Chemical Composition of the Cuticle Membrane of Pitaya Fruits (Hylocereus Polyrhizus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Standards
2.3. Isolation of Cuticular Membranes
2.4. Cuticular Wax Extraction
2.5. Cutin Depolymerization for Chemical Analysis
2.6. Chemical Analyses: Gas Chromatography and Mass Spectrometry
2.7. Statistical Analysis
3. Results and Discussion
3.1. Composition of Cutin of Pitaya Fruit
3.2. Composition of Cuticular Waxes of Pitaya Fruit
3.3. Chain Length Distribution of Aliphates and their Putative Significance for Barrier Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoa, T.T.; Clark, C.J.; Waddell, B.C.; Woolf, A.B. Postharvest quality of Dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biol. Technol. 2006, 41, 62–69. [Google Scholar] [CrossRef]
- Jamilah, B.; Shu, C.E.; Kharidah, M.; Dzulkily, M.A.; Noranizan, A. Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. Int. Food Res. J. 2011, 18, 279–285. [Google Scholar]
- Freitas, S.T.D.; Mitcham, E.J. Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci. Agric. 2013, 70, 257–262. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.; Zhu, H.; Li, T.; Zhu, X.; Gao, H.; Yun, Z.; Jiang, Y. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef]
- Riederer, M.; Schreiber, L. Protecting against water loss: Analysis of the barrier properties of plant cuticles. J. Exp. Bot. 2001, 52, 2023–2032. [Google Scholar] [CrossRef]
- Kishore, K. Phenological growth stages of dragon fruit (Hylocereus undatus) according to the extended BBCH-scale. Sci. Hortic. 2016, 213, 294–302. [Google Scholar] [CrossRef]
- Burnouf-Radosevich, M.; Delfel, N.E.; England, R. Gas chromatography-mass spectrometry of oleanane-and ursane-type triterpenes-application to Chenopodium quinoa triterpenes. Phytochemistry 1985, 24, 2063–2066. [Google Scholar] [CrossRef]
- Franke, R.; Briesen, I.; Wojciechowski, T.; Wojciechowski, T.; Faust, A.; Yephremov, A.; Nawrath, C.; Schreiber, L. Apoplastic polyesters in Arabidopsis surface tissues–a typical suberin and a particular cutin. Phytochemistry 2015, 66, 2643–2658. [Google Scholar]
- Holloway, P. The Chemical Constitution of Plant Cutins. In The Plant Cuticle; Cutler, D.F., Alvin, K.L., Price, C., Eds.; Academic Press: London, UK, 1982; pp. 45–85. [Google Scholar]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes. Biol. Plant Cuticle 2008, 23, 145–181. [Google Scholar]
- Peschel, S.; Franke, R.; Schreiber, L.; Knoche, M. Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 2007, 68, 1017–1025. [Google Scholar] [CrossRef]
- Leide, J.; Hildebrandt, U.; Reussing, K.; Riederer, M.; Vogg, G. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: Effects of a deficiency in a β-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol. 2007, 144, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Burghardt, M.; Schuster, A.-C.; Leide, J.; Lara, I.; Riederer, M. Chemical composition and water permeability of fruit and leaf cuticles of Olea europaea L. J. Agric. Food Chem. 2017, 65, 8790–8797. [Google Scholar] [CrossRef] [PubMed]
- Leide, J.; de Souza, A.X.; Papp, I.; Riederer, M. Specific characteristics of the apple fruit cuticle: Investigation of early and late season cultivars ‘Prima’ and ‘Florina’ (Malus domestica Borkh.). Sci. Hortic. 2018, 229, 137–147. [Google Scholar] [CrossRef]
- Holloway, P.J.; Deas, A.H.B. Epoxyoctadecanoic acids in plant cutins and suberins. Phytochemistry 1973, 12, 1721–1735. [Google Scholar] [CrossRef]
- Schuster, A.-C.; Burghardt, M.; Alfarhan, A.; Bueno, A.; Hedrich, R.; Leide, J.; Thomas, J.; Riederer, M. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 2016, 8, pii: plw027. [Google Scholar] [CrossRef]
- Fich, E.A.; Segerson, N.A.; Rose, J.K. The plant polyester cutin: Biosynthesis, structure, and biological roles. Annu. Rev. Plant Biol. 2016, 67, 207–233. [Google Scholar] [CrossRef]
- Riederer, M. Waxes: The transport barriers of plant cuticles. In Waxes: Chemistry, Molecular Biology and Functions; Hamilton, R.J., Ed.; The Oily Press: Dundee, Scotland, 1995; pp. 130–156. [Google Scholar]
- Schönherr, J. Water permeability of isolated cuticular membranes: The effect of cuticular waxes on diffusion of water. Planta 1976, 131, 159–164. [Google Scholar] [CrossRef]
- Schreiber, L.; Schonherr, J. Water and Solute Permeability of Plant Cuticles; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jetter, R.; Riederer, M. Localization of the transpiration barrier in the epi-and intracuticular waxes of eight plant species: Water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiol. 2015, 170, 921–934. [Google Scholar] [CrossRef]
- Khanal, B.P.; Grimm, E.; Finger, S.; Blume, A.; Knoche, M. Intracuticular wax fixes and restricts strain in leaf and fruit cuticles. New Phytol. 2013, 200, 134–143. [Google Scholar] [CrossRef]
- Tsubaki, S.; Sugimura, K.; Teramoto, Y.; Yonemori, K.; Azuma, J. Cuticular Membrane of Fuyu Persimmon Fruit is Strengthened by Triterpenoid Nano-Fillers. PLoS ONE 2013, 8, e75275. [Google Scholar] [CrossRef]
- Cheng, G.; Huang, H.; Zhou, L.; He, S.; Zhang, Y.; Cheng, X.A. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Plant Physiol. Biochem. 2019, 135, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Huang, H. Comparative Investigation of the Chemical Composition and the Water Permeability of Fruit and Leaf Cuticles. Ph.D. Thesis, University of Würzburg, Würzburg, Germany, 2017. [Google Scholar]
- Chu, W.; Gao, H.; Cao, S.; Fang, X.; Chen, H.; Xiao, S. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chem. 2017, 219, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Jenks, M.A.; Tuttle, H.A.; Eigenbrode, S.D.; Feldmann, K.A. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol. 1995, 108, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Riederer, M.; Schneider, G. The effect of the environment on the permeability and composition of Citrus leaf cuticles. Planta 1990, 180, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Poynter, D. Judging the duration of time intervals: A process of remembering segments of experience. Adv. Psychol. 1989, 59, 305–331. [Google Scholar]
- Buschhaus, C.; Hager, D.; Jetter, R. Wax layers on Cosmos bipinnatus petals contribute unequally to total petal water resistance. Plant Physiol. 2015, 167, 80–88. [Google Scholar] [CrossRef] [Green Version]
Waxes (µg cm−2) | Cutin Monomers (µg cm−2) | Ratios | ACL | ||||
---|---|---|---|---|---|---|---|
Total wax | 30.3 ± 1.47 | Total cutin | 50.84 ± 7.4 | Aliphatics/cyclics | 0.7 ± 0.11 | Aliphates | 30.45 ± 0.76 |
Aliphates (≥C20) | 9.93 ± 0.99 | C16 monomers | 24.15 ± 5.33 | C16/C18 | 1.71 ± 0.48 | ||
Cyclics | 14.38 ± 1.38 | C18 monomers | 14.92 ± 4.84 | Total wax/cutin | 0.57 ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Jiang, Y. Chemical Composition of the Cuticle Membrane of Pitaya Fruits (Hylocereus Polyrhizus). Agriculture 2019, 9, 250. https://doi.org/10.3390/agriculture9120250
Huang H, Jiang Y. Chemical Composition of the Cuticle Membrane of Pitaya Fruits (Hylocereus Polyrhizus). Agriculture. 2019; 9(12):250. https://doi.org/10.3390/agriculture9120250
Chicago/Turabian StyleHuang, Hua, and Yueming Jiang. 2019. "Chemical Composition of the Cuticle Membrane of Pitaya Fruits (Hylocereus Polyrhizus)" Agriculture 9, no. 12: 250. https://doi.org/10.3390/agriculture9120250
APA StyleHuang, H., & Jiang, Y. (2019). Chemical Composition of the Cuticle Membrane of Pitaya Fruits (Hylocereus Polyrhizus). Agriculture, 9(12), 250. https://doi.org/10.3390/agriculture9120250