Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Methodology
2.2.1. Simpson’s Diversity Index
2.2.2. Shannon–Weiner Diversity Index
2.2.3. Hill N1 Diversity Index
2.2.4. Hill N2 Diversity Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pugnaire, F.I.; Armas, C.; Maestre, F.T. Positive plant interactions in the Iberian southeast: Mechanisms, environmental gradients, and ecosystem function. J. Arid Environ. 2011, 75, 1310–1320. [Google Scholar] [CrossRef]
- Lindo, Z.; Winchester, N.N. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 2009, 160, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Erfanzadeh, R.; Bahrami, B.; Motamedi, J.; Petillon, J. Changes in soil organic matter driven by shifts in co-dominant plant species in a grassland. Geoderma 2014, 213, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Bruun, T.B.; Elberling, B.; de Neergaard, A.; Magid, J. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degrad. Dev. 2015, 26, 272–283. [Google Scholar] [CrossRef]
- de Oliveira, S.P.; de Lacerda, N.B.; Blum, S.C.; Escobar, M.E.O.; de Oliveira, T.S. Organic carbon and nitrogen stocks in soils of Northeastern Brazil converted to irrigated agriculture. Land Degrad. Dev. 2015, 26, 9–21. [Google Scholar] [CrossRef]
- Wang, Z.R.; Yang, G.J.; Chen, S.Y.; Wu, Z.; Guan, J.Y.; Zhao, C.C.; Zhao, Q.D.; Ye, B.S. Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau. Ecol. Res. 2012, 27, 667–675. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhang, D. Quantitative classification and analysis on plant communities in the middle reaches of the Tarim River. J. Geogr. Sci. 2003, 13, 225–232. [Google Scholar]
- Enright, N.J.; Miller, B.P.; Akhter, R. Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh, Pakistan. J. Arid Environ. 2005, 61, 397–418. [Google Scholar] [CrossRef]
- Pabst, R.J.; Spies, T.A. Distribution of herb and shrubs in relation to landform and canopy cover in riparian forests of coastal Oregon. Can. J. Bot. 1998, 76, 298–315. [Google Scholar]
- Lavergne, S.; Thuiller, W.; Molin, J.; Debussch, M. Environmental and human factors influencing rare plant local occurrence, extinction and persistence: A 115-year study in the Mediterranean region. J. Biogeogr. 2005, 32, 799–811. [Google Scholar] [CrossRef]
- Guo, Z.G.; Long, R.J.; Niu, F.J.; Wu, Q.B.; Hu, Y.K. Effect of highway construction on plant diversity of grassland communities in the permafrost regions of the Qinghai–Tibet plateau. Rangel. J. 2007, 29, 161–167. [Google Scholar] [CrossRef]
- Suzart, D.; Albuquerque, F.; Castro-Díez, P.Á.; Rodríguez, M.; Cayuela, L. Assessing the influence of environmental and human factors on native and exotic species richness. Acta Oecol. 2011, 37, 51–57. [Google Scholar]
- Zhang, J.T. Effects of grazing intensity, soil variables, and topography on vegetation diversity in the subalpine meadows of the Zhongtiao Mountains, China. Rangel. J. 2009, 31, 353–360. [Google Scholar] [CrossRef]
- El-Khouly, A.A.L. Effect of Human Activities on Vegetation Diversity in Siwa Oasis. In Proceedings of the International Conference on Water Resources & Arid Environment, Riyadh, Saudi Arabia, 5–8 December 2004; Organizers: King Saud University: Riyadh, Saudi Arabia, 2004. [Google Scholar]
- Pueyo, Y.; Alados, C.L.; Ferrer-Benimeli, C. Is the analysis of plant community structure better than common species-diversity indices for assessing the effects of livestock grazing on a Mediterranean arid ecosystem? J. Arid Environ. 2006, 64, 698–712. [Google Scholar] [CrossRef]
- Mligo, C. Effect of Grazing pressure on plant species Composition and diversity in the semi-arid rangelands of Mbulu district, Tanzania. Agric. J. 2006, 1, 277–283. [Google Scholar]
- Lieskovský, J.; Kenderessy, P. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: A case study in vráble (Slovakia) using WATEM/SEDEM. Land Degrad. Dev. 2014, 25, 288–296. [Google Scholar] [CrossRef]
- Fernández-Romero, M.L.; Lozano-García, B.; Parras-Alcántara, L. Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agric. Ecosyst. Environ. 2014, 195, 1–9. [Google Scholar] [CrossRef]
- Liu, M.Y.; Chang, Q.R.; Qi, Y.B.; Liu, J.; Chen, T. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena 2014, 115, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Mohawesh, Y.; Taimeh, A.; Ziadat, F. Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean. Solid Earth 2015, 6, 857–868. [Google Scholar] [CrossRef]
- Soule, J.D.; Piper, J.K. Farming in Nature’s Image: An Ecological Approach to Agriculture; Island Press: Washington, DC, USA, 1992. [Google Scholar]
- Weil, R.R. Soil properties and Native Plant Communities in a Kansas Prairie. Thesis Carol Sue Gordon, Master of Science, University of Maryland, College Park, MD, USA, 2004; 106p. [Google Scholar]
- Gholinejad, B.; Farajollahi, A.; Pouzesh, H. Environmental factors affecting on distribution of plant communities in semiarid area (Case study: Kamyaran rangelands, Iran). Ann. Biol. Res. 2012, 3, 3990–3993. [Google Scholar]
- Zare Chahouki, M.A.; Azarnivand, H.; Jafari, M.; Shafizadeh, M. Effects of soil characteristics on distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). J. Environ. Res. Dev. 2008, 2, 840–848. [Google Scholar]
- Munhoz, C.B.R.; Felfili, J.M.; Rodrigues, C. Species-environment relationship in the herb-subshrub layer of a moist savanna site, Federal District, Brazil. Braz. J. Biol. 2008, 68, 25–35. [Google Scholar] [CrossRef]
- Timsina, B.; Shrestha, B.B.; Rokaya, M.B.; Münzbergová, Z. Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora–Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 233–240. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.A.S.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Dunn, J.B.; Mueller, S.; Kwon, H.Y.; Wang, M.Q. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnol. Biofuels 2013, 6, 51. [Google Scholar] [CrossRef]
- Gerber, S.; Hedin, L.O.; Keel, S.G.; Pacala, S.W.; Shevliakova, E. Land use change and nitrogen feedbacks constrain the trajectory of the land carbon sink. Geophys. Res. Lett. 2013, 40, 5218–5222. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere fromchanges in land use and land management 1850–2000. Tellus 2003, B55, 378–390. [Google Scholar]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bio climate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Tilman, D.; Groth, J.V. Effects of plant species diversity, abundance and composition on foliar fungal diseases. J. Ecol. 2002, 83, 1713–1726. [Google Scholar] [CrossRef]
- Stoddard, L.A.; Smith, S.D.; Box, T.W. Range-condition Analysis. In Range Management; McGraw-Hill Book Co.: New York, NY, USA, 1975. [Google Scholar]
- IWMI (International Water Management Institute). Strategic analyses of the national river linking project (NRLP) of India series 5. In Proceedings of the Second National Workshop on Strategic Issues in Indian Irrigation, New Delhi, India, 8–9 April 2009. [Google Scholar]
- Gharechelou, S.; Tateishi, R.; Sharma, R.C.; Johnson, B.A. Soil Moisture Mapping in an Arid Area Using a Land Unit Area (LUA) Sampling Approach and Geostatistical Interpolation Techniques. Int. J. Geo-Inf. 2016, 5, 35. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations, and Communities, 3rd ed.; Blackwell Science Ltd.: Cambridge, MA, USA, 1996. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science Publishing: Hoboken, NJ, USA, 2004. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMERE: Plymouth, UK, 2001. [Google Scholar]
- Greenstreet, S.; Robinson, L.; Reiss, H.; Craeymeersch, J.; Callaway, R.; Goffin, A.; Jorgensen, L.; Robertson, M.; Kröncke, I.; DeBoois, I.; et al. Species Composition, Diversity, Biomass and Production of the Benthic Invertebrate Community of the North Sea; Fisheries Research Services Collaborative Report No. 10/07; Fisheries Research Services: Aberdeen, UK, 2007. [Google Scholar]
- Neher, D.A.; Darby, B.J. Nematodes as Environmental Bio Indicators. Chapter 4: General Community Indices That Can Be Used for Analysis of Nematode Assemblages; CABI publishing: Oxon, UK, 2009; pp. 107–123. [Google Scholar]
- Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using SPSS, 2nd ed.; SAGE Publications: London, UK, 2005. [Google Scholar]
- Zare, S.; Jafari, M.; Tavili, A.; Abbasi, H.; Rostampour, M. Relationship between environmental factors and plant distribution in arid and semiarid area (case study: Shahriyar rangelands, Iran). Am. Eurasian J. Agric. Environ. Sci. 2011, 10, 97–105. [Google Scholar]
- Jafari, M. Reclamation of Arid Lands, 1st ed.; University of Tehran Press: Tehran, Iran, 2006. [Google Scholar]
- Naveh, A.; Whittaker, R.H. Structural and floristic diversity of shrub lands and woodlands in northern Israel and other Mediterranean areas. Plant Ecol. 1979, 41, 171–190. [Google Scholar] [CrossRef]
- Hersak, V. Vegetation succession and soil gradients on Inland sand dunes. J. Ekol. (Bratisl.) 2004, 23, 24–39. [Google Scholar]
- Zhao, W.Y. Changes in vegetation diversity and structure in response to heavy grazing pressure in the northern Tianshan Mountains. J. Arid Environ. 2007, 6, 465–479. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffman, T. A fence line in time demonstrates grazing induced vegetation shifts and dynamics in the semiarid Succulent Karoo. Ecol. Appl. 2009, 19, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Pimm, S.L.; Russell, G.; Gittleman, J.L.; Brooks, T.M. The future of biodiversity. Nature 1995, 269, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- De Bello, F.; Jan, L.; Maria-Teresa, S. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 2006, 29, 801–810. [Google Scholar] [CrossRef]
- Bornman, T.G.; Adams, J.B.; Bate, G.C. Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary. S. Afr. J. Bot. 2008, 74, 685–695. [Google Scholar] [CrossRef]
- Woldewahid, G.; Werf, W.; Vander-Sykora, K.V.; Abate, T.; Mostafa, B.; Huis, A.V. Description of plant communities on the red sea coastal plain of Suden. J. Arid Environ. 2007, 68, 113–131. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution of species diversity in land communities. Evol. Biol. 1977, 10, 1–67. [Google Scholar]
- Rutherford, M.C.; Powrie, L.W. Severely degraded rangeland: Implications for plant diversity from a case study in Succulent Karoo, South Africa. J. Arid Environ. 2009, 74, 692–701. [Google Scholar] [CrossRef]
- Peet, R.K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Panitsa, M.; Trigas, P.; Iatrou, G.; Sfenthourakis, S. Factors affecting plant species richness and endemism on land-bridge islands—An example from the East Aegean archipelago. Acta Oecol. 2010, 36, 431–437. [Google Scholar] [CrossRef]
Rangeland Condition | Repetition | Slope (%) | Slope Direction |
---|---|---|---|
Good condition rangeland * | 1 | 8 | Southern |
2 | 9 | Southern | |
3 | 7 | Southern | |
4 | 8 | Southern | |
Degraded rangeland | 1 | 14 | Southern |
2 | 8 | Southern | |
3 | 12 | Southern | |
4 | 9 | Southern | |
Abandoned rain-fed lands | 1 | 12 | Southern |
2 | 9 | Southern | |
3 | 10 | Southern | |
4 | 14 | southern |
Soil Properties | Rangeland Condition | Min | Max | Mean | Std. Deviation |
---|---|---|---|---|---|
Gravel content (%) | Good condition rangeland | 39 | 49 | 43 | 18 |
Degraded rangeland | 39 | 51 | 45 | 9 | |
Abandoned rain-fed lands | 40 | 52 | 45 | 13 | |
pH | Good condition rangeland | 17.7 | 22.2 | 20.3 | 0.26 |
Degraded rangeland | 17.7 | 23.3 | 20.4 | 0.12 | |
Abandoned rain-fed lands | 15.3 | 24.6 | 20.0 | 0.05 | |
Electrical Conductivity (EC) dS/m | Good condition rangeland | 32.5 | 38.1 | 36.2 | 0.10 |
Degraded rangeland | 29.8 | 37.5 | 34.0 | 0.11 | |
Abandoned rain-fed lands | 32.7 | 35.9 | 34.4 | 0.11 | |
SP (saturation percentage) (%) | Good condition rangeland | 16 | 27 | 20 | 2 |
Degraded rangeland | 14 | 21 | 17 | 1 | |
Abandoned rain-fed lands | 13 | 14 | 14 | 3 | |
Organic matter content (%) * | Good condition rangeland | 1.4b | 1.5 | 1.4 | 0.03 |
Degraded rangeland | 1.0a | 1.0 | 1.0 | 0.03 | |
Abandoned rain-fed lands | 1.2c | 1.4 | 1.3 | 0.12 | |
Lime content | Good condition rangeland | 34.7 | 40.3 | 37.8 | 5.26 |
Degraded rangeland | 33.7 | 37.4 | 35.3 | 2.76 | |
Abandoned rain-fed lands | 33.2 | 41.5 | 37.2 | 0.55 | |
Clay (%) | Good condition rangeland | 0.5 | 0.7 | 0.6 | 2.5 |
Degraded rangeland | 0.5 | 0.8 | 0.7 | 3.2 | |
Abandoned rain-fed lands | 0.5 | 0.7 | 0.6 | 1.4 | |
Silt (%) | Good condition rangeland | 7.51 | 8.1 | 7.8 | 2.2 |
Degraded rangeland | 7.7 | 8.0 | 7.9 | 2.5 | |
Abandoned rain-fed lands | 7.6 | 7.8 | 7.7 | 4.9 | |
Sand (%) | Good condition rangeland | 20.1 | 60.4 | 33.4 | 4.5 |
Degraded rangeland | 21.4 | 42.0 | 33.8 | 5.2 | |
Abandoned rain-fed lands | 13.2 | 42.3 | 23.7 | 6.3 | |
Soil texture | Good condition rangeland | CL/SCL | |||
Degraded rangeland | CL/SCL | ||||
Abandoned rain-fed lands | CL/SCL |
Studied Areas | Distance from Road (m) | Distance to Villages (m) | Distance from Watering Place (m) |
---|---|---|---|
Good condition rangeland | 100 | 2116 | 2090 |
Degraded rangeland | 170 | 478 | 476 |
Abandoned rain-fed land | 112 | 424 | 423 |
(A) | ||||||||
Number | Species | Family | Palatability Class | Life Form | Life Time | Relative Frequency (%) | ||
Good Condition Rangelands | Poor Condition Rangelands | Abandoned Rain-fed | ||||||
1 | Bromus tomentellus | Gramineae | I | Grasses | perennial | 25.6 | 0.1 | 0.4 |
2 | Bromus danthoniae | Gramineae | II | Grasses | annual | 8 | 5.7 | 11.6 |
3 | Taeniatherum crinitum | Gramineae | III | Grasses | annual | 5.4 | 11.8 | 0.2 |
4 | Bromus tecturum | Gramineae | II | Grasses | annual | 5.7 | 10.4 | 1.4 |
5 | Eremo songarica | Gramineae | I | Grasses | annual | 8.2 | 4.3 | 12 |
6 | Boissera squarrosa | Gramineae | III | Grasses | annual | 2.8 | 4 | 19.5 |
7 | Poa bulbosa | Gramineae | II | Grasses | perennial | 4.2 | 2.6 | 1.1 |
8 | Eremopoa songarica | Gramineae | II | Grasses | annual | 1.3 | 0 | 0 |
9 | Agropyron trichophorum | Gramineae | II | Grasses | perennial | 0.4 | 0 | 0.4 |
10 | Phalaris arundinaceae | Gramineae | I | Grasses | perennial | 0 | 0.3 | 0 |
11 | Stipa barbata | Gramineae | II | Grasses | perennial | 0.1 | 0 | 0 |
12 | Agropyron intermedium | Gramineae | I | Grasses | perennial | 0 | 0.5 | 0 |
13 | Festuca ovina | Gramineae | I | Grasses | perennial | <0.1 | 0 | 0 |
(B) | ||||||||
Number | Species | Family | Palatability Class | Life Form | Life Time | Relative Frequency (%) | ||
Good Condition Rangelands | Poor Condition Rangelands | Abandoned Rain-fed | ||||||
1 | Astragalus verus | Papilionaceae | III | Shrub | perennial | 12 | 48.4 | 0.9 |
2 | Scariola orientalis | Compositae | III | Shrub | perennial | 1.7 | 1 | 3.4 |
3 | Acanthophyllum heterophyllum | Caryophyllaceae | III | Shrub | perennial | 1.3 | 0.6 | 0 |
4 | Astragalus microcephalus | Papilionaceae | III | Shrub | perennial | 0 | 4.1 | 0 |
5 | Noaea mucronata | Chenopodiaceae | II | Shrub | perennial | 0 | 1.6 | 0 |
6 | Acanthophyllum microcephalum | Caryophyllaceae | III | Shrub | perennial | 0 | 1.2 | 0.1 |
(C) | ||||||||
Number | Species | Family | Palatability Class | Life Form | Life Time | Relative Frequency (%) | ||
Good Condition Rangelands | Poor Condition Rangelands | Abandoned Rain-fed | ||||||
1 | Cousinia bachtiarica | Compositae | III | forbs | perennial | 4.8 | 0 | 0 |
2 | Phlomis persica | Labiatae | III | forbs | perennial | 4.2 | 0 | 0 |
3 | Eryngium billardieri | Umbelliferae | III | forbs | perennial | 3.3 | 2. 4 | 44 |
4 | Ferula ovina | Umbelliferae | I | forbs | perennial | 0 | 0.3 | 0 |
5 | Alyssum inflatum | Cruciferae | III | forbs | annual | 3.6 | 0.4 | 2.5 |
6 | Minuartia meyeri | Caryophyllaceae | III | forbs | annual | 3.5 | 13 | 0 |
7 | Phlomis olivieri | Labiatae | III | forbs | perennial | 4.4 | 0.3 | 0 |
8 | Arabis nova | Cruciferae | II | forbs | annual | 2 | 0.4 | 0 |
9 | Phlomis anisodonta | Labiatae | III | forbs | perennial | 1.4 | 0 | 0 |
10 | Ziziphora capitata | Labiatae | II | forbs | annual | 1.2 | 0 | 0 |
11 | Gypsophila virgata | Caryophyllaceae | III | forbs | perennial | 1 | 0 | 0 |
12 | Euphorbia descipiens | Euphorbiaceae | III | forbs | perennial | 0.7 | 1.4 | 0.1 |
13 | Rochelia disperma | Boraginaceae | III | forbs | annual | 0.8 | 1.7 | 0 |
14 | Centaurea luristanica | Compositae | III | forbs | perennial | 1 | 0 | 0.5 |
15 | Crepis sancta | Compositae | III | forbs | annual | 0.8 | 0 | 0 |
16 | Ziziphora tenuior | Labiatae | II | forbs | annual | 0.7 | 0 | 0 |
17 | Cardaria draba | Cruciferae | III | forbs | annual | 0.4 | 0 | 0 |
18 | Echinops robustus | Compositae | III | forbs | perennial | 0.4 | 0 | 0 |
19 | Galium verum | Rubiaceae | III | forbs | perennial | 0.3 | 0 | 0 |
20 | Silene arbuscula Fenzl ex Boiss | Caryophyllaceae | II | forbs | perennial | 0.2 | 0 | 0 |
21 | Taraxacum officinale | Compositae | I | forbs | perennial | 0.2 | 0 | 0 |
22 | Cirsium bracteosum | Compositae | III | forbs | perennial | 0 | 6.1 | 3.1 |
23 | Ceratocephalus falcatus | Compositae | II | forbs | annual | 0 | 1.1 | 0 |
24 | Malcolmia taraxacifolia | Cruciferae | II | forbs | annual | 0 | 0.9 | 0 |
25 | Medicago sativa | Papilionaceae | I | forbs | annual | 0 | 0.3 | 0 |
26 | Senecio glaucus | Compositae | III | forbs | annual | 0 | 0.2 | 0.8 |
27 | Bonium cylindricum | Umbelliferae | I | forbs | annual | 0 | 0.3 | 0 |
28 | Achillea vermicularis | Compositae | III | forbs | perennial | 0 | 0 | 3.8 |
29 | Veronica orientalis | Scrophulariaceae | III | forbs | perennial | 0 | 0 | 1.2 |
30 | Euphorbia cheiradenia | Euphorbiaceae | III | forbs | perennial | 0 | 0 | 1.2 |
31 | Geranium tuberosum | Geraniaceae | III | forbs | perennial | 0.1 | 0 | 1.8 |
32 | Tragopogon graminifolius | Compositae | I | forbs | perennial | 0 | 0 | 1.6 |
33 | Asperula arvensis | Rubiaceae | II | forbs | annual | 0 | 0 | 0.7 |
34 | Centaurea virgata | Compositae | III | forbs | perennial | 0 | 0 | 1 |
35 | Nepeta laxiflora | Labiatae | III | forbs | perennial | 0 | 0 | 0.6 |
36 | Scutellaria multicaulis | Labiatae | III | forbs | perennial | 0 | 0 | 0.4 |
37 | Sedum hispanicum | Crassulaceae | III | forbs | annual | 0.1 | 0 | 0 |
38 | Scabiosa olivieri | Dipsacacea | III | forbs | annual | 0 | 0 | 0.1 |
39 | Orobanch alba | Scrophulariaceae | III | forbs | annual | <0.1 | 0 | 0 |
40 | Polygonum polycnemoides | Polygonaceae | III | forbs | perennial | 0 | 0 | <0.1 |
41 | Consolida tomentosa | Ranunculaceae | III | forbs | annual | 0 | <0.1 | 0 |
42 | Turgenia latifolia | Umbelliferae | III | forbs | annual | 0 | 0 | <0.1 |
43 | Valerianella oxyrrhyncha | Valerianaceae | III | forbs | annual | <0.1 | 0 | 0 |
44 | Heteranthelium piliferum | Gramineae | III | forbs | annual | 0 | 0 | <0.1 |
Rangeland Area | Simpson | Shannon | Hill N1 | Hill N2 |
---|---|---|---|---|
Good rangeland | 0.82 a | 3.3a | 10.13 a | 6.44 a |
Degraded rangeland | 0.8 a | 3 b | 8.17 b | 5.95 a |
Abandoned dry land farming | 0.74 a | 2.52 b | 5.81 b | 3.87 a |
Rangeland Area | Simpson | Shannon | Hill N1 | Hill N2 |
---|---|---|---|---|
Good condition rangeland | 0.70 a | 2.37 a | 5.18 a | 3.46 a |
Degraded rangeland | 0.62 b | 1.90 b | 3.78 b | 2.85 b |
Abandoned rain-fed land | 0.51 b | 1.58 b | 3.05 b | 2.10 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eghdami, H.; Azhdari, G.; Lebailly, P.; Azadi, H. Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran. Agriculture 2019, 9, 58. https://doi.org/10.3390/agriculture9030058
Eghdami H, Azhdari G, Lebailly P, Azadi H. Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran. Agriculture. 2019; 9(3):58. https://doi.org/10.3390/agriculture9030058
Chicago/Turabian StyleEghdami, Hanieh, Ghanimat Azhdari, Philippe Lebailly, and Hossein Azadi. 2019. "Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran" Agriculture 9, no. 3: 58. https://doi.org/10.3390/agriculture9030058
APA StyleEghdami, H., Azhdari, G., Lebailly, P., & Azadi, H. (2019). Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran. Agriculture, 9(3), 58. https://doi.org/10.3390/agriculture9030058