Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems
Abstract
:1. Introduction
2. Forage Nutritional Composition
3. Poultry Production Systems
3.1. Free-Range System
3.2. Organic System
4. Influence of Feeding Forage on Poultry Egg and Meat Quality
5. Conclusions and Future Outlook
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Siderer, Y.; Maquet, A.; Anklam, E. Need for research to support consumer confidence in the growing organic food market. Trends Food Sci. Technol. 2005, 16, 332–343. [Google Scholar] [CrossRef]
- Miao, Z.H.; Glatz, P.C.; Ru, Y.J. Free-range poultry production—A review. Asian-Aust. J. Anim. Sci. 2005, 18, 113–132. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Berg, C. Health and welfare in organic poultry production. Acta Vet. Scand. 2002, 43, S37. [Google Scholar] [CrossRef]
- Castellini, C.; Bastianoni, S.; Granai, C.; Dal Bosco, A.; Brunetti, M. Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agric. Ecosyst. Environ. 2006, 114, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Mugnai, C.; Rosati, A.; Paoletti, A.; Caporali, S.; Castellini, C. Effect of range enrichment on performance, behavior, and forage intake of free-range chickens. J. Appl. Poult. Res. 2014, 23, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, N.P.; Hott, J.M.; Kimbler, L.B.; Moritz, J.S. Nutrient composition and digestibility of organic broiler diets and pasture forages. J. Appl. Poult. Res. 2007, 16, 13–21. [Google Scholar] [CrossRef]
- Mourão, J.L.; Pinheiro, V.M.; Prates, J.A.M.; Bessa, R.J.B.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Ponte, P.I.P. Effect of dietary dehydrated pasture and citrus pulp on the performance and meat quality of broiler chickens. Poult. Sci. 2008, 87, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Abouelezz, F.M.K.; Sarmiento-Franco, L.; Santos-Ricalde, R.; Solorio-Sanchez, F. Outdoor egg production using local forages in the tropics. World’s Poult. Sci. J. 2012, 68, 679–692. [Google Scholar] [CrossRef]
- Wu, G.; Fanzo, J.; Miller, D.D.; Pingali, P.; Post, M.; Steiner, J.L.; Thalacker-Mercer, A.E. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N. Y. Acad. Sci. 2014, 1321, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Mottet, A.; Opio, C.I.; Falcucci, A.; Teillard, F. Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Sci. 2015, 109, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Guyader, J.; Janzen, H.H.; Kroebel, R.; Beauchemin, K.A. Forage use to improve environmental sustainability of ruminant production. J. Anim. Sci. 2016, 94, 3147–3158. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.S. Forage based animal production systems and sustainability, an invited keynote. Rev. Bras. Zootec. 2008, 37, 78–84. [Google Scholar] [CrossRef]
- Dale, A.J.; Laidlaw, A.S.; Frost, J.P.; Bailey, J.; Mayne, C.S. Opportunities to Improve Efficiency of Use of Animal Manures with Low Input, Alternative Forages; Occasional Symposium-British Grassland Society: Berks, UK, 2007; p. 205. [Google Scholar]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef] [PubMed]
- INRA. Alimentation des Bovins, ovins et Caprins. Besoins des animaux. Valeur des Aliments; Feeding of Cattle, Sheep and Goats. Animal Needs. Feed Value. Tables INRA; Editions Quae: Paris, France, 2007. [Google Scholar]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2007, 147, 116–139. [Google Scholar] [CrossRef]
- Waghorn, G.C.; McNabb, W.C. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 2003, 62, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, S.D.; Tiemann, T.T.; Bindelle, J.; Peters, M.; Lascano, C.E. Alternative plant protein sources for pigs and chickens in the tropics-nutritional value and constraints: A review. J. Agric. Rural Dev. Trop. Subtrop. 2012, 113, 101–123. [Google Scholar]
- Grant, G.; More, L.J.; McKenzie, N.H.; Dorward, P.M.; Buchan, W.C.; Telek, L.; Pusztai, A. Nutritional and haemagglutination properties of several tropical seeds. J. Agric. Sci. 1995, 124, 437–445. [Google Scholar] [CrossRef]
- Tufarelli, V.; Casalino, E.; D’Alessandro, A.G.; Laudadio, V. Dietary Phenolic Compounds: Biochemistry, Metabolism and Significance in Animal and Human Health. Curr. Drug Metab. 2017, 18, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Brum, K.B.; Haraguchi, M.; Garutti, M.B.; Nóbrega, F.N.; Rosa, B.; Fioravanti, M.C.S. Steroidal saponin concentrations in Brachiaria decumbens and B. brizantha at different developmental stages. Ciência Rural 2009, 39, 279–281. [Google Scholar] [CrossRef]
- Cheeke, P.R.; Powley, J.S.; Nakaue, H.S.; Arscott, G.H. Feed preferences of poultry fed alfalfa meal, high and low saponins alfalfa and quinine sulfate. Proc. West. Sect. Am. Soc. Anim. Sci. 1981, 32, 426–427. [Google Scholar]
- Pedersen, M.W.; Berrang, B.; Wall, M.E.; Davis, K.H. Modification of saponin characteristics of alfalfa by selection 1. Crop Sci. 1973, 13, 731–735. [Google Scholar] [CrossRef]
- Acamovic, T.; Cowieson, A.; Gilbert, C.E. Lupins in poultry nutrition. Wild and cultivated lupins from the Tropics to the Poles. In Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland, 19–24 June 2002; pp. 314–318. [Google Scholar]
- Jeroch, H.; Flachowsky, G.; Weissbach, F. Futtermittelkunde; G. Fischer: Jena, Germany; Stuttgart, Germany, 1993. [Google Scholar]
- Barry, T.N.; McNeill, D.M.; McNabb, W.C. Plant secondary compounds; their impact on nutritive value and upon animal production. In Proceedings of the XIX International Grassland Congress, Sao Paulo, Brazil, 11–21 February 2001; pp. 445–452. [Google Scholar]
- Akande, K.E.; Doma, U.D.; Agu, H.O.; Adamu, H.M. Major antinutrients found in plant protein sources: Their effect on nutrition. Pak. J. Nutr. 2010, 9, 827–832. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V. Dehulled-micronised lupin (Lupinus albus L. cv. Multitalia) as the main protein source for broilers: Influence on growth performance, carcass traits and meat fatty acid composition. J. Sci. Food Agric. 2011, 91, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Laudadio, V.; Nahashon, S.N.; Tufarelli, V. Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal. Poult. Sci. 2012, 91, 2988–2996. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, V.; Janardhanan, K. Nutritional and antinutritional characteristics of seven South Indian wild legumes. Plant Foods Hum. Nutr. 2005, 60, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.Y.; Arntfield, S.D. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef]
- Fanatico, A.C.; Pillai, P.B.; Emmert, J.L.; Owens, C.M. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult. Sci. 2007, 86, 2245–2255. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Berri, C.; Le Bihan-Duval, E.; Martino, G. Quality attributes and consumer perception of organic and free range poultry meat. World’s Poult. Sci. J. 2008, 64, 500–512. [Google Scholar] [CrossRef]
- Almeida, G.F. Use of forage and plant supplements in organic and free range broiler systems: Implications for production and parasite infections. PhD Thesis, Aarhus University, Denmark, 2012. [Google Scholar]
- Fanatico, A.C.; Owens, C.M.; Emmert, J.L. Organic poultry production in the United States: Broilers. J. Appl. Poult. Res. 2009, 18, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Perez, M.; Sarmiento-Franco, L.; Santos-Ricalde, R.H.; Sandoval-Castro, C.A. Poultry meat production in free-range systems: Perspectives for tropical areas. World’s Poult. Sci. J. 2017, 73, 309–320. [Google Scholar] [CrossRef]
- Husak, R.L.; Sebranek, J.G.; Bregendahl, K. A survey of commercially available broilers marketed as organic, free-range, and conventional broilers for cooked meat yields, meat composition, and relative value. Poult. Sci. 2008, 87, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Council Regulation (EC). No 1234/2007 of 22 October 2007 establishing a common organisation of agriculture markets and on specific provisions for certain agricultural products. Off. J. Eur. Union 2007, 299, 1–149. [Google Scholar]
- Smith, D.P.; Northcutt, J.K.; Steinberg, E.L. Meat quality and sensory attributes of a conventional and a Label Rouge-type broiler strain obtained at retail. Poult. Sci. 2012, 91, 1489–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestman, M.W.P.; Wagenaar, J.P. Farm level factors associated with feather pecking damage in organic laying hens. Livest. Prod. Sci. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Lambton, S.L.; Knowles, T.G.; Yorke, C.; Nicol, C.J. The risk factors affecting the development of gentle and severe feather pecking in loose housed laying hens. Appl. Anim. Behav. Sci. 2010, 123, 32–42. [Google Scholar] [CrossRef]
- Bestman, M.; de Jong, W.; Wagenaar, J.; Weerts, T. Presence of avian influenza risk birds in and around poultry free-range areas in relation to range vegetation and openness of surrounding landscape. Agrofor. Syst. 2017. [Google Scholar] [CrossRef]
- Bright, A.; Gill, R.; Willings, T.H. Tree cover and injurious feather-pecking in commercial flocks of free-range laying hens: A follow up. Anim. Welf. 2016, 25, 1–5. [Google Scholar] [CrossRef]
- Sossidou, E.N.; Dal Bosco, A.; Castellini, C.; Grashorn, M.A. Effects of pasture management on poultry welfare and meat quality in organic poultry production systems. World’s Poult. Sci. J. 2015, 71, 375–384. [Google Scholar] [CrossRef]
- Bray, T.S.; Lancaster, M. BThe parasitic status of land used by free-range hens. Br. Poult. Sci. 1992, 33, 1119–1120. [Google Scholar]
- Dekker, S.E.M.; Aarnink, A.J.A.; de Boer, I.J.M.; Groot Koerkamp, P.W.G. Total loss and distribution of nitrogen and phosphorus in the outdoor run of organic laying hens. Br. Poult. Sci. 2012, 53, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Larsen, H.; Cronin, G.; Smith, C.L.; Hemsworth, P.; Rault, J.L. Behaviour of free-range laying hens in distinct outdoor environments. Anim. Welf. 2017, 26, 255–264. [Google Scholar] [CrossRef]
- Cobanoglu, F.; Kucukyilmaz, K.; Cinar, M.; Bozkurt, M.; Catli, A.U.; Bintas, E. Comparing the profitability of organic and conventional broiler production. Rev. Bras. Ciên. Avíc. 2014, 16, 89–95. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Off. J. Eur. Union 2008, 280, 1–84.
- USDA. National organic program; amendment to the national list of allowed and prohibited substances (livestock). Fed. Reg. 2012, 77, 57985–57990. [Google Scholar]
- Anon. Report from the Danish Poultry Council 2010; Danish Poultry Council: Copenhagen, Denmark, 2012. [Google Scholar]
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Tufarelli, V.; Javdani, M.; Qureshi, M.S.; Laudadio, V. Potential applications of ginger (Zingiber officinale) in poultry diets. World’s Poult. Sci. J. 2012, 68, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Mathlouthi, N.; Mallet, S.; Saulnier, L.; Quemener, B.; Larbier, M. Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res. 2002, 51, 395–406. [Google Scholar] [CrossRef]
- Singh, A.K.; Berrocoso, J.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Anim. Feed Sci. Technol. 2017, 232, 16–20. [Google Scholar] [CrossRef]
- Tufarelli, V.; Dario, M.; Laudadio, V. Effect of xylanase supplementation and particle-size on performance of guinea fowl broilers fed wheat-based diets. Int. J. Poult. Sci. 2007, 4, 302–307. [Google Scholar] [CrossRef]
- Horsted, K.; Hermansen, J.; Ranvig, H. Crop content in nutrient-restricted versus non-restricted organic laying hens with access to different forage vegetations. Br. Poult. Sci. 2007, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T. Pastured Poultry Nutrition and Forages; ATTRA: Melbourne, Australia, 2013; Available online: https://attra.ncat.org/attra-pub/summaries/summary.php?pub=452 (accessed on 13 November 2017).
- Buckner, G.D.; Insko, W.M., Jr.; Henry, A.H. Influences of spring bluegrass and mature bluegrass pastures on laying hens and on the eggs produced. Poult. Sci. 1945, 24, 446–450. [Google Scholar] [CrossRef]
- Blair, R. Nutrition and Feeding of Organic Poultry; CAB International Publishing: Oxfordshire, UK, 2008. [Google Scholar]
- Laudadio, V.; Ceci, E.; Lastella, N.M.B.; Introna, M.; Tufarelli, V. Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: Effects on productive traits and egg quality. Poult. Sci. 2014, 93, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Moritz, J.S.; Parsons, A.S.; Buchanan, N.P.; Baker, N.J.; Jaczynski, J.; Gekara, O.J.; Bryan, W.B. Synthetic methionine and feed restriction effects on performance and meat quality of organically reared broiler chickens. J. Appl. Poult. Res. 2005, 14, 521–535. [Google Scholar] [CrossRef]
- Moyle, J.R.; Arsi, K.; Woo-Ming, A.; Arambel, H.; Fanatico, A.; Blore, P.J.; Clark, F.D.; Donoghue, D.J.; Donoghue, A.M. Growth performance of fast-growing broilers reared under different types of production systems with outdoor access: Implications for organic and alternative production systems. J. Appl. Poult. Res. 2014, 23, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M. Protein supply in organic broiler production using fast-growing hybrids. PhD Dissertation, Uppsala, Sweden, 2010. Available online: http://pub.epsilon.slu.se/2362/1/ eriksson_m_101008.pdf (accessed on 6 May 2017).
- Rivera-Ferre, M.G.; Lantinga, E.A.; Kwakkel, R.P. Herbage intake and use of outdoor area by organic broilers: Effects of vegetation type and shelter addition. NJAS-Wagen. J. Life Sci. 2007, 54, 279–291. [Google Scholar] [CrossRef]
- Anderson, K.E. Comparison of fatty acid, cholesterol, and vitamin A and E composition in eggs from hens housed in conventional cage and range production facilities. Poult. Sci. 2011, 90, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Mugnai, C.; Dal Bosco, A.; Castellini, C. Effect of rearing system and season on the performance and egg characteristics of Ancona laying hens. Ital. J. Anim. Sci. 2009, 8, 175–188. [Google Scholar] [CrossRef]
- Karsten, H.D.; Patterson, P.H.; Stout, R.; Crews, G. Vitamins A, E and fatty acid composition of the eggs of caged hens and pastured hens. Renew. Agric. Food Syst. 2010, 25, 45–54. [Google Scholar] [CrossRef]
- Holt, P.S.; Davies, R.H.; Dewulf, J.; Gast, R.K.; Huwe, J.K.; Jones, D.R.; Waltman, D.; Willian, K.R. The impact of different housing systems on egg safety and quality. Poult. Sci. 2011, 90, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Mugnai, C.; Mattioli, S.; Rosati, A.; Ruggeri, S.; Ranucci, D.; Castellini, C. Transfer of bioactive compounds from pasture to meat in organic free-range chickens. Poult. Sci. 2016, 95, 2464–2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigorova, S.; Abadjieva, D.; Gjorgovska, N. Influence of natural sources of biologically active substances on livestock and poultry reproduction. Iran. J. Appl. Anim. Sci. 2017, 7, 189–195. [Google Scholar]
- Ponte, P.I.; Prates, J.A.; Crespo, J.P.; Crespo, D.G.; Mourão, J.L.; Alves, S.P.; Bessa, R.J.; Chaveiro-Soares, M.A.; Ferreira, L.M.; Fontes, C.M. Improving the lipid nutritive value of poultry meat through the incorporation of dehydrated leguminous-based forage in the diet for broiler chicks. Poult. Sci. 2008, 87, 1578–1594. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Laudadio, V.; Casalino, E. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. Environ. Sci. Pollut. Res. 2016, 23, 6197–6204. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.; Skibsted, L.H. Kinetics and mechanism of the primary steps of degradation of carotenoids by acid in homogeneous solution. J. Agric. Food Chem. 2000, 48, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Ponte, P.I.P.; Mendes, I.; Quaresma, M.; Aguiar, M.N.M.; Lemos, J.P.C.; Ferreira, L.M.A.; Soares, M.A.C.; Alfaia, C.M.; Prates, J.A.M.; Fontes, C.M.G.A. Cholesterol levels and sensory characteristics of meat from broilers consuming moderate to high levels of alfalfa. Poult. Sci. 2004, 83, 810–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heywang, B.W.; Thompson, C.R.; Kemmerer, A.R. Effect of alfalfa saponins on laying hens. Poult. Sci. 1959, 38, 968–971. [Google Scholar] [CrossRef]
- Reddy, B.S.V. Feeding Value of Forages in Poultry. PhD Thesis, Punjab Agricultural University, Ludhiana, India, 1979. [Google Scholar]
- Sim, J.S.; Kitts, W.D.; Bragg, D.B. Effect of dietary saponin on egg cholesterol level and laying hen performance. Can. J. Anim. Sci. 1984, 64, 977–984. [Google Scholar] [CrossRef]
- Kocaoğlu Güçlü, B.; Işcan, K.M.; Uyanik, F.; Eren, M.; Can Ağca, A. Effect of alfalfa meal in diets of laying quails on performance, egg quality and some serum parameters. Arch. Anim. Nutr. 2004, 58, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Makkar, H.P.; Becker, K. Alfalfa saponins and their implication in animal nutrition. J. Agric. Food Chem. 1998, 46, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Vohra, P.; Kratzer, F.H.; Joslyn, M.A. The growth depressing and toxic effects of tannins to chicks. Poult. Sci. 1966, 45, 135–142. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufarelli, V.; Ragni, M.; Laudadio, V. Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems. Agriculture 2018, 8, 81. https://doi.org/10.3390/agriculture8060081
Tufarelli V, Ragni M, Laudadio V. Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems. Agriculture. 2018; 8(6):81. https://doi.org/10.3390/agriculture8060081
Chicago/Turabian StyleTufarelli, Vincenzo, Marco Ragni, and Vito Laudadio. 2018. "Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems" Agriculture 8, no. 6: 81. https://doi.org/10.3390/agriculture8060081
APA StyleTufarelli, V., Ragni, M., & Laudadio, V. (2018). Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems. Agriculture, 8(6), 81. https://doi.org/10.3390/agriculture8060081