Cover Crop Influence on Soil Enzymes and Selected Chemical Parameters for a Claypan Corn–Soybean Rotation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Weather Conditions and Soil Sampling
3.2. Cover Crop Effects with Time on Enzyme Activities
3.3. Variation of Enzyme Levels with Soil Depth
3.4. Variation of Enzyme Levels with Landscape Position
3.5. Cover Crop Effects on Soil pH and Percent Organic Matter
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Weerasekara, C.; Udawatta, R.P.; Jose, S.; Kremer, R.J.; Weerasekara, C. Soil quality differences in a row-crop watershed with agroforestry and grass buffers. Agroforest Syst. 2016, 90, 829–838. [Google Scholar] [CrossRef]
- Dunn, M.; Ulrich-Schad, J.D.; Prokopy, L.S.; Myers, R.L.; Watts, C.R.; Scanlon, K. Perceptions and use of cover crops among early adopters: Findings from a national survey. J. Soil Water Conserv. 2016, 71, 29–40. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Ding, G.; Liu, X.; Herbert, S.; Novak, J.; Amarasiriwardena, D.; Xing, B. Effect of cover crop management on soil organic matter. Geoderma 2006, 130, 229–239. [Google Scholar] [CrossRef]
- Delgado, J.A.; Gantzer, C.J. The 4Rs for cover crops and other advances in cover crop management for environmental quality. J. Soil Water Conserv. 2015, 70, 142A–145A. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration and aggregation by cover cropping. J. Soil Water Conserv. 2015, 70, 329–339. [Google Scholar] [CrossRef]
- Buyer, J.S.; Teasdale, J.R.; Roberts, D.P.; Zasada, I.A.; Maul, J.E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol. Biochem. 2010, 42, 831–841. [Google Scholar] [CrossRef]
- Nair, A.; Ngouajio, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Hoorman, J.J. Using Cover Crops to Improve Soil and Water Quality; Agriculture and Natural Resources, The Ohio State University Extension: Lima, OH, USA, 2009; Available online: http://www.northcentralsare.org/content/download/68294/968475/Using_Cover_crops_to_improve_Soil_and_Water_pdf (accessed on 12 August 2018).
- Fernandez, A.L.; Sheaffer, C.C.; Wyse, D.L.; Staley, C.; Gould, T.J.; Sadowsky, M.J. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total. Environ. 2016, 566, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Debosz, K.; Rasmussen, P.H.; Pedersen, A.R. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: Effects of organic matter input. Appl. Soil Ecol. 1999, 13, 209–218. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Adamson, B.W.; Anderson, S.H. Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl. Soil Ecol. 2008, 39, 153–160. [Google Scholar] [CrossRef]
- Stott, D.E.; Andrews, S.S.; Leibig, M.A.; Wienhold, B.J.; Karlen, D.L. Evaluation of β-glucosidase activity as a soil quality indicator for the soil management assessment framework. Soil Sci. Soc. Am. J. 2010, 74, 107–119. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Moorhead, D.L. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 1995, 26, 1305–1311. [Google Scholar] [CrossRef]
- Parham, J.A.; Deng, S.P. Detection, quantification, and characterization of β-glucosaminidase activity in soils. Soil Biol. Biochem. 2000, 32, 1183–1190. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In Methods of Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; SSSA Special Publication 49: Madison, WI, USA, 1996; pp. 247–271. [Google Scholar]
- Tabatabai, M.A.; Dick, W.A. Enzymes in soil: Research and developments in measuring activities. In Enzymes in the Environment: Activity, Ecology, and Applications; Burns, R.G., Dick, R.P., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 567–596. [Google Scholar]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Beare, M.H.; McKim, U.F.; Skjemstad, J.O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 2006, 70, 975–985. [Google Scholar] [CrossRef]
- Dick, R.P. Soil enzyme activity as an indicator of soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Stewart, B.A., Bezdicek, D.F., Eds.; SSSA special publication 35: Madison, WI, USA, 1994; pp. 107–124. [Google Scholar]
- VeVerka, J.S.; Udawatta, R.P.; Kremer, R.J. Soil health indicator responses on Missouri claypan soils affected by landscape position, depth, and management practices. J. Soil Water Conserv. 2019, 74, 126–137. [Google Scholar] [CrossRef]
- Midwestern Regional Climate Center. 2015, p. 528. Available online: http://mrcc.isws.illinois.edu/ (accessed on 16 July 2017).
- Dick, R.P. Methods of soil enzymology. In Methods of Soil Enzymology; Dick, R.P., Ed.; Book Series No. 9; Soil Science Society of America: Madison, WI, USA, 2011; pp. 104–197. [Google Scholar]
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- SAS. SAS User’s Guide: Statistics; SAS Institute: Cary, NC, USA, 2013. [Google Scholar]
- Mendes, I.C.; Bandick, A.K.; Dick, R.P.; Bottomley, P.J. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. J. 1999, 63, 873–881. [Google Scholar] [CrossRef]
- Calderon, F.J.; Nielsen, D.; Acosta-Martinez, V.; Vigil, M.F.; Drew, L.Y.O.N. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the Central Great Plains of North America. Pedosphere 2016, 26, 192–205. [Google Scholar] [CrossRef]
- Skopp, J.; Jawson, M.; Doran, J. Steady-state aerobic microbial activity as a function of soil water content. Soil. Sci. Soc. Am. J. 1990, 54, 1619–1625. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Nivelle, E.; Verzeaux, J.; Habbib, H.; Kuzyakov, Y.; Decocq, G.; Roger, D.; Lacoux, J.; Duclercq, J.; Spicher, F.; Nava-Saucedo, J.E.; et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 2016, 108, 147–155. [Google Scholar] [CrossRef]
- Stone, M.M.; DeForest, J.L.; Plante, A.F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2014, 75, 237–247. [Google Scholar] [CrossRef]
- Taylor, J.P.; Wilson, B.; Mills, M.S.; Burns, R.G. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 2002, 34, 387–401. [Google Scholar] [CrossRef]
- Decker, K.L.M.; Boerner, R.E.J.; Morris, S.J. Scale dependent patterns of soil enzyme activity in a forested landscape. Can. J. For. Res. 1999, 29, 232–241. [Google Scholar] [CrossRef]
- Chavarría, D.N.; Verdenelli, R.A.; Serri, D.L.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S. Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. Europ. J. Soil Biol. 2016, 76, 74–82. [Google Scholar] [CrossRef]
- Kirchner, M.J.; Wollum, A.G.; King, L.D. Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci. Soc. Am. J. 1993, 57, 1289–1295. [Google Scholar] [CrossRef]
- Myers, R.T.; Zak, D.R.; White, D.C.; Peacock, A. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Soc. Am. J. 2001, 65, 359–367. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Grandy, A.S. Soil microbial biomass and function are altered by 12 years of crop rotation. Soil 2016, 2, 583–599. [Google Scholar] [CrossRef] [Green Version]
Enzyme Assay | Substrate | Incubation Temperature (°C) | Incubation Period (h) | Product | Spectrophotometer Wavelength (nm) |
---|---|---|---|---|---|
β-glucosidase | p-nitrophenyl-β-d-glycopyanoside (PNG) | 37 | 1 | p-nitrophenol | 405 |
β-glucosaminidase | p-nitrophenyl-N-acetyle-β-d-glycopyanoside (PNNAG) | 37 | 1 | p-nitrophenol | 405 |
Fluorescien diacetate (FDA) hydrolase | Fluorescien diacetate | 37 | 3 | Fluorescien | 490 |
Dehydrogenase | Iodonitrotetrazolium chloride (INT) | 37 | 2 | Iodonitrotetrazolium formazan (INFT) | 464 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rankoth, L.M.; Udawatta, R.P.; Veum, K.S.; Jose, S.; Alagele, S. Cover Crop Influence on Soil Enzymes and Selected Chemical Parameters for a Claypan Corn–Soybean Rotation. Agriculture 2019, 9, 125. https://doi.org/10.3390/agriculture9060125
Rankoth LM, Udawatta RP, Veum KS, Jose S, Alagele S. Cover Crop Influence on Soil Enzymes and Selected Chemical Parameters for a Claypan Corn–Soybean Rotation. Agriculture. 2019; 9(6):125. https://doi.org/10.3390/agriculture9060125
Chicago/Turabian StyleRankoth, Lalith M., Ranjith P. Udawatta, Kristen S. Veum, Shibu Jose, and Salah Alagele. 2019. "Cover Crop Influence on Soil Enzymes and Selected Chemical Parameters for a Claypan Corn–Soybean Rotation" Agriculture 9, no. 6: 125. https://doi.org/10.3390/agriculture9060125
APA StyleRankoth, L. M., Udawatta, R. P., Veum, K. S., Jose, S., & Alagele, S. (2019). Cover Crop Influence on Soil Enzymes and Selected Chemical Parameters for a Claypan Corn–Soybean Rotation. Agriculture, 9(6), 125. https://doi.org/10.3390/agriculture9060125