Does Solar Radiation Affect the Distribution of Dubas Bug (Ommatissus lybicus de Bergevin) Infestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Infestation Data
2.3. Solar Radiation Data
2.4. Analyses
3. Results
3.1. Infestation Data
3.2. Solar Radiation Data
3.3. Ordinary Least Square Regression Results
3.4. Autocorrelation Results
3.5. Geographic Weight Regression Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abd-Allah, F.F.; Al-Zidjali, T.S.; Al-Khatri, S.A. Biology of Ommatissus lybicus Bergevin under field and laboratory conditions during spring 1995. In Proceedings of the International Conference on Integrated Pest Management, Muscat, Sultanate of Oman, 23–25 February 1998; pp. 75–79. [Google Scholar]
- Al-Khatri, S.A.H. Biological, Ecological and Phylogenic Studies of Pseudoligosita Babylonica Viggiani, a Native Egg Parasitoid of Dubas Bug Ommatissus lybicus de Bergevin, the Major Pest of Date Palm in the Sultanate of Oman. Ph.D. Thesis, University of Reading, Reading, UK, 2011. [Google Scholar]
- Howard, F.W. Sap-Feeders on Palms; CABI Publishing: Wallingford, UK, 2001. [Google Scholar]
- Mjeni, A.M.; Mokhtar, A. Comparison between Nogos and Malathion on Dubas bug. In Annual Report of Research Work (1979–1980); Ministry of Agriculture and Fisheries: Muscat, Sultanate of Oman, 1983; pp. 157–165. [Google Scholar]
- El Haidari, H.; Al Hafidh, E. Palm and Date Arthropod Pests in the Near East and North Africa; Food and Agriculture Organization (FAO): Baghdad, Iraq, 1986; p. 17. [Google Scholar]
- Elwan, A.; Al-Tamimi, S. Life cycle of dubas bug Ommatissus binotatus lybicus De Berg. (Homoptera: Tropiduchidae) in Sultanate of Oman. Egypt. J. Agric. Res. 1999, 77, 1547–1553. [Google Scholar]
- Thacker, J.; Al-Mahmooli, I.; Deadman, M. Population dynamics and control of the dubas bug Ommatissus lybicus in the Sultanate of Oman. In Proceedings of the BCPC International Congress—Crop Science and Technology, Glasgow, UK, 10–12 November 2003; pp. 987–992. [Google Scholar]
- Kinawy, M. Date palm and date pests in Oman. In Royal Court Affairs; Royal Gardens and Far: Muscat, Sultanate of Oman, 2005. [Google Scholar]
- Khan, N.A.; Mukhtar, A.; Alam, M. To assess the extent of the economic damage caused by Dubas bug Ommatissus binotatus on date palms with particular reference to yield and quality of fruits. In Annual Report of Research Work (1980–1981); Ministry of Agriculture and Fisheries: Muscat, Sultanate of Oman, 1983; pp. 170–179. [Google Scholar]
- Al Sarai Al Alawi, M. Studies on the Control of Dubas Bug, Ommatissus lybicus DeBergevin (Homoptera: Tropiduchidae), a Major Pest of Date Palm in the Sultanate of Oman. Ph.D. Thesis, Imperial College London, London, UK, 2015. [Google Scholar]
- Mazza, C.A.; Zavala, J.; Scopel, A.L.; Ballaré, C.L. Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications. Proc. Natl. Acad. Sci. USA 1999, 96, 980–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampichler, C.; Teschner, M. The spatial distribution of leaf galls of Mikiola fagi (Diptera: Cecidomyiidae) and Neuroterus quercusbaccarum (Hymenoptera: Cynipidae) in the canopy of a Central European mixed forest. Eur. J. Entomol. 2002, 99, 79–84. [Google Scholar] [CrossRef]
- Mezei, P.; Jakus, R.; Blazenec, M.; Belánová, S.; Smidt, J. The relationship between potential solar radiation and spruce bark beetle catches in pheromone traps. Ann. For. Res. 2012, 55, 147. [Google Scholar] [CrossRef]
- Pepper, J.; Hastings, E. The effects of solar radiation on grasshopper temperatures and activities. Ecology 1952, 33, 96–103. [Google Scholar] [CrossRef]
- Cena, K.; Clark, J. Effect of solar radiation on temperatures of working honey bees. Nature 1972, 236, 222–223. [Google Scholar] [CrossRef]
- Nel, J.; Hewitt, P. Effect of solar radiation on the harvester termite, Hodotermes mossambicus (Hagen). Nature 1969, 223, 862–863. [Google Scholar] [CrossRef]
- Odera, J. The effect of solar radiation on cone insects of eastern white pine (Pinus strobus) in the Fredericton Area, New Brunswick1. Can. Entomol. 1971, 103, 605–609. [Google Scholar] [CrossRef]
- Battisti, A.; Marini, L.; Pitacco, A.; Larsson, S. Solar radiation directly affects larval performance of a forest insect. Ecol. Entomol. 2013, 38, 553–559. [Google Scholar] [CrossRef]
- de Groot, M.; Kogoj, M. Temperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its range. J. Insect. Conserv. 2015, 19, 891–899. [Google Scholar] [CrossRef]
- Selås, V.; Hogstad, O.; Kobro, S.; Rafoss, T. Can sunspot activity and ultraviolet–B radiation explain cyclic outbreaks of forest moth pest species? Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 1897–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, A.; Goffredo, M.; Ippoliti, C.; Meiswinkel, R. Influence of biotic and abiotic factors on the distribution and abundance of Culicoides imicola and the Obsoletus Complex in Italy. Vet. Parasitol. 2007, 150, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Fu, P.; Rich, P.M. Design and implementation of the solar analyst: An ArcView extension for modeling solar radiation at landscape scales. In Proceedings of the Nineteenth Annual ESRI User Conference, San Diego, CA, USA, 18–22 June 1999; pp. 1–31. [Google Scholar]
- Gastli, A.; Charabi, Y. Solar electricity prospects in Oman using GIS-based solar radiation maps. Renew. Sustain. Energy Rev. 2010, 14, 790–797. [Google Scholar] [CrossRef]
- Fu, P.; Rich, P.M. A geometric solar radiation model and its applications in agriculture and forestry. In Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; pp. 357–364. [Google Scholar]
- Mokhtar, A.M.; Al Nabhani, S.S. Temperature-dependent development of dubas bug, Ommatissus lybicus (Hemiptera: Tropiduchidae), an endemic pest of date palm, Phoenix dactylifera. Eur. J. Entomol. 2010, 107, 681. [Google Scholar] [CrossRef]
- Payandeh, A.; Dehghan, A. Life table parameters of the dubas bug, Ommatissus lybicus (Hem: Tropiduchidae) at three constant temperatures. Afr. J. Biotechnol. 2011, 10, 19489–19493. [Google Scholar] [CrossRef]
- Shah, A.; Naeem, M.; Nasir, M.F.; Irfan-ul-Haq, M.; Hafeez, Z. Biology of dubas bug, Ommatissus lybicus (Homoptera: Tropiduchidae), a pest on date palm during spring and summer seasons in Panjgur, Pakistan. Pak. J. Zool. 2012, 44, 1603–1611. [Google Scholar]
- Taghizadeh, R.; Fathipour, Y.; Kamali, K. Influence of temperature on life-table parameters of Stethorus gilvifrons (Mulsant) (Coleoptera: Coccinellidae) fed on Tetranychus urticae Koch. J. Appl. Entomol. 2008, 132, 638–645. [Google Scholar] [CrossRef]
- Chi, H.; Yang, T.-C. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environ. Entomol. 2003, 32, 327–333. [Google Scholar] [CrossRef]
- Ministry of Agriculture (MOA). Final Report of Aerial Application for Controlling Dubas Bug During Spring Generation of 2010; Ministry of Agriculture (MOA): Muscat, Sultanate of Oman, 2010; p. 42.
- MahmoudI, M.; Sahragard, A.; Pezhman, H.; Ghadamyari, M. Effect of climatic and management factors on the abundance of dubas bug, Ommatissus Lybicus bergevin (Hem.: Tropiduchidae) in Northern Hormozgan and Southern Fars Provinces. J. Plant Pests Res. 2013, 3, 63–76. [Google Scholar]
- Frenken, K. Irrigation in the Middle East Region in figures AQUASTAT Survey—2008; Water Report; Food and Agriculture Organization (FAO): Rome, Italy, 2009; ISBN 978-92-5-106316-3. [Google Scholar]
- Álvarez, J.; Mitasova, H.; Allen, H.L. Estimating monthly solar radiation in south-central Chile. Chil. J. Agric. Res. 2011, 71, 601. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Diamandakis, M.; Prastacos, P. GIS based estimation and mapping of local level daily irradiation on inclined surfaces. In Proceedings of the 7th AGILE Conference on Geographic Information Science, Heraklion, Greece, 29 April–1 May 2004. [Google Scholar]
- Kumar, L. A Comparison of ARCGIS modelled and ground recorded solar radiation data and opportunities for utilisation in environmental models. In Proceedings of the 10th SEASC: South East Asian Survey Congress, Nusadua, Indonesia, 4–7 August 2009; pp. 311–315. [Google Scholar]
- Huang, S.; Fu, P. Modeling small areas is a big challenge. ESRI ArcUser Online 2009, 2831, 2013. [Google Scholar]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Fotherington, A.S., Brunsdon, C., Charlton, M., Eds.; Wiley: Hoboken, NJ, USA, 2002; ISBN 0471496162. [Google Scholar]
- Al Shidi, R.; Kumar, L.; Al-Khatri, S.; Albahri, M.; Alaufi, M. Relationship of date palm tree density to dubas bug Ommatissus lybicus infestation in Omani orchards. Agriculture 2018, 8, 64. [Google Scholar] [CrossRef]
- Talhouk, A. On the management of the date palm and its arthropod enemies in the Arabian Peninsula. J. Appl. Entomol. 1991, 111, 514–520. [Google Scholar] [CrossRef]
- Ali, H.G. Development of date palm cultivation and its role in sustainability of agriculture in Oman. In Proceedings of the IV International Date Palm Conference, Abu Dhabi, UAE, 15–17 March 2010; pp. 29–35. [Google Scholar]
- Ishag, K.H.M. Dates palm farming systems sustainability and risk efficiency in Oman. Sustain. Agric. Res. 2016, 6, 39. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. National Environmental Satellite, Data and Information Service. Available online: https://www7.ncdc.noaa.gov/CDO/cdo (accessed on 26 June 2018).
- Ballare, C.L.; Caldwell, M.M.; Flint, S.D.; Robinson, S.A.; Bornman, J.F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 2011, 10, 226–241. [Google Scholar] [CrossRef] [PubMed]
- McCloud, E.S. Stratospheric Ozone Depletion and Plant-Insect Interactions: Effects of UVB Radiation of Generalist and Specialist Herbivores on a Tropical Tree and a Temperate Forb. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1995. [Google Scholar]
- Moumouni, D.; Doumma, A.; Seyni, I. Effect of solar drying on the biological parameters of the cowpea weevil, Callosobruchus maculatus Fab. (Coleoptera-Bruchinae), in Sahelian area. J. Appl. Biosci. 2014, 84, 7723–7729. [Google Scholar] [CrossRef]
- Battisti, A.; Stastny, M.; Netherer, S.; Robinet, C.; Schopf, A.; Roques, A.; Larsson, S. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 2005, 15, 2084–2096. [Google Scholar] [CrossRef]
- Pathak, M.D.; Khan, Z.R. Insect Pests of Rice; International Rice Research Institute: Los Baños, Philippines, 1994; ISBN 9712200280. [Google Scholar]
- Clench, H.K. Behavioral thermoregulation in butterflies. Ecology 1966, 47, 1021–1034. [Google Scholar] [CrossRef]
Governorate | Number of Locations |
---|---|
Ad Dakhliyah | 26 |
Al Batinah North and Al Batinah South | 19 |
Ash Sharqiyah North and Ash Sharqiyah South | 13 |
Al Buraymi | 8 |
Adh Dhahirah | 3 |
Year | Variable | Coefficient | Standardized Error | t-Statistic | p-Value | VIF |
---|---|---|---|---|---|---|
2009 | Intercept | 31.42 | 26.98 | 1.16 | 0.25 | |
Minimum solar radiation | −1.77 | 0.70 | −2.50 | 0.02 | 1.01 | |
Maximum solar radiation | 0.03 | 0.94 | 0.03 | 0.98 | 1.01 | |
2016 | Intercept | −4.02 | 25.70 | −0.16 | 0.88 | |
Minimum solar radiation | −0.29 | 0.39 | −7.50 | 0.46 | 1.04 | |
Maximum solar radiation | 0.46 | 0.88 | 0.52 | 0.60 | 1.04 |
Indexes | 2009 | 2016 |
---|---|---|
Moran’s I Index | 0.010831 | 0.074506 |
Expected Index | −0.020833 | −0.014706 |
Variance | 0.032638 | 0.049531 |
Z-Score | 0.175272 | 0.400851 |
p-Value | 0.860866 | 0.688530 |
Variables | 2009 | 2016 |
---|---|---|
Bandwidth | 41 | 37.30 |
Residual Squares | 1123.85 | 1269.35 |
Effective Number | 5.37 | 2.00 |
Sigma | 5.082 | 4.35 |
AIC | 305.02 | 403.13 |
R2 | 0.28 | 0.01 |
R2 Adjusted | 0.21 | 0.00 |
Degrees of Freedom (df) | 46 | 66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shidi, R.H.; Kumar, L.; Al-Khatri, S.A.H.; Alaufi, M.S.; Albahri, M.M. Does Solar Radiation Affect the Distribution of Dubas Bug (Ommatissus lybicus de Bergevin) Infestation. Agriculture 2018, 8, 107. https://doi.org/10.3390/agriculture8070107
Al Shidi RH, Kumar L, Al-Khatri SAH, Alaufi MS, Albahri MM. Does Solar Radiation Affect the Distribution of Dubas Bug (Ommatissus lybicus de Bergevin) Infestation. Agriculture. 2018; 8(7):107. https://doi.org/10.3390/agriculture8070107
Chicago/Turabian StyleAl Shidi, Rashid H., Lalit Kumar, Salim A. H. Al-Khatri, Mohammed S. Alaufi, and Malik M. Albahri. 2018. "Does Solar Radiation Affect the Distribution of Dubas Bug (Ommatissus lybicus de Bergevin) Infestation" Agriculture 8, no. 7: 107. https://doi.org/10.3390/agriculture8070107
APA StyleAl Shidi, R. H., Kumar, L., Al-Khatri, S. A. H., Alaufi, M. S., & Albahri, M. M. (2018). Does Solar Radiation Affect the Distribution of Dubas Bug (Ommatissus lybicus de Bergevin) Infestation. Agriculture, 8(7), 107. https://doi.org/10.3390/agriculture8070107