Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach
Abstract
:1. Introduction
2. Methodology
2.1. Modelling Factors Influencing Crop Diversity: Multivariate Tobit Model
2.2. Study Area and the Data
2.3. The Empirical Model
3. Results and Discussion
3.1. Extent of Major Food Crop Diversity at the Farm Level
3.2. Factors Affecting Food Crop Diversity and Profitability: A Multivariate Tobit Analysis
4. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liverpool-Tasie, L.S.; Kuku, O.; Ajibola, A. Nigeria Strategy Support Program; Working Paper No. 21; International Food Policy Research Institute: Washington, DC, USA, 2011. [Google Scholar]
- Aigbokhan, B.E. Poverty, Growth and Inequality in Nigeria: A Case Study; African Economic Research Consortium (AERC) Research Paper 102; African Economic Research Consortium: Nairobi, Kenya, 2000. [Google Scholar]
- Ehui, S.; Tsigas, M. The role of agriculture in Nigeria economic growth: A general equilibrium analysis. In Proceedings of the International Association of Agricultural Economics (IAAE) Conference, Beijing, China, 16–22 August 2009.
- Ayoade, A.R.; Adeola, R.G. Constraints to domestic industrialization of cassava in Osun State Nigeria. Ozean J. Soc. Sci. 2009, 2, 1–5. [Google Scholar]
- Knipscheer, H.; Ezedinma, C.; Kormawa, P.; Asumugha, G.; Mankinde, K.; Okechukwu, R.; Dixon, A. Opportunities in the Industrial Cassava Market in Nigeria; International Institute for Tropical Agriculture: Nairobi, Kenya, 2007. [Google Scholar]
- Nweke, F. New Challenges in the Cassava Transformation in Nigeria and Ghana; International Food Policy Research Institute: Washington, DC, USA, 2004. [Google Scholar]
- Asiedu, R.; Maroya, N. Yam Improvement for Income and Food Security in West Africa (YIIFSWA); International Institute for Tropical Agriculture (IITA), Project Brief: Kenya, 2012. [Google Scholar]
- Erhabor, P.O.I.; Ojogho, O. Demand analysis for rice in Nigeria. J. Food Technol. 2011, 9, 66–74. [Google Scholar] [CrossRef]
- Awerije, B.O.; Rahman, S. Exploring the potential and performance of maize production in Bangladesh. Int. J. Agric. Manag. 2014, 3, 99–106. [Google Scholar] [CrossRef]
- Nkonya, E.; Pender, J.; Kato, E.; Omobowale, O.; Phillip, D.; Ehui, S. Enhancing Agricultural Productivity and Profitability in Nigeria. Nigeria Strategy Support Program; Brief # 19; International Food Policy Research Institute: Washington, DC, USA, 2010. [Google Scholar]
- Chima, C.D. Socio-Economic Determinants of Modern Agricultural Technology Adoption in Multiple Food Crops and Its Impact on Productivity and Food Availability at the Farm Level: A Case Study of South-Eastern Nigeria. Ph.D. Thesis, University of Plymouth UK, Plymouth, UK, 2015. [Google Scholar]
- Manyong, V.M.; Ikpi, A.; Olayemi, J.K.; Yusuf, S.A.; Omonona, B.T.; Okoruwa, V.; Idachaba, F.S. Agriculture in Nigeria: Identifying Opportunities for Increased Commercialization and Investment. IITA Publication Series: Ibadan, Nigeria, 2005; p. 159. [Google Scholar]
- Ajibefun, I.A. Cropping System. Technical efficiency and policy options: A Stochastic Frontier Analysis of Nigerian small-scale farmers. Q. J. Int. Agric. 2006, 45, 145–169. [Google Scholar]
- Singh, S. Contract farming for agricultural diversification in the India Punjab: A study of performance and problems. Indian J. Agric. Econ. 2000, 56, 283–294. [Google Scholar]
- Bamji, M.S. Diversification of agriculture for human nutrition. Curr. Sci. 2000, 78, 1–7. [Google Scholar]
- Guvele, C.A. Gains from crop diversification in the Sudan Gezira scheme. Agric. Syst. 2001, 70, 319–333. [Google Scholar] [CrossRef]
- Van den Berg, M.M.; Hengsdijk, H.; Wolf, J.; Ittersum, M.K.V.; Guanghuo, W.; Roetter, R.P. The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China. Agric. Syst. 2007, 94, 841–850. [Google Scholar] [CrossRef]
- Kar, G.; Singh, R.; Verma, H.N. Alternative cropping strategies for assured and efficient crop production in upland rain fed rice areas of Eastern India based on rainfall analysis. Agric. Water Manag. 2004, 67, 47–62. [Google Scholar] [CrossRef]
- Rahman, S. Whether crop diversification is a desired strategy for agricultural growth in Bangladesh. Food Policy 2009, 34, 340–349. [Google Scholar] [CrossRef]
- Llewelyn, R.V.; Williams, J.R. Nonparametric analysis of technical, pure technical, and scale efficiencies for food crop production in East java, Indonesia. Agric. Econ. 1996, 15, 113–126. [Google Scholar] [CrossRef]
- Haji, J. Production efficiency of smallholders’ vegetable-dominated mixed farming system in Eastern Ethiopia: a non-parametric approach. J. Afr. Econ. 2007, 16, 1–27. [Google Scholar] [CrossRef]
- Coelli, T.J.; Fleming, E. Diversification economies and specialization efficiencies in a mixed food and coffee smallholder farming system in Papua New Guinea. Agric. Econ. 2004, 31, 229–239. [Google Scholar] [CrossRef]
- Fawole, O.P.; Oladele, O.I. Sustainable food crop production through multiple cropping patterns among farmers in South Western Nigeria. J. Hum. Ecol. 2005, 21, 245–249. [Google Scholar]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Uaiene, R.N.; Arndt, C.; Masters, W.A. Determinants of Agricultural Technology Adoption in Mozambique; Discussion Papers No. 67E; National Directorate of Studies and Policy Analysis, Ministry of Planning and Development: Maputo, Mozambique, 2009. [Google Scholar]
- Rahman, S. Determinants of crop choices by Bangladeshi farmers: A Bivariate Probit analysis. Asian J. Agric. Dev. 2008, 5, 29–42. [Google Scholar]
- Benin, S.; Smale, M.; Pender, M.J.; Gebremedhin, B.; Ehui, S. The economic determinants of cereal crop diversity on farms in the Ethiopian Highlands. Agric. Econ. 2004, 31, 197–208. [Google Scholar] [CrossRef]
- Floyd, C.; Harding, A.-H.; Paudel, K.C.; Rasali, D.P.; Subedi, K.; Subedi, P.P. Household adoption and the associated impact of multiple agricultural technologies in the western hills of Nepal. Agric. Syst. 2003, 76, 715–738. [Google Scholar] [CrossRef]
- Willock, J.; McGregor, M.M.; Sutherland, A.; Edwards-Jones, G.; Morgan, O.; Dent, B.; Grieve, R.; Gibson, G.; Austin, E. Farmers’ attitudes, objectives, behaviors, and personality traits: The Edinburgh study of decision making on farms. J. Vocat. Behav. 1999, 54, 5–36. [Google Scholar] [CrossRef]
- Rahman, S. The economic determinants of crop diversity on farms in rural Bangladesh. J. Int. Agric. Trade Dev. 2009, 5, 51–70. [Google Scholar]
- McDonald, J.F.; Moffit, R.A. The uses of tobit analysis. Rev. Econ. Stat. 1980, 61, 318–321. [Google Scholar] [CrossRef]
- Lansink, A.O.; van den Berg, M.; Huirne, R. Analysis of strategic planning of Dutch pig farmers using a multivariate probit model. Agric. Syst. 2003, 78, 73–84. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of multiple sustainable agricultural practices in rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Rahman, S.; Akter, S. Determinants of livelihood choices: An empirical analysis from rural Bangladesh. J. South Asian Dev. 2014, 9, 287–308. [Google Scholar] [CrossRef]
- Barslund, M.C. MVTOBIT: Stata Module to Calculate Multivariate Tobit Models by Simulated Maximum Likelihood (SML). 2007. Statistical Software Components S456875, Boston College Department of Economics, revised 13 October 2009, Available online: http://ideas.repec.org/f/pba424.html (accessed on 25 March 2013).
- Ebonyi State Agricultural Policy. Ebonyi State Government Plan and Policy Thrust Document; A Policy Document of Ebonyi State Government: Enugu, Nigeria, 2010. [Google Scholar]
- National Population Commission. Official Population Figure of Ebonyi State Nigeria; NPC: Abuja, Nigeria, 2006. [Google Scholar]
- Arkin, H.; Colton, R.R. Tables for Statisticians, 2nd ed.; Harper and Row Publishers: New York, NY, USA, 1963. [Google Scholar]
- Beedell, J.; Rehman, T. Using social-psychology models to understand farmers’ conservation behaviour. J. Rural Stud. 2000, 16, 117–127. [Google Scholar] [CrossRef]
- Kobrich, C.; Rehman, T.; Khan, M. Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agric. Syst. 2003, 76, 141–157. [Google Scholar] [CrossRef]
- Sanginga, N. Roots and tuber crops (Cassava, yam, potato and sweet potato). In Proceedings of the An Action Plan for African Agricultural Transformation Conference, Dakar, Senegal, 21–23 October 2015.
- Rahman, S.; Chima, C.D. Determinants of modern technology adoption in multiple food crops in Nigeria: A multivariate probit approach. Int. J. Agric. Manag. 2014, 4, 100–109. [Google Scholar]
- Natsa, R.T. Nigeria: Harnessing the Potential in Cassava, July 25, 2013. Available online: http://allafrica.com/stories/201307250475.html (accessed on 8 November 2014).
Producer Categories | Percent of Total Farmers (%) | Farm Operation Size (ha) | Gross Return (Naira per ha) | Profitability (Naira pe ha) |
---|---|---|---|---|
Only rice producer (rice = 1; yam = 0; cassava = 0) | 6.25 | 0.79 | 1075340.0 | 740536.2 |
Only yam producer (rice = 0; yam = 1; cassava = 0) | 5.25 | 0.68 | 558476.2 | 383312.4 |
Only cassava producer (rice = 0; yam = 0; cassava = 1) | 18.00 | 0.53 | 249622.1 | 157553.0 |
Rice and yam producer (rice = 1; yam = 1; cassava = 0) | 2.50 | 1.20 | 789966.0 | 505291.0 |
Rice and cassava producer (rice = 1; yam = 0; cassava = 1) | 2.25 | 1.24 | 671714.6 | 419673.0 |
Yam and cassava producer (rice = 0; yam = 1; cassava = 1) | 41.00 | 0.99 | 405167.1 | 261692.2 |
Rice, yam and cassava producer (rice = 1; yam = 1; cassava = 1) | 24.75 | 2.54 | 610350.8 | 461831.5 |
Overall | 100.00 | 1.27 | 493728.8 | 338439.0 |
Number of observations (farm households) | 400 |
Variables | Measurement | Mean | Standard Deviation |
---|---|---|---|
Dependent variable | |||
Yam profitability | Naira per ha | 274,158.50 | 195,441.00 |
Cassava profitability | Naira per ha | 134,430.70 | 71,253.85 |
Rice profitability | Naira per ha | 287,825.10 | 39,9584.80 |
Prices a | |||
Yam price | Naira per kg | 37.22 | 22.18 |
Cassava price | Naira per kg | 7.88 | 7.22 |
Rice price | Naira per kg | 51.47 | 6.07 |
Fertilizer price (yam producers) | Naira per kg | 103.37 | 4.51 |
Fertilizer price (cassava producers) | Naira per kg | 106.29 | 3.96 |
Fertilizer price (rice producers) | Naira per kg | 100.24 | 4.47 |
Labor wage (yam producers) | Naira per person day | 718.30 | 192.17 |
Labor wage (cassava producers) | Naira per person day | 622.93 | 153.57 |
Labor wage (rice producers) | Naira per person day | 763.16 | 313.95 |
Plowing price (yam producers) | Naira per ha | 13,288.52 | 5436.33 |
Plowing price (cassava producers) | Naira per ha | 11,189.72 | 6543.66 |
Plowing price (rice producers) | Naira per ha | 14,409.45 | 5017.59 |
Socio-economics characteristics | |||
Farm operation size | Ha | 1.27 | 1.11 |
Family size | Persons per household (number) | 3.88 | 1.91 |
Farming experience | Years | 19.78 | 13.62 |
Education | Years of completed schooling | 7.84 | 4.73 |
Tenancy | Share of rented-in land in total farm size (%) | 0.26 | 0.67 |
Main occupation as farmer | Dummy (1 if farmer, 0 otherwise) | 0.52 | 0.50 |
Gender | Dummy (1 if male, 0 otherwise) | 0.81 | 0.39 |
Subsistence pressure | Total rank value for one year (number) | 23.18 | 4.14 |
Institutions and services | |||
Distance to extension office | Km | 3.64 | 3.56 |
Distance to market | Km | 6.71 | 12.43 |
Extension contact | Number of contacts over the past one year | 0.15 | 0.56 |
Training received | Total number of days of training received | 0.10 | 0.34 |
Agricultural credit | Naira | 5885.40 | 29,208.13 |
Modern technology | |||
Fertilizer use | Dummy (1 if used fertilizers, 0 otherwise) | 0.47 | -- |
Revealed motive | |||
High yield | Weighted rank of high yield as the motive (Number) | 0.53 | 0.41 |
Ready market | Weighted rank of ready market as the motive (Number) | 0.85 | 0.27 |
Location | |||
Ebonyi state | Dummy (1 if Ebonyi state, 0 otherwise) | 0.65 | -- |
Number of observations | 400 |
Variables | Yam | Cassava | Rice | |||
---|---|---|---|---|---|---|
Coefficient | z-Value | Coefficient | z-Value | Coefficient | z-Value | |
Intercept | −337,208.6000 *** | −3.62 | 707.8483 | 0.02 | −112,304.6000 | −0.33 |
Prices | ||||||
Relative price of fertilizer | −1894.7210 | −1.32 | 125.7419 | 0.96 | 53,022.8000 *** | 2.94 |
Relative labor wage | 47,195.2800 *** | 14.12 | −331.2350 | −0.95 | 6637.7470 | 1.38 |
Relative price of plowing | −231.2986 *** | −2.57 | 5.5433 | 0.86 | −2128.8980 *** | −5.87 |
Socio-economics characteristics | ||||||
Farm operation size | 29,245.1400 *** | 2.50 | 17,804.5400 *** | 4.29 | 485,746.6000 *** | 9.18 |
Family size | 6224.8620 | 1.06 | 2772.0100 | 1.34 | 71,871.8900 *** | 2.90 |
Farming experience | −9.5469 | −0.01 | −613.1872* | −1.78 | −3459.9430 | −0.82 |
Education | −1226.3720 | −0.48 | 450.0797 | 0.51 | −4070.5140 | −0.36 |
Tenancy | −13,960.8900 | −0.84 | 2782.1570 | 0.56 | −133,559.3000 | −1.39 |
Main occupation as farmer § | 1860.5190 | 0.09 | 5912.6680 | 0.83 | −159,203.1000* | −1.83 |
Gender § | −14633.0100 | −0.59 | −4895.5830 | −0.56 | 107,510.8000 | 1.00 |
Subsistence pressure | −8632.3610 *** | −3.62 | −367.3847 | −0.41 | −380.2064 | −0.04 |
Institutions and services | ||||||
Distance to extension office | −949.9591 | −0.30 | 3161.3470 *** | 2.84 | 13,858.3800 | 1.11 |
Distance to market | 1535.0190 *** | 2.44 | −581.4647 *** | −2.67 | −656.4904 | −0.28 |
Extension contact | −42,417.2700 ** | −2.24 | 6926.1370 | 1.05 | −103,180.3000 | −1.33 |
Training received | −25,641.4400 | −0.81 | 18,432.2600* | 1.80 | −164,965.5000 | −1.16 |
Agricultural credit | −1.3921 ** | −2.15 | −0.1130 | −0.98 | 2.8045 ** | 2.38 |
Modern technology | ||||||
Fertilizer use | 10,182.4300 | 0.46 | 297.2352 | 0.04 | 55,898.1300 | 0.60 |
Revealed motive | ||||||
High yield | 94,111.9300 ** | 2.23 | 109,928.0000 *** | 7.05 | −694,756.4000 *** | −3.89 |
Ready market | 12,668.5700 | 0.41 | −8651.7660 | −0.80 | 276,635.5000* | 1.82 |
Location | ||||||
Ebonyi state § | 33,849.8700 *** | 3.37 | 16,790.9600 *** | 4.74 | −89,978.7200 ** | −2.16 |
Model diagnostics | ||||||
Log likelihood | −10,602.411 | |||||
Wald χ2(60 df) | 741.98 *** | |||||
Correlation between the error terms | ||||||
ρ(yam, cassva) | 0.1257 ** | 2.30 | ||||
ρ(yam, rice) | 0.0335 | 0.48 | ||||
ρ(cassava, rice) | −0.4134 *** | −7.63 | ||||
Wald χ2(3 df) (H0: Correlation between pairs of disturbance terms are jointly 0) | 32.2041 *** | |||||
Number of observations | 400 |
Variables | Yam | Cassava | Rice | |||
---|---|---|---|---|---|---|
Coefficient | t-Ratio | Coefficient | t-Ratio | Coefficient | t-Ratio | |
Prices | ||||||
Relative price of fertilizer | −0.0323 | −1.31 | 0.0151 | 0.94 | 0.1931 *** | 2.94 |
Relative labor wage | 2.8851 *** | 11.37 | −0.1181 | −1.02 | 0.1292 | 1.38 |
Relative price of plowing | −0.2628 *** | −2.55 | 0.0333 | 0.83 | −0.7712 *** | −5.87 |
Socio-economics characteristics | ||||||
Farm operation size | 0.1582 *** | 2.48 | 0.1757 *** | 4.29 | 1.2379 *** | 9.18 |
Family size | 0.1025 | 1.06 | 0.0815 | 1.32 | 0.4328 *** | 2.90 |
Farming experience | −0.0008 | −0.01 | −0.0929* | −1.76 | −0.1143 | −0.82 |
Education | −0.0409 | −0.48 | 0.0274 | 0.51 | −0.0373 | −0.36 |
Tenancy | −0.0156 | −0.84 | 0.0057 | 0.55 | −0.0171 | −1.39 |
Main occupation as farmer § | 0.0041 | 0.09 | 0.0237 | 0.83 | −0.0968* | −1.83 |
Gender § | −0.0502 | −0.59 | −0.0308 | −0.57 | 0.1174 | 1.00 |
Subsistence pressure | −0.8501 *** | −3.55 | −0.0724 | −0.47 | −0.0115 | −0.04 |
Institutions and services | ||||||
Distance to extension office | −0.0147 | −0.30 | 0.0891 *** | 2.85 | 0.0681 | 1.11 |
Distance to market | 0.0438 *** | 2.42 | −0.0302 *** | −2.67 | −0.0087 | −0.28 |
Extension contact | −0.0270 ** | −2.22 | 0.0080 | 1.05 | −0.0253 | −1.33 |
Training received | −0.0106 | −0.81 | 0.0139* | 1.78 | −0.0011 | −1.16 |
Agricultural credit | −0.0348 ** | −2.12 | −0.0052 | −0.99 | 0.0436 *** | 2.38 |
Modern technology | ||||||
Fertilizer use | 0.0205 | 0.46 | 0.0016 | 0.06 | 0.0395 | 0.60 |
Revealed motive | ||||||
High yield | 0.3390 ** | 2.21 | 0.7189 *** | 6.79 | −0.0730 *** | −3.89 |
Ready market | 0.0324 | 0.41 | −0.0393 | −0.78 | 0.2467* | 1.82 |
Location | ||||||
Ebonyi state § | 0.1866 *** | 3.32 | 0.1680 *** | 4.69 | −0.1538 ** | −2.16 |
Number of observations | 400 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.; Chima, C.D. Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach. Agriculture 2016, 6, 14. https://doi.org/10.3390/agriculture6020014
Rahman S, Chima CD. Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach. Agriculture. 2016; 6(2):14. https://doi.org/10.3390/agriculture6020014
Chicago/Turabian StyleRahman, Sanzidur, and Chidiebere Daniel Chima. 2016. "Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach" Agriculture 6, no. 2: 14. https://doi.org/10.3390/agriculture6020014
APA StyleRahman, S., & Chima, C. D. (2016). Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach. Agriculture, 6(2), 14. https://doi.org/10.3390/agriculture6020014