Experimental Nets for a Protection System against the Vectors of Xylella fastidiosa Wells et al.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Behavioral Bioassays
2.2. Semi-Field Behavioral Tests
2.3. Radiometric Tests
2.4. Field Demonstration Trial
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bucci, U.; Zambelli, M. L’Olivicoltura Pugliese. Criticità e Sviluppo. Available online: http://www.confagricolturapuglia.it/area-download/category/3-documenti?download=126:l-olivicoltura-pugliese-criticita-e-sviluppo (accessed on 22 January 2019).
- ISTAT. Atlante dell’Agricoltura Italiana. 2013. Available online: http://www.istat.it/it/files/2014/03/Atlante-dellagricoltura-italiana.-6%C2%B0-Censimento-generale-dellagricoltura.pdf (accessed on 22 January 2019).
- Sardaro, R.; Fucilli, V.; Acciani, C. La stima del valore del paesaggio rurale quale strumento a supporto delle politiche di conservazione. Ital. J. Reg. Sci. 2015, 2, 125–138. [Google Scholar] [CrossRef]
- Nigro, F.; Boscia, D.; Antelmi, I.; Ippolito, A. Fungal species associated with a severe decline of olive in Southern Italy. J. Plant Pathol. 2014, 95, 668. [Google Scholar]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; De Stradis, A.; Boscia, D.; Bosco, D.; Martelli, G. P.; Krugner, R.; Porcelli, F. Infectivity and Transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.M.; Raju, B.C.; Hung, H.Y.; Weisburg, W.G.; Mandeico-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. Nov., sp. Nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- European Food Safety Authority. Statement of EFSA on host plants, entry and spread pathways and risk reduction options for Xylella fastidiosa Wells et al. EFSA J. 2013, 11, 3468. [Google Scholar] [CrossRef]
- Cornara, D.; Saponari, M.; Zeilinger, A.R.; de Stradis, A.; Boscia, D.; Loconsole, G.; Bosco, D.; Martelli, G.P.; Almeida, R.P.P.; Porcelli, F. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest Sci. 2017, 90, 521–530. [Google Scholar] [CrossRef]
- Luvisi, A.; Nicolì, F.; De Bellis, L. Sustainable management of plant quarantine pests: the case of olive quick decline syndrome. Sustainability 2017, 9, 659. [Google Scholar] [CrossRef]
- European Food Safety Authority. Commission Database of Host Plants Found to Be Susceptible to Xylella fastidiosa in the Union Territory-Update 9-2017. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/ph_biosec_legis_emergency_db-host-plants_update09.pdf (accessed on 22 January 2019).
- Baù, A.; Delbianco, A.; Stancanelli, G.; Tramontini, S. Susceptibility of Olea europaea L. varieties to Xylella fastidiosa subsp. pauca ST53: systematic literature search up to 24 March 2017. EFSA J. 2017, 15, 4772. [Google Scholar] [CrossRef]
- Möller, M.; Tanny, J.; Yan, L.; Cohen, S. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agric. For. Meteorol. 2004, 127, 35–51. [Google Scholar] [CrossRef]
- Castellano, S.; Scarascia-Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Yang, G.; Guo, Z.; Ji, H.; Sheng, J.; Chen, L.; Zhao, Y. Application of insect-proof nets in pesticide-free rice creates an altered microclimate and differential agronomic performance. PeerJ 2018, 6, e6135. [Google Scholar] [CrossRef] [PubMed]
- Berlinger, M. J.; Taylor, R.A.; Lebiush Mordechi, S.; Shalhevet, S.; Spharim, I. Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. Bull. Entomol. Res. 2002, 92, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Fatnassi, H.; Boulard, T.; Bouirden, L. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agric. For. Meteorol. 2003, 118, 97–111. [Google Scholar] [CrossRef]
- Rigakis, N.; Katsoulas, N.; Teitel, M.; Bartzanas, T.; Kittas, C. A simple model for ventilation rate determination in screenhouses. Energ. Build. 2015, 87, 293–301. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E. A. Effects of shading and insect-proof screens on crop microclimate and production: a review of recent advances. Sci. Hortic. 2018, 41, 241–251. [Google Scholar] [CrossRef]
- Gogo, E.O.; Saidi, M.; Itulya, F.M.; Martin, T.; Baird, V.; Ngouajio, M. Microclimate modification and insect pest exclusion using agronets improves pod yield and quality of French beans. HortScience 2014, 49, 1–7. [Google Scholar] [CrossRef]
- Martin, T.; Assogba-Komlan, F.; Houndete, T.; Hougard, J.M.; Chandre, F. Efficacy of mosquito netting for sustainable small holders’ cabbage production. Africa. J. Econ. Entomol. 2006, 99, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T. The horizontal and vertical distribution of flying insects near artificial windbreaks. Ann. Appl. Biol. 1967, 60, 23–31. [Google Scholar] [CrossRef]
- Tremblay, E. Entomologia Applicate, 3rd ed.; Liguori Editore: Napoli, Italy, 1995; Volume 2, p. 408. ISBN 8820710250. [Google Scholar]
- Janse, J.D.; Obradovic, A. Xylella fastidiosa: its biology, diagnosis, control and risks. J. Plant Pathol. 2010, 92, 35–48. [Google Scholar]
- Germain, J.F. Fact Sheet Philaenus spumarius. ANSES-LSV Unité D’Entomologie et Plantes Invasives. Available online: https://www.ponteproject.eu/wp-content/uploads/2017/01/Philaenus-spumarius (accessed on 22 January 2019).
- Castellano, S.; Hemming, S.; Russo, G.; Mohammadkhani, V.; Swinkel, G.L.A.M.; Scarascia-Mugnozza, G. Radiometric properties of agricultural permeable coverings. J. Agric. Eng. 2010, 41, 1–12. [Google Scholar] [CrossRef]
- Hemming, S.; Swinkel, G.L.A.M.; Castellano, S.; Russo, G.; Scarascia-Mugnozza, G. Numerical model to estimate the radiometric performance of net covered structures. In Proceedings of the AgEng Congress, Hersonissos, Greece, 23–25 June 2008. [Google Scholar]
- Castellano, S.; Starace, G.; De Pascalis, L.; Lippolis, M.; Scarascia Mugnozza, G. Test results and empirical correlations to account for air permeability of agricultural nets. Biosyst. Eng. 2016, 150, 131–141. [Google Scholar] [CrossRef]
- Tridan, S.; Valič·, N.; Žežlina, I.; Bergant, K.; Žnidarčič, D. Light blue sticky boards for mass trapping of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in onion crops: Factor fantasy? J. Plant. Dis. Protect. 2005, 112, 173–180. [Google Scholar]
- Weaver, C.R.; King, D.R. Meadow spittlebug, Philaenus leucophthalmus (L.). Ohio Agric. Exp. Stat. Bull. 1954, 741, 1–99. [Google Scholar]
- Castellano, S.; Candura, A.; Scarascia Mugnozza, G. Relationship between solidity ratio, colour and shading effect of agricultural nets. Acta Hortic. 2008, 801, 253–258. [Google Scholar] [CrossRef]
Tested Net | d (mm) | Porosity (%) | Warp Diameter (mm) | Weft Diameter (mm) |
---|---|---|---|---|
F-d1 | 1.2 | 58.11 | 0.28 | 0.28 |
F-d2 | 1.8 | 64.62 | 0.28 | 0.28 |
F-d3 | 2.4 | 71.60 | 0.28 | 0.28 |
KS-d1 | 1.2 | 6.27 | 0.26 | Strips (90 μm thickness) |
KS-d2 | 1.8 | 18.00 | 0.26 | Strips (60 μm thickness) |
KW-d3 | 2.4 | 42.96 | 0.23 | 0.23 |
Tested Net | τ-Tot | τ-Dir | τ-Dif | Haze | τ-LWIR |
---|---|---|---|---|---|
F-d1 | 0.967 ± 0.010 | 0.585 ± 0.006 | 0.383 ± 0.004 | 0.396 ± 0.005 | 0.553 ± 0.011 |
F-d2 | 0.975 ± 0.013 | 0.650 ± 0.010 | 0.325 ± 0.004 | 0.333 ± 0.010 | 0.617 ± 0.011 |
F-d3 | 0.979 ± 0.012 | 0.703 ± 0.009 | 0.276 ± 0.005 | 0.282 ± 0.012 | 0.690 ± 0.013 |
KS-d1 | 0.511 ± 0.021 | 0.047 ± 0.003 | 0.464 ± 0.019 | 0.908 ± 0.016 | 0.348 ± 0.008 |
KS-d2 | 0.545 ± 0.023 | 0.229 ± 0.010 | 0.316 ± 0.012 | 0.579 ± 0.011 | 0.398 ± 0.016 |
KW-d3 | 0.948 ± 0.016 | 0.531 ± 0.009 | 0.417 ± 0.007 | 0.440 ± 0.009 | 0.488 ± 0.012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellano, S.; Di Palma, A.; Germinara, G.S.; Lippolis, M.; Starace, G.; Scarascia-Mugnozza, G. Experimental Nets for a Protection System against the Vectors of Xylella fastidiosa Wells et al. Agriculture 2019, 9, 32. https://doi.org/10.3390/agriculture9020032
Castellano S, Di Palma A, Germinara GS, Lippolis M, Starace G, Scarascia-Mugnozza G. Experimental Nets for a Protection System against the Vectors of Xylella fastidiosa Wells et al. Agriculture. 2019; 9(2):32. https://doi.org/10.3390/agriculture9020032
Chicago/Turabian StyleCastellano, Sergio, Antonella Di Palma, Giacinto S. Germinara, Marco Lippolis, Giuseppe Starace, and Giacomo Scarascia-Mugnozza. 2019. "Experimental Nets for a Protection System against the Vectors of Xylella fastidiosa Wells et al." Agriculture 9, no. 2: 32. https://doi.org/10.3390/agriculture9020032
APA StyleCastellano, S., Di Palma, A., Germinara, G. S., Lippolis, M., Starace, G., & Scarascia-Mugnozza, G. (2019). Experimental Nets for a Protection System against the Vectors of Xylella fastidiosa Wells et al. Agriculture, 9(2), 32. https://doi.org/10.3390/agriculture9020032