Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Set-Up
2.2. Plant Sampling and Measurements
2.3. Statistics
3. Results
4. Discussion
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, M.H.; El-Enany, A.W.E.; Nafady, N.A.; Khalaf, D.M.; Morsy, F.M. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol. Res. 2014, 169, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Balliu, A.; Bani, A.; Karajani, M.; Sulçe, S. Environmental impacts of nitrogen concentration of tomato and pepper seedling’s nutrient solution. Acta Hortic. 2007, 747, 495–502. [Google Scholar] [CrossRef]
- Laranjo, M.; Alexandre, A.; Oliveira, S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol. Res. 2014, 169, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.A.; Braña, V.; Castro-sowinski, S. Legume Crops, Importance and Use of Bacterial Inoculation to Increase Production. In Crop Plant; Goyal, A., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [Green Version]
- Jackson, C.; Stone, B.; Tyler, H. Emerging Perspectives on the Natural Microbiome of Fresh Produce Vegetables. Agriculture 2015, 5, 170–187. [Google Scholar] [CrossRef] [Green Version]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Kumar, A.; Dames, J.F.; Gupta, A.; Sharma, S.; Gilbert, J.A.; Ahmad, P. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: A biotechnological perspective. Crit. Rev. Biotechnol. 2014, 8551, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latef, A.A.H.; Chaoxing, H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 2011, 127, 228–233. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, S.; Bücking, H. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency. Ann. Bot. 2016, 118, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raviv, M.; Zaidman, B.Z.; Kapulnik, Y. The use of compost as a peat substitute for organic vegetable transplants production. Compost Sci. Util. 1998, 6, 46–52. [Google Scholar] [CrossRef]
- Al-Karaki, G.N. Effects of Mycorrhizal Fungi Inoculation on Green Pepper Yield and Mineral Uptake under Irrigation with Saline Water. Adv. Plants Agric. Res. 2017, 6, 00231. [Google Scholar] [CrossRef]
- Vuksani, A.; Sallaku, G.; Balliu, A. The Effects of Endogenous Mycorrhiza (Glomus spp.) on Stand Establishment Rate and Yield of Open Field Tomato Crop. Albanian J. Agric. Sci. 2015, 14, 25–30. [Google Scholar]
- Balliu, A.; Sallaku, G.; Rewald, B. AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings. Sustainability 2015, 7, 15967–15981. [Google Scholar] [CrossRef] [Green Version]
- Gamalero, E.; Glick, B. Mechanisms Used by Plant Growth-Promoting Bacteria. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, D.K., Ed.; Springer: Berlin, Germany, 2014. [Google Scholar]
- Pięta, D.; Pastucha, A. Antagonistic bacteria and their post culture liquids in the protection of pea (Pisum sativum L.) from diseases. Acta Sci. Pol. Hortorum Cultus 2008, 7, 31–42. [Google Scholar]
- Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 2009, 27, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.; Hall, S. Endophyte Enhancement of Transplant Performance in Tomato, Cucumber and Sweet Pepper. Acta Hortic. 2004, 631, 253–263. [Google Scholar] [CrossRef]
- Aloni, B.; Karni, L.; Deventurero, G.; Cohen, R.; Katzir, N.; Edelstein, M.; Aktas, H. The Use of Plant Grafting and Plant Growth Regulators for Enhancing Abiotic Stress Tolerance in Vegetable Transplants. Acta Hortic. 2011, 898, 255–264. [Google Scholar] [CrossRef]
- Meça, E.; Sallaku, G.; Balliu, A. Artificial Inoculation of AM Fungi Improves Nutrient Uptake Efficiency in Salt Stressed Pea (Pissum Sativum L.) Plants. J. Agric. Stud. 2016, 4, 37. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Azcón, R. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 2000. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Lonhienne, T.G.A.; Yeoh, Y.K.; Donose, B.C.; Webb, R.I.; Parsons, J.; Liao, W.; Sagulenko, E.; Lakshmanan, P.; Hugenholtz, P.; et al. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Elliott, G.N.; Chou, J.H.; Chen, W.M.; Bloemberg, G.V.; Bontemps, C.; Martínez-Romero, E.; Velázquez, E.; Young, J.P.W.; Sprent, J.I.; James, E.K. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ. Microbiol. 2009, 11, 762–778. [Google Scholar] [CrossRef] [PubMed]
- Lardi, M.; de Campos, S.B.; Purtschert, G.; Eberl, L.; Pessi, G. Competition experiments for legume infection identify Burkholderia phymatum as a highly competitive β-rhizobium. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Veselaj, E.; Sallaku, G.; Balliu, A. Combined application of arbuscular mychorrhizae fungi and plant growth promoting bacteria improves growth and nutrient uptake efficiency of pea (Pisum sativum L.) plants. Acta Sci. Pol. Hortorum Cultus 2018, in press. [Google Scholar]
- Rewald, B.; Holzer, L.; Göransson, H. Arbuscular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt-stressed Ulmus glabra seedlings. Urban For. Urban Green. 2015, 14, 432–437. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Azcon, R.; Ruiz-Lozano, J.M. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 2016. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Jabborova, D.; Wirth, S. Alleviation of Salt Stress in Legumes by Co-inoculation with Pseudomonas and Rhizobium. In Plant Microbe Symbiosis: Fundamentals and Advances; Arora, N.K., Ed.; Springer: New Delhi, India, 2013; pp. 291–303. [Google Scholar]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Copetta, A.; Agostino, G.D.; Massa, N.; Avidano, L.; et al. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, F.; Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Influence of Salinity on the In Vitro Development of Glomus intraradices and on the In Vivo Physiological and Molecular Responses of Mycorrhizal Lettuce Plants. Microb. Ecol. 2008, 55, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Alenazi, M.M.; Egamberdieva, D.I.; Ahmad, P. Arbuscular mychorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopesicum L. Pak. J. Bot. 2015, 47, 327–340. [Google Scholar]
- Al-Karaki, G.N. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 2000, 10, 51–54. [Google Scholar] [CrossRef]
- Balliu, A.; Bani, A.; Sulçe, S. Nitrogen effects in the relative growth rate and its components of pepper (Capsicum annuum) and eggplant (Solanum melongena) seedlings. Acta Hortic. 2007, 747, 257–262. [Google Scholar] [CrossRef]
- Pollastri, S.; Savvides, A.; Pesando, M.; Lumini, E.; Volpe, M.G.; Ozudogru, E.A.; Faccio, A.; De Cunzo, F.; Michelozzi, M.; Lambardi, M.; et al. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 2018, 247, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, G.; Charest, C.; Dalpé, Y.; Khanizadeh, S. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agric. Food Sci. 2014, 23, 146–158. [Google Scholar] [CrossRef]
- Becerra, A.; Bartoloni, N.; Cofré, N.; Soteras, F.; Cabello, M. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Braz. J. Microbiol. 2014, 45, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, R.; Kim, C.G.; Subramanian, P.; Kim, K.Y.; Selvakumar, G.; Sa, T.M. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration. PLoS ONE 2015, 10, e0128784. [Google Scholar] [CrossRef] [PubMed]
- Havugimana, E.; Bhople, B.S.; Byiringiro, E.; Mugabo, J.P. Role of Dual Inoculation of Rhizobium and Arbuscular Mycorrhizal (AM) Fungi on Pulse Crops Production. Walailak J. Sci. Technol. 2016, 13, 1–7. [Google Scholar]
- Beltrano, J.; Ruscitti, M.; Arango, M.C.; Ronco, M. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr. 2013, 13, 123–141. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.S.; Carvalho, P.; Marques, G.; Ferreira, L.; Nunes, M.; Rocha, I.; Ma, Y.; Carvalho, M.F.; Vosátka, M.; Freitas, H. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J. Sci. Food Agric. 2017. [Google Scholar] [CrossRef] [PubMed]
- Himmelbauer, M.L.; Loiskandl, W.; Kastanek, F. Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant Soil 2004, 260, 111–120. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil J. 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
Variant | RL | RSA | RootV | |||
---|---|---|---|---|---|---|
0 | 50 | 0 | 50 | 0 | 50 | |
Ctr | 534.16 ± 65.85c | 653.81 ± 65.85c | 79.44 ± 10.56d | 102.16 ± 10.56d | 1.073 ± 0.15c | 1.273 ± 0.15c |
Rh.ir+ | 887.42 ± 65.85b | 686.37 ± 65.85b | 149.13 ± 10.56b | 112.05 ± 10.56c | 1.847 ± 0.15b | 1.464 ± 0.15b |
Cl.cl+ | 715.63 ± 65.85b | 590.05 ± 65.85c | 107.60 ± 10.56c | 88.21 ± 10.56d | 1.315 ± 0.15c | 1.051 ± 0.15c |
Rh.l+ | 1094.15 ± 65.85a | 830.85 ± 65.85b | 167.75 ± 10.56a | 139.21 ± 10.56b | 1.943 ± 0.15b | 1.869 ± 0.15ab |
Brh+ | 1200.28 ± 65.85a | 1025.02 ± 65.85a | 192.40 ± 10.56a | 152.95 ± 10.56b | 2.347 ± 0.15a | 1.799 ± 0.15b |
AMF + Rhl | 843.99 ± 65.85b | 732.89 ± 65.85b | 128.30 ± 10.56b | 119.90 ± 10.56c | 1.591 ± 0.15b | 1.503 ± 0.15b |
AMF + Brh | 929.84 ± 65.85ab | 659.00 ± 65.85b | 136.65 ± 10.56b | 109.42 ± 10.56c | 1.601 ± 0.15b | 1.448 ± 0.15b |
Significance | ||||||
Variant (V) | <0.001 | <0.001 | <0.001 | |||
Salinity (S) | <0.001 | <0.001 | 0.021 | |||
V × S | 0.074 | 0.07 | 0.266 |
Variant | DM-Root | DM-Shoot | DM-Plant | DM-Root/DM-Shoot | ||||
---|---|---|---|---|---|---|---|---|
0 | 50 | 0 | 50 | 0 | 50 | 0 | 50 | |
Ctr | 0.151 ± 0.13a | 0.037 ± 0.13e | 0.458 ± 0.04c | 0.427 ± 0.04c | 0.610 ± 0.05b | 0.464 ± 0.05c | 0.34 ± 0.04ab | 0.07 ± 0.04c |
Rh.ir+ | 0.175 ± 0.13a | 0.083 ± 0.13c | 0.505 ± 0.04b | 0.586 ± 0.04b | 0.680 ± 0.05b | 0.669 ± 0.05b | 0.38 ± 0.04a | 0.15 ± 0.04bc |
Cl.cl+ | 0.167 ± 0.13a | 0.043 ± 0.13d | 0.437 ± 0.04c | 0.447 ± 0.04c | 0.604 ± 0.05b | 0.490 ± 0.05c | 0.39 ± 0.04a | 0.23 ± 0.04b |
Rh.l+ | 0.134 ± 0.13b | 0.062 ± 0.13c | 0.486 ± 0.04c | 0.324 ± 0.04d | 0.620 ± 0.05b | 0.387 ± 0.05c | 0.28 ± 0.04b | 0.19 ± 0.04b |
Brh+ | 0.200 ± 0.13a | 0.033 ± 0.13d | 0.680 ± 0.04a | 0.537 ± 0.04b | 0.880 ± 0.05a | 0.571 ± 0.05b | 0.30 ± 0.04b | 0.06 ± 0.04c |
AMF + Rhl | 0.147 ± 0.13a | 0.134 ± 0.13b | 0.455 ± 0.04c | 0.414 ± 0.04c | 0.602 ± 0.05b | 0.575 ± 0.05b | 0.41 ± 0.04a | 0.25 ± 0.04b |
AMF + Brh | 0.123 ± 0.13b | 0.14 ± 0.13b | 0.485 ± 0.04c | 0.449 ± 0.04c | 0.608 ± 0.05b | 0.589 ± 0.05b | 0.35 ± 0.04ab | 0.30 ± 0.04b |
Significance | ||||||||
Variant (V) | 0.003 | <0.001 | <0.001 | <0.001 | ||||
Salinity (S) | <0.001 | 0.413 | 0.012 | <0.001 | ||||
V × S | <0.001 | <0.001 | <0.001 | 0.048 |
Variant | GN | AvgGW (g) | GW (g Plant−1) | |||
---|---|---|---|---|---|---|
0 | 50 | 0 | 50 | 0 | 50 | |
Ctr | 3.33 ± 0.34 | 2.83 ± 0.34b | 0.585 ± 0.43a | 0.274 ± 0.43bc | 1.95 ± 0.16b | 0.60 ± 0.16d |
Rh.ir+ | 3.66 ± 0.34 | 4.50 ± 0.34a | 0.524 ± 0.43a | 0.383 ± 0.43b | 1.84 ± 0.16b | 1.73 ± 0.16bc |
Cl.cl+ | 2.75 ± 0.34 | 2.75 ± 0.34b | 0.545 ± 0.43a | 0.26 ± 0.43bc | 1.46 ± 0.16c | 0.80 ± 0.16d |
Rh.l+ | 3.08 ± 0.34 | 3.50 ± 0.34b | 0.558 ± 0.43a | 0.189 ± 0.43c | 1.7 ± 0.16bc | 0.77 ± 0.16d |
Brh+ | 3.58 ± 0.34 | 4.25 ± 0.34a | 0.494 ± 0.43a | 0.377 ± 0.43c | 1.6 ± 0.16bc | 1.45 ± 0.16c |
AMF + Rhl | 4.08 ± 0.34 | 3.33 ± 0.34b | 0.651 ± 0.43a | 0.602 ± 0.43a | 2.38 ± 0.16a | 2.01 ± 0.16b |
AMF + Brh | 3.33 ± 0.34 | 2.58 ± 0.34b | 0.603 ± 0.43a | 0.557 ± 0.43a | 1.92 ± 0.16b | 1.64 ± 0.16c |
Significance | ||||||
Variant (V) | <0.001 | <0.001 | <0.001 | |||
Salinity (S) | 0.949 | <0.001 | <0.001 | |||
V × S | 0.092 | <0.001 | <0.001 |
RSA | RootV | DMRoot | DMShoot | DMPlant | Yield | ||
---|---|---|---|---|---|---|---|
RL | Corr.Coef. | 0.958 | 0.855 | 0.338 | 0.374 | 0.407 | 0.175 |
p Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | |
RSA | Corr.Coef. | 0.909 | 0.326 | 0.367 | 0.395 | 0.147 | |
p Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.056 | ||
RootV | Corr.Coef. | 0.289 | 0.311 | 0.336 | 0.134 | ||
p Value | 0.000 | 0.000 | 0.000 | 0.082 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselaj, E.; Sallaku, G.; Balliu, A. Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity. Agriculture 2018, 8, 117. https://doi.org/10.3390/agriculture8080117
Veselaj E, Sallaku G, Balliu A. Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity. Agriculture. 2018; 8(8):117. https://doi.org/10.3390/agriculture8080117
Chicago/Turabian StyleVeselaj, Eriola, Glenda Sallaku, and Astrit Balliu. 2018. "Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity" Agriculture 8, no. 8: 117. https://doi.org/10.3390/agriculture8080117
APA StyleVeselaj, E., Sallaku, G., & Balliu, A. (2018). Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity. Agriculture, 8(8), 117. https://doi.org/10.3390/agriculture8080117