P. Optimization of human papillomavirus type 16 (HPV-16) l1 expression in plants: Comparison of the suitability of different HPV-16 l1 gene variants and different cell-compartment localization. J. Gen. Virol. 2007, 88, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Pineo, C.B.; Hitzeroth, I.I.; Rybicki, E.P. Immunogenic assessment of plant-produced human papillomavirus type 16 l1/l2 chimaeras. Plant Biotechnol. J. 2013, 11, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Massa, S.; Franconi, R.; Brandi, R.; Muller, A.; Mett, V.; Yusibov, V.; Venuti, A. Anti-cancer activity of plant-produced hpv16 E7 vaccine. Vaccine 2007, 25, 3018–3021. [Google Scholar] [CrossRef] [PubMed]
- Thuenemann, E.C.; Meyers, A.E.; Verwey, J.; Rybicki, E.P.; Lomonossoff, G.P. A method for rapid production of heteromultimeric protein complexes in plants: Assembly of protective bluetongue virus-like particles. Plant Biotechnol. J. 2013, 11, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, R.M.; Becher, M.L.; Farran, I.; Sander, V.A.; Corigliano, M.G.; Yacono, M.L.; Pariani, S.; Lopez, E.S.; Veramendi, J.; Clemente, M. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts. Biotechnol. J. 2015, 10, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, S.; Roohvand, F.; Memarnejadian, A.; Jafari, A.; Ajdary, S.; Salmanian, A.H.; Ehsani, P. Co-expression of hepatitis C virus polytope-HBsAg and p19-silencing suppressor protein in tobacco leaves. Pharm. Biol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Nemchinov, L.G.; Liang, T.J.; Rifaat, M.M.; Mazyad, H.M.; Hadidi, A.; Keith, J.M. Development of a plant-derived subunit vaccine candidate against hepatitis C virus. Arch. Virol. 2000, 145, 2557–2573. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Escobar, V.A.; Tirado-Mendoza, R.; Noyola, D.E.; Gutierrez-Ortega, A.; Alpuche-Solis, A.G. HRA2pl peptide: A fusion inhibitor for human metapneumovirus produced in tobacco plants by transient transformation. Planta 2015, 242, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Starkevic, U.; Bortesi, L.; Virgailis, M.; Ruzauskas, M.; Giritch, A.; Razanskiene, A. High-yield production of a functional bacteriophage lysin with antipneumococcal activity using a plant virus-based expression system. J. Biotechnol. 2015, 200, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Fry, S.C.; Gough, K.C.; Patel, A.J.; Glenn, S.; Goldrick, M.; Roberts, I.S.; Whitelam, G.C.; Andrew, P.W. Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines. PLoS ONE 2014, 9, e88144. [Google Scholar] [CrossRef] [PubMed]
- Pepponi, I.; Diogo, G.R.; Stylianou, E.; van Dolleweerd, C.J.; Drake, P.M.; Paul, M.J.; Sibley, L.; Ma, J.K.; Reljic, R. Plant-derived recombinant immune complexes as self-adjuvanting TB immunogens for mucosal boosting of BCG. Plant Biotechnol. J. 2014, 12, 840–850. [Google Scholar] [CrossRef] [PubMed]
- van Dolleweerd, C.J.; Teh, A.Y.; Banyard, A.C.; Both, L.; Lotter-Stark, H.C.; Tsekoa, T.; Phahladira, B.; Shumba, W.; Chakauya, E.; Sabeta, C.T.; et al. Engineering, expression in transgenic plants and characterisation of E559, a rabies virus-neutralising monoclonal antibody. J. Infect. Dis. 2014, 210, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Yusibov, V.; Hooper, D.C.; Spitsin, S.V.; Fleysh, N.; Kean, R.B.; Mikheeva, T.; Deka, D.; Karasev, A.; Cox, S.; Randall, J.; et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 2002, 20, 3155–3164. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, D.Y.; Lee, K.J.; Kim, Y.K.; So, Y.K.; Ryu, J.S.; Oh, S.H.; Han, Y.S.; Ko, K.; Choo, Y.K.; et al. Intracellular reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody. PLoS ONE 2013, 8, e68772. [Google Scholar] [CrossRef] [PubMed]
- Fuqua, J.L.; Wanga, V.; Palmer, K.E. Improving the large scale purification of the HIV microbicide, griffithsin. BMC biotechnol. 2015, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, B.R.; Vojdani, F.; Buffa, V.; Shattock, R.J.; Montefiori, D.C.; Bakke, J.; Mirsalis, J.; D’Andrea, A.L.; Hume, S.D.; Bratcher, B.; et al. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc. Natl. Acad. Sci. USA 2009, 106, 6099–6104. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Lee, H.H.; Kim, K.I.; Chung, H.Y.; Hwang-Bo, J.; Park, J.H.; Sunter, G.; Kim, J.B.; Shon, D.H.; Kim, W.; et al. Expression of a recombinant chimeric protein of hepatitis A virus VP1-Fc using a replicating vector based on Beet curly top virus in tobacco leaves and its immunogenicity in mice. Plant Cell Rep. 2011, 30, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Geyer, B.C.; Kannan, L.; Cherni, I.; Woods, R.R.; Soreq, H.; Mor, T.S. Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase. Plant Biotechnol. J. 2010, 8, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.D.; Marillonnet, S.; Castilho, A.; Gruber, C.; Werner, S.; Mach, L.; Klimyuk, V.; Mor, T.S.; Steinkellner, H. Oligomerization status influences subcellular deposition and glycosylation of recombinant butyrylcholinesterase in Nicotiana benthamiana. Plant Biotechnol. J. 2014, 12, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Larrimore, K.E.; Barcus, M.; Kannan, L.; Gao, Y.; Zhan, C.G.; Brimijoin, S.; Mor, T. Plants as a source of butyrylcholinesterase variants designed for enhanced cocaine hydrolase activity. Chem. Bio. Interact. 2013, 203, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Seid, C.A.; Curti, E.; Jones, R.M.; Hudspeth, E.; Rezende, W.; Pollet, J.; Center, L.; Versteeg, L.; Pritchard, S.; Musiychuk, K.; et al. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-Apr-1 (M74)) antigen, a component of the bivalent human hookworm vaccine. Human Vaccin. Immunother. 2015, 11, 1474–1488. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.S.; Jariwala, A.R.; Abbenante, G.; Plieskatt, J.; Wilson, D.; Bottazzi, M.E.; Hotez, P.J.; Keegan, B.; Bethony, J.M.; Loukas, A. New tools for ntd vaccines: A case study of quality control assays for product development of the human hookworm vaccine Na-APR-1M74. Human Vaccin. Immunother. 2015, 11, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Levinson, K.J.; Giffen, S.R.; Pauly, M.H.; Kim do, H.; Bohorov, O.; Bohorova, N.; Whaley, K.J.; Zeitlin, L.; Mantis, N.J. Plant-based production of two chimeric monoclonal igG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide. J. Immunol. Methods 2015, 422, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Hamorsky, K.T.; Kouokam, J.C.; Jurkiewicz, J.M.; Nelson, B.; Moore, L.J.; Husk, A.S.; Kajiura, H.; Fujiyama, K.; Matoba, N. N-glycosylation of cholera toxin B subunit in Nicotiana benthamiana: Impacts on host stress response, production yield and vaccine potential. Sci. Rep. 2015, 5, 8003. [Google Scholar] [CrossRef] [PubMed]
- Yuki, Y.; Mejima, M.; Kurokawa, S.; Hiroiwa, T.; Takahashi, Y.; Tokuhara, D.; Nochi, T.; Katakai, Y.; Kuroda, M.; Takeyama, N.; et al. Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. Plant Biotechnol. J. 2013, 11, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Banik, S.; Mansour, A.A.; Suresh, R.V.; Wykoff-Clary, S.; Malik, M.; McCormick, A.A.; Bakshi, C.S. Development of a multivalent subunit vaccine against tularemia using tobacco mosaic virus (TMV) based delivery system. PLoS ONE 2015, 10, e0130858. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.; Marconi, P.; Periolo, O.; La Torre, J.; Alvarez, M.A. Immunocompetent truncated E2 glycoprotein of bovine viral diarrhea virus (BVDV) expressed in Nicotiana tabacum plants: A candidate antigen for new generation of veterinary vaccines. Vaccine 2012, 30, 4499–4504. [Google Scholar] [CrossRef]
- Perez Filgueira, D.M.; Mozgovoj, M.; Wigdorovitz, A.; Dus Santos, M.J.; Parreno, V.; Trono, K.; Fernandez, F.M.; Carrillo, C.; Babiuk, L.A.; Morris, T.J.; et al. Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector. Arch. Virol. 2004, 149, 2337–2348. [Google Scholar] [CrossRef] [PubMed]
- Monger, W.; Alamillo, J.M.; Sola, I.; Perrin, Y.; Bestagno, M.; Burrone, O.R.; Sabella, P.; Plana-Duran, J.; Enjuanes, L.; Garcia, J.A.; et al. An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extracts. Plant Biotechnol. J. 2006, 4, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Gellert, A.; Salanki, K.; Tombacz, K.; Tuboly, T.; Balazs, E. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines. PLoS ONE 2012, 7, e52688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, A.J.; Chapman, S.N.; Matic, S.; Noris, E.; Lomonossoff, G.P.; Taliansky, M. In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 2012, 236, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Richard, G.; Meyers, A.J.; McLean, M.D.; Arbabi-Ghahroudi, M.; MacKenzie, R.; Hall, J.C. In vivo neutralization of alpha-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS ONE 2013, 8, e69495. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiang, Y.; Guo, W.; Liu, Z. Production of a chimeric allergen derived from the major allergen group 1 of house dust mite species in Nicotiana benthamiana. Hum. Immunol. 2013, 74, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Marconi, G.; Albertini, E.; Mari, A.; Palazzo, P.; Porceddu, A.; Raggi, L.; Bolis, L.; Lancioni, H.; Palomba, A.; Lucentini, L.; et al. In planta expression of a mature Der p 1 allergen isolated from an italian strain of Dermatophagoides pteronyssinus. Transgenic. Res. 2012, 21, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Krebitz, M.; Wiedermann, U.; Essl, D.; Steinkellner, H.; Wagner, B.; Turpen, T.H.; Ebner, C.; Scheiner, O.; Breiteneder, H. Rapid production of the major birch pollen allergen Bet v 1 in Nicotiana benthamiana plants and its immunological in vitro and in vivo characterization. FASEB J. 2000, 14, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.A.; Reddy, S.; Reinl, S.J.; Cameron, T.I.; Czerwinkski, D.K.; Vojdani, F.; Hanley, K.M.; Garger, S.J.; White, E.L.; Novak, J.; et al. Plant-produced idiotype vaccines for the treatment of non-hodgkin’s lymphoma: Safety and immunogenicity in a phase I clinical study. Proc. Natl. Acad. Sci. USA 2008, 105, 10131–10136. [Google Scholar] [CrossRef] [PubMed]
- Marusic, C.; Novelli, F.; Salzano, A.M.; Scaloni, A.; Benvenuto, E.; Pioli, C.; Donini, M. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. Plant Biotechnol. J. 2015. [Google Scholar] [CrossRef] [PubMed]
- Grohs, B.M.; Niu, Y.; Veldhuis, L.J.; Trabelsi, S.; Garabagi, F.; Hassell, J.A.; McLean, M.D.; Hall, J.C. Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells. J. Agric. Food Chem. 2010, 58, 10056–10063. [Google Scholar] [CrossRef] [PubMed]
- Komarova, T.V.; Kosorukov, V.S.; Frolova, O.Y.; Petrunia, I.V.; Skrypnik, K.A.; Gleba, Y.Y.; Dorokhov, Y.L. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS ONE 2011, 6, e17541. [Google Scholar] [CrossRef] [PubMed]
- Jobsri, J.; Allen, A.; Rajagopal, D.; Shipton, M.; Kanyuka, K.; Lomonossoff, G.P.; Ottensmeier, C.; Diebold, S.S.; Stevenson, F.K.; Savelyeva, N. Plant virus particles carrying tumour antigen activate TLR7 and induce high levels of protective antibody. PLoS ONE 2015, 10, e0118096. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.A.; Rosales-Mendoza, S.; Romero-Maldonado, A.; Monreal-Escalante, E.; Uresti-Rivera, E.E.; Banuelos-Hernandez, B. Production of a plant-derived immunogenic protein targeting ApoB100 and CETP: Toward a plant-based atherosclerosis vaccine. Mol. Biotechnol. 2014, 56, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.G.; Pang, S.F.; Guo, D.J.; Yang, Y.T.; Liu, B.; Wang, J.W.; Zheng, K.Q.; Lin, Y. Recombinant keratinocyte growth factor 1 in tobacco potentially promotes wound healing in diabetic rats. BioMed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Abdelghani, M.; El-Heba, G.A.; Abdelhadi, A.A.; Abdallah, N.A. Expression of synthetic human tropoelastin (hTE) protein in Nicotiana tabacum. GM Crops Food 2015, 6, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Deepa, K.; Rodionov, R.N.; Weiss, N.; Parani, M. Transgenic expression and functional characterization of human platelet derived growth factor BB (hPDGF-BB) in tobacco (Nicotiana tabacum L.). Appl. Biochem. Biotechnol. 2013, 171, 1390–1404. [Google Scholar] [CrossRef] [PubMed]
- PubMed-NCBI Database. Available online: http://www.ncbi.nlm.nih.gov/pubmed (accessed on 29 July 2015).
- Morton, E.R.; Fuqua, C. Genetic manipulation of agrobacterium. Curr. Protoc. Microbiol. 2012. [Google Scholar] [CrossRef]
- Hefferon, K. Plant virus expression vector development: New perspectives. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Gelvin, S.B. T-DNA binary vectors and systems. Plant Physiol. 2008, 146, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Shamloul, M.; Trusa, J.; Mett, V.; Yusibov, V. Optimization and utilization of agrobacterium-mediated transient protein production in nicotiana. J. Vis. Exp. 2014, 86, 51204. [Google Scholar]
- Leuzinger, K.; Dent, M.; Hurtado, J.; Stahnke, J.; Lai, H.; Zhou, X.; Chen, Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J. Vis. Exp. 2013, 77, 50521. [Google Scholar] [CrossRef] [PubMed]
- Medicago to Build $ 245 M Production Facility in Quebec City. Available online: http://www.medicago.com/files/documents_news/2015/EXPANSION-MDG-EN.pdf (accessed on 26 July 2015).
- Medicago is First in the World to Report Positive Interim Results for Its H7N9 Pre-Clinical Trial. Available online: http://www.fiercebiotech.com/press-releases/medicago-first-world-report-positive-interim-results-its-h7n9-pre-clinical (accessed on 1 August 2015).
- Tuse, D.; Tu, T.; McDonald, K.A. Manufacturing economics of plant-made biologics: Case studies in therapeutic and industrial enzymes. Biomed. Res. Int. 2014, 2014, 256135. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, B.M. As ebola epidemic begins to slow, trials of drugs and vaccines speed up. JAMA 2015, 313, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M. Us signs contract with zmapp maker to accelerate development of the ebola drug. BMJ. 2014, 349, g5488. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Kobinger, G.P. Backs against the wall: Novel and existing strategies used during the 2014–2015 Ebola virus outbreak. Clin. Microbiol. Rev. 2015, 28, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Plantform Develops Biosimilar Trastuzumab in Tobacco Plants. Available online: http://www.biosimilarnews.com/plantform-develops-biosimilar-trastuzumab-in-tobacco-plants (accessed on 1 August 2015).
- The Plantform Newsroom/Company Overview. Available online: http://www.plantformcorp.com/overview.aspx (accessed on 2 August 2015).
- Fill’Er Up with Tobacco? Berkeley Lab-Led Team Explores New Path to Biofuels. Available online: https://newscenter.lbl.gov/2012/02/23/tobacco-biofuels/ (accessed on 28 July 2015).
- SkyNRG, Boeing, South African Airways Look to First Harvest of Energy-Rich Tobacco to Make Sustainable Aviation Biofuel. Available online: http://skynrg.com/skynrg-boeing-south-african-airways-look-to-first-harvest-of-energy-rich-tobacco-to-make-sustainable-aviation-biofuel/ (accessed on 15 September 2015).
- Boeing, South African Airways to Develop Jet Fuel from Tobacco. Available online: http://www.latimes.com/business/la-fi-tn-boeing-biofuel-tobacco-20140806-story.html (accessed on 22 July 2015).
- First Harvest. Available online: http://www.boeing.com/features/2015/02/bca-tobacco-energy-02-03-15.page (accessed on 30 July 2015).
- Hahn, S.; Giritch, A.; Bartels, D.; Bortesi, L.; Gleba, Y. A novel and fully scalable agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnol. J. 2015, 13, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Lucht, J.M. Public acceptance of plant biotechnology and GM crops. Viruses 2015, 7, 4254–4281. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.A. Tempest in a tea pot: How did the public conversation on genetically modified crops drift so far from the facts? J. Med. Toxico. 2014, 10, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Fagerstrom, T.; Dixelius, C.; Magnusson, U.; Sundstrom, J.F. Stop worrying; start growing. Risk research on GM crops is a dead parrot: It is time to start reaping the benefits of GM. EMBO Rep. 2012, 13, 493–497. [Google Scholar] [PubMed]
- Moses, V. GM in the media. GM Crops Food 2012, 3, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Leyser, O. Moving beyond the GM debate. PLoS Bio. 2014, 12, e1001887. [Google Scholar] [CrossRef] [PubMed]
- Dunwell, J.M. Genetically modified (GM) crops: European and transatlantic divisions. Mol. Plant Pathol. 2014, 15, 119–121. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell, J.D. From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America. Agriculture 2015, 5, 901-917. https://doi.org/10.3390/agriculture5040901
Powell JD. From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America. Agriculture. 2015; 5(4):901-917. https://doi.org/10.3390/agriculture5040901
Chicago/Turabian StylePowell, Joshua D. 2015. "From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America" Agriculture 5, no. 4: 901-917. https://doi.org/10.3390/agriculture5040901
APA StylePowell, J. D. (2015). From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America. Agriculture, 5(4), 901-917. https://doi.org/10.3390/agriculture5040901