Effects of Rht-B1b and Ddw1 Dwarfing Genes in Two Connecting Populations of Spring Triticale under Greenhouse Experiment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hybridization
2.3. Growth Conditions
2.4. Phenotyping
2.5. Molecular analysis
2.6. Statistical Analysis
- 00 – ddw1 ddw1 Rht-B1a Rht-B1a (absence of both dwarfing genes, wild type, tall plant),
- 02 – ddw1 ddw1 Rht-B1b Rht-B1b (the presence of only one dwarfing gene Rht-B1b from wheat),
- 20 – Ddw1 Ddw1 Rht-B1a Rht-B1a (the presence of only one dwarfing gene Ddw1 from rye),
- 22 – Ddw1 Ddw1 Rht-B1b Rht-B1b (the presence of both dwarfing genes)
3. Results
3.1. Molecular Analysis
3.2. Plant Height.
3.3. The Structure and Productivity of the Main Spike
3.4. Flowering and Heading.
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 17 April 2019).
- Nadolska-Orczyk, A.; Rajchel, I.; Orczyk, W.; Gasparis, S. Major genes determining yield-related traits in wheat and barley. Theor. Appl. Genet. 2017, 130, 1081–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhardt, D. Plant Architecture. EMBO Rep. 2002, 3, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Hoogendoorn, J.; Rickson, J.; Gale, M. Differences in leaf and stem anatomy related to plant height of tall and dwarf wheat (Triticum Aestivum L.). J. Plant Physiol. 1990, 136, 72–77. [Google Scholar] [CrossRef]
- Du, Y.; Chen, L.; Wang, Y.; Yang, Z.; Saeed, I.; Daoura, B.; Hu, Y. The combination of dwarfing genes Rht4 and Rht8 reduced plant height, improved yield traits of rainfed bread wheat (Triticum Aestivum L.). Field Crops Res. 2018, 215, 149–155. [Google Scholar] [CrossRef]
- Chapman, S.; Mathews, K.; Trethowan, R.; Singh, R. Relationships between height and yield in near-isogenic spring wheats that contrast for major reduced height genes. Euphytica 2006, 157, 391–397. [Google Scholar] [CrossRef]
- Fischer, R.; Stockman, Y. Increased kernel number in Norin 10-Derived dwarf wheat: Evaluation of the cause. Funct. Plant Biol. 1986, 13, 767. [Google Scholar] [CrossRef]
- Reynolds, M.; Balota, M.; Delgado, M.; Amani, I.; Fischer, R. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Funct. Plant Biol. 1994, 21, 717–730. [Google Scholar] [CrossRef]
- McIntosh, R.; Yamazaki, Y.; Dubcovsky, J.; Rogers, W.; Morris, C.; Appels, R.; Xia, X. Catalogue of gene symbols for wheat. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–13 September 2013; pp. 1–31. [Google Scholar]
- McIntosh, R.; Dubcovsky, J.; Rogers, W.; Morris, C.; Xia, X. Catalogue of gene symbols for wheat. Available online: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf (accessed on 6 June 2019).
- Ganeva, G.; Korzun, V.; Landjeva, S.; Tsenov, N.; Atanasova, M. Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica 2005, 145, 305–315. [Google Scholar] [CrossRef]
- Butler, J.; Byrne, P.; Mohammadi, V.; Chapman, P.; Haley, S. Agronomic performance of alleles in a spring wheat population across a range of moisture levels. Crop Sci. 2005, 45, 939–947. [Google Scholar] [CrossRef]
- Li, X.; Lan, S.; Liu, Y.; Gale, M.; Worland, T. Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Cereal Res. Commun. 2006, 34, 919–924. [Google Scholar] [CrossRef]
- Mathews, K.; Chapman, S.; Trethowan, R.; Singh, R.; Crossa, J.; Pfeiffer, W.; van Ginkel, M.; DeLacy, I. Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes. Crop Sci. 2006, 46, 603–613. [Google Scholar] [CrossRef]
- Rebetzke, G.; Bonnett, D.; Ellis, M. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res. 2012, 127, 17–25. [Google Scholar] [CrossRef]
- Rebetzke, G.; Ellis, M.; Bonnett, D.; Mickelson, B.; Condon, A.; Richards, R. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum Aestivum L.). Field Crops Res. 2012, 126, 87–96. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Hu, Y.; Chen, J. Dwarfing genes Rht4 and Rht-B1b affect plant height and key agronomic traits in common wheat under two water regimes. Field Crops Res. 2017, 204, 242–248. [Google Scholar] [CrossRef]
- Brandle, J.; Knott, D. The effect of a gene for semidwarfism (Rht1) on various characters in a spring wheat cross. Can. J. Plant Sci. 1986, 66, 529–533. [Google Scholar] [CrossRef]
- Mahone, G.; Frisch, M.; Bauer, E.; Haseneyer, G.; Miedaner, T.; Falke, K. Detection of donor effects in a rye introgression population with genome-wide prediction. Plant Breed. 2015, 134, 406–415. [Google Scholar] [CrossRef]
- Alheit, K.; Busemeyer, L.; Liu, W.; Maurer, H.; Gowda, M.; Hahn, V.; Weissmann, S.; Ruckelshausen, A.; Reif, J.; Würschum, T. Multiple-line cross QTL mapping for biomass yield and plant height in triticale (×Triticosecale Wittmack). Theor. Appl. Genet. 2013, 127, 251–260. [Google Scholar] [CrossRef]
- Kobyliansky, V.; Solodukhina, O. The role of the Vavilov institute of plant industry in the initiation and development of new trends in winter rye breeding in Russia. Proc. Appl. Bot. Genet. Breed. 2015, 176, 5–19. [Google Scholar] [CrossRef]
- Stojałowski, S.; Myśków, B.; Hanek, M. Phenotypic effect and chromosomal localization of Ddw3, the dominant dwarfing gene in rye (Secale cereale L.). Euphytica 2015, 201, 43–52. [Google Scholar] [CrossRef]
- Wolski, T.; Gryka, J. Semidwarf winter triticale. In Triticale Today Tomorrow; Springer: Dordrecht, The Netherlands, 1996; pp. 581–587. [Google Scholar]
- Shevchenko, V.; Goncharov, S. Introgression of the dominant short stem determinant into the triticale genome. Vestn. S.-kh. Nauk. 1990, 10, 29–33. [Google Scholar]
- Kalih, R.; Maurer, H.; Hackauf, B.; Miedaner, T. Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (×Triticosecale Wittmack). Theor. Appl. Genet. 2014, 127, 1527–1536. [Google Scholar] [CrossRef]
- Bernatzky, R.; Tanksley, S. Genetics of actin-related sequences in tomato. Theor. Appl. Genet. 1986, 72, 314–321. [Google Scholar] [CrossRef]
- Ellis, M.; Spielmeyer, W.; Gale, K.; Rebetzke, G.; Richards, R. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 2002, 105, 1038–1042. [Google Scholar] [CrossRef]
- Tenhola-Roininen, T.; Tanhuanpää, P. Tagging the dwarfing gene Ddw1 in a rye population derived from doubled haploid parents. Euphytica 2010, 172, 303–312. [Google Scholar] [CrossRef]
- Hackauf, B.; Goldfisch, M.; Musmann, D.; Melz, G.; Wehling, P. Evaluation of the dominant dwarfing gene Ddw1 with respect to its use in hybrid rye breeding. Resist. Gegen Biot. Stress Pflanz. 2013, 63, 41–42. [Google Scholar]
- Tikhnenko, N.; Tsvetkova, N.; Voylokov, A. The effect of parental genotypes of rye lines on the development of quantitative traits in primary octoploid triticale: Plant height. Russ. J. Genet. 2003, 39, 52–56. [Google Scholar] [CrossRef]
- Kalih, R.; Maurer, H.; Miedaner, T. Genetic architecture of fusarium head blight resistance in four winter triticale populations. Phytopathology 2015, 105, 334–341. [Google Scholar] [CrossRef]
- Dora, M.; Kumar, M.; Van Goubergen, D.; Molnar, A.; Gellynck, X. Food quality management system: Reviewing assessment strategies and a feasibility study for European food small and medium-sized enterprises. Food Control 2013, 31, 607–616. [Google Scholar] [CrossRef]
- Daoura, B.; Chen, L.; Du, Y.; Hu, Y. Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat (Triticum Aestivum L.) and QTL analysis on its linked traits. Field Crops Res. 2014, 156, 22–29. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Cui, C.; Lu, S.; Lu, Q.; Du, Y.; Su, R.; Chai, Y.; Li, H.; Chen, F.; et al. Effects of Vrn-B1 and Ppd-D1 on developmental and agronomic traits in Rht5 dwarf plants of bread wheat. Field Crops Res. 2018, 219, 24–32. [Google Scholar] [CrossRef]
- Kurkiev, K.U. Inheritance of plant height in hexaploid triticales with R/D substitution. Russ. J. Genet. 2008, 44, 1080–1086. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Du, Y.; Yang, Z.; Condon, A.; Hu, Y. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res. 2014, 162, 39–47. [Google Scholar] [CrossRef]
Gene | Primer | Source | Expected Amplicon Size |
---|---|---|---|
Rht-B1 | BF 5′ GGTAGGGAGGCGAGAGGCGAG 3′ | Ellis et al., 2002 [27] | BF+MR1: 237 bp for Rht-B1b BF+WR1: 237 bp for Rht-B1a |
MR1 5′ CATCCCCATGGCCATCTCGAGCTA 3′ | |||
WR1 5′ CATCCCCATGGCCATCTCGAGCTG 3′ | |||
Ddw1 | F 5’ GTGCTATGATAAGTACCTGC 3′ | Tenhola-Roininen et al., 2010 [29] | 317 bp for ddw1 317+321 bp for Ddw1 |
R 5’ GGC TAA GGG AAC TCG CATTG 3′ |
Genotype | Plant Height, cm | Grain Number per Spike | 1000-Grain Weight, g | Heading Time (Days after Sowing) | ||||
---|---|---|---|---|---|---|---|---|
Mudrets × Dublet | Valentin 90 × Dublet | Mudrets × Dublet | Valentin 90 × Dublet | Mudrets × Dublet | Valentin 90 × Dublet | Mudrets × Dublet | Valentin 90 × Dublet | |
00 ** | 104.7 ± 26.0 a | 118.7 ± 19.1 a | 35.1 ± 14.7 ab | 49.3 ± 14.7 a | 46.0 ± 11.1 a | 43.6 ± 6.9 a | 49.1 ± 5.9 a | 50.9 ± 7.4 a |
02 | 100.1 ± 24.5 a | 107.5 ± 11.7 b | 40.7 ± 12.7 a | 53.1 ± 16.4 a | 42.1 ± 8.8 ab | 41.1 ± 7.3 a | 47.0 ± 5.1 a | 50.8 ± 8.2 a |
20 | 65.8 ± 19.6 b | 82.9 ± 14.7 c | 31.6 ± 11.7 b | 44.5 ± 13.1 a | 36.1 ± 8.4 c | 39.9 ± 9.6 a | 54.4 ± 9.8 b | 52.6 ± 6.8 a |
22 | 73.7 ± 13.1 b | 77.6 ± 10.3 c | 40.7 ± 10.6 a | 50.6 ± 17.9 a | 37.6 ± 8.9 bc | 35.1 ± 5.7 b | 51.3 ± 3.7 ab | 48.9 ± 3.3 a |
Contrasts | ||||||||
02vs00 | −4.6 (−4.4%) | −11.2 * (−9.4%) | 5.6 (15.8%) | 3.8 (7.8%) | −3.9 (−8.5%) | −2.5 (−5.8%) | −2.1(−4.3%) | −0.1 (−0.3%) |
LSD0.05 | 12.4 | 9.6 | 8.5 | 10.5 | 6.2 | 6.1 | 4.4 | 5.1 |
20vs00 | −38.9 * (−37.2%) | −35.8 * (−30.2%) | −3.5 (−10%) | −4.8 (−9.7%) | −9.9 * (−21.5%) | −3.7 (−8.5%) | 5.3 * (10.8%) | 1.7 (3.4%) |
LSD0.05 | 13.0 | 9.4 | 9.0 | 10.9 | 6.5 | 6.2 | 4.4 | 5.1 |
22vs00 | −31.0 * (−29.6%) | −41.1 * (−34.6%) | 5.5 (15.7%) | 1.3 (2.7%) | −8.4 * (−18.2%) | −8.5 * (−19.4%) | 2.2(4.4%) | −2.0 (−3.9%) |
LSD0.05 | 13.6 | 9.7 | 9.1 | 10.5 | 6.6 | 6.0 | 4.9 | 5.4 |
Internode * | Mudrets × Dublet | Valentin 90 × Dublet | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype ** | F0.05 | Genotype | F0.05 | |||||||
00 | 02 | 20 | 22 | 00 | 02 | 20 | 22 | |||
Peduncle length | 31.7 | 32.7 | 34.6 | 33.3 | 0.68 | 32.3 | 35.7 | 32.3 | 32.2 | 1.47 |
2nd UIN | 22.7 | 22.6 | 20.6 | 22.9 | 0.30 | 22.7 | 24.4 | 21.8 | 22.0 | 1.25 |
3rd UIN | 15.7 | 18.5 | 15.8 | 15.6 | 0.70 | 15.1 | 15.4 | 15.1 | 15.5 | 0.96 |
2nd LIN | 10.7 | 14.4 | 11.7 | 11.7 | 0.50 | 11.5 | 11.0 | 11.6 | 12.4 | 0.81 |
1st LIN | 4.1 | 6.6 | 4.8 | 5.2 | 0.68 | 5.9 | 4.6 | 5.5 | 4.6 | 1.95 |
F0.05 (df1 = 4, df2 = 269) = 2.41 | F0.05 (df1 = 4, df2 = 273) = 2.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernook, A.; Kroupin, P.; Karlov, G.; Soloviev, A.; Korshunova, A.; Rubets, V.; Igonin, V.; Divashuk, M. Effects of Rht-B1b and Ddw1 Dwarfing Genes in Two Connecting Populations of Spring Triticale under Greenhouse Experiment Conditions. Agriculture 2019, 9, 119. https://doi.org/10.3390/agriculture9060119
Chernook A, Kroupin P, Karlov G, Soloviev A, Korshunova A, Rubets V, Igonin V, Divashuk M. Effects of Rht-B1b and Ddw1 Dwarfing Genes in Two Connecting Populations of Spring Triticale under Greenhouse Experiment Conditions. Agriculture. 2019; 9(6):119. https://doi.org/10.3390/agriculture9060119
Chicago/Turabian StyleChernook, Anastasiya, Pavel Kroupin, Gennady Karlov, Alexander Soloviev, Anastasiya Korshunova, Valentina Rubets, Vladimir Igonin, and Mikhail Divashuk. 2019. "Effects of Rht-B1b and Ddw1 Dwarfing Genes in Two Connecting Populations of Spring Triticale under Greenhouse Experiment Conditions" Agriculture 9, no. 6: 119. https://doi.org/10.3390/agriculture9060119
APA StyleChernook, A., Kroupin, P., Karlov, G., Soloviev, A., Korshunova, A., Rubets, V., Igonin, V., & Divashuk, M. (2019). Effects of Rht-B1b and Ddw1 Dwarfing Genes in Two Connecting Populations of Spring Triticale under Greenhouse Experiment Conditions. Agriculture, 9(6), 119. https://doi.org/10.3390/agriculture9060119