How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area Characteristics and Experimental Design
2.2. Farming Operation Description
2.3. Cover Crops, Soil Sampling,and Vegetable Crop Sampling and Analysis
2.4. Data Analysis and Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wittwer, R.A.; Dorn, B.; Jossi, W.; Van Der Heijden, M.G.A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Langeroodi, A.S.; Adewale Osipitan, O.; Radicetti, E. Benefits of sustainable management practices on mitigating greenhouse gas emissions in soybean crop (Glycine max). Sci. Total Environ. 2019, 660, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Baggs, E.; Watson, C.; Rees, R. The fate of nitrogen from incorporated cover crop and green manure residues. Nutr. Cycl. Agroecosyst. 2000, 56, 153–163. [Google Scholar] [CrossRef]
- Jackson, L.E. Fates and losses of nitrogen from a nitrogen-15-labeled cover crop in an intensively managed vegetable system. Soil Sci. Soc. Am. J. 2000, 64, 1404–1412. [Google Scholar] [CrossRef]
- Agneessens, L.; De Waele, J.; De Neve, S. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations. Agronomy 2014, 4, 529–555. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2014, 517, 365–368. [Google Scholar] [CrossRef]
- Feng, Y.; Ning, T.; Li, Z.; Han, B. Effects of tillage practices and rate of nitrogen fertilization on crop yield and soil carbon and nitrogen. Plant Soil Environ. 2014, 60, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Cover crops and mulches influence weed management and weed flora composition in strip-tilled tomato (Solanum lycopersicum). Weed Res. 2015, 4, 416–425. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Radicetti, E.; Osipitan, O.A.; Reza, A.; Langeroodi, S.; Marinari, S.; Mancinelli, R. CO2 Flux and C Balance due to the Replacement of Bare Soil with Agro-Ecological Service Crops in Mediterranean Environment. Agriculture 2019, 9, 13. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; Di Felice, V.; Radicetti, E. Long-term residual effects of the management of cover crop biomass on soil nitrogen and yield of endive (Cichorium endivia L.) and savoy cabbage (Brassica oleracea var. sabauda). Soil Tillage Res. 2014, 139, 1–7. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Brunetti, P.; Mancinelli, R. Do cover crop species and residue management play a leading role in pepper productivity? Sci. Hortic. 2014, 13, 97–104. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Radicetti, E.; Campiglia, E.; Marucci, A.; Mancinelli, R. How winter cover crops and tillage intensities affect nitrogen availability in eggplant. Nutr. Cycl. Agroecosyst. 2017, 108, 177–194. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Snapp, S.; Swinton, S.; Labarta, R. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 2005, 97, 322–332. [Google Scholar]
- Soil Survey Staff Soil Survey Geographic (SSURGO) Database for [U.S.]. Available online: http://soildatamart.nrcs.usda.gov (accessed on 11 April 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop requirements. Irrig. Drain. 1998, 300, D05109. [Google Scholar]
- Springer, U.; Klee, J. Prüfung der Leistungsfähigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. Zeitschrift für Pflanzenernährung Düngung Bodenkunde 1954, 64, 1–8. [Google Scholar] [CrossRef]
- Baillie, I.C.; Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility: A Handbook of Methods. J. Ecol. 1994, 157, 265. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Pumpanen, J.; Ilvesniemi, H.; Hari, P. A Process-Based Model for Predicting Soil Carbon Dioxide Efflux and Concentration. Soil Sci. Soc. Am. J. 2003, 67, 402–413. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 7–8. [Google Scholar] [CrossRef]
- Anderson, A.J.B.; Cody, R.P.; Smith, J.K. Applied Statistics and the SAS Programming Language; Biometrics: Washington, DC, USA, 2006. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Sainju, U.M.; Singh, B.P. Nitrogen storage with cover crops and nitrogen fertilization in tilled and nontilled soils. Agron. J. 2008, 100, 619–627. [Google Scholar] [CrossRef]
- Anugroho, F.; Kitou, M.; Nagumo, F.; Kinjo, K.; Tokashiki, Y. Growth, nitrogen fixation, and nutrient uptake of hairy vetch as a cover crop in a subtropical region. Weed Biol. Manag. 2009, 9, 63–71. [Google Scholar] [CrossRef]
- Valkama, E.; Lemola, R.; Känkänen, H.; Turtola, E. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agric. Ecosyst. Environ. 2015, 203, 93–101. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Agricultural management practices to sustain crop yields and improve soil and environmental qualities. Sci. World J. 2003, 3, 768–789. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.W.; Caesar-TonThat, T.; Jabro, J.D.; Lartey, R.T.; Evans, R.G.; Allen, B.L. Dryland residue and soil organic matter as influenced by tillage, crop rotation, and cultural practice. Plant Soil 2010, 338, 27–41. [Google Scholar] [CrossRef]
Growing Season | ||
---|---|---|
2003/2004 | 2004/2005 | |
Cover crop planting | 3 Oct, 2003 | 20 Oct, 2004 |
Cover crop suppression | 31 May, 2004 | 27 May, 2005 |
1st soil sampling * | 31 May, 2004 | 27 May, 2005 |
Pepper transplanting | 5 Jun, 2004 | 3 Jun, 2005 |
2ndsoil sampling * | 24 Jun, 2004 | 23 Jun, 2005 |
1stN fertilization ** | 25 Jun, 2004 | 23 Jun, 2005 |
3rdsoil sampling * | 21 Jul, 2004 | 18 Jul, 2005 |
2ndN fertilization ** | 22 Jul, 2004 | 20 Jul, 2005 |
4thsoil sampling * | 16 Aug, 2004 | 12 Aug, 2005 |
5th soil sampling * | 9 Sep, 2004 | 6 Sep, 2005 |
1stpepper harvesting | 16 Sep, 2004 | 7 Sep, 2005 |
6thsoil sampling * | 7 Oct, 2004 | 4 Oct, 2005 |
2ndpepper harvesting | 13 Oct, 2004 | 5 Oct, 2005 |
Aboveground Biomass | N Content | C Content | |
---|---|---|---|
(Mg ha−1) | (%) | (%) | |
Intensification Level | |||
RG | 6.06 a | 0.56 b | 42.86 b |
CV | 6.17 a | 1.90 a | 49.99 a |
Growing period | |||
2003/2004 | 5.19 b | 1.16 a | 43.81 b |
2004/2005 | 7.03 a | 1.29 a | 49.04 a |
STN Variation (%) | SOM Variation (%) | |||
---|---|---|---|---|
Intensification Level | ST-15 | ST-30 | ST-15 | ST-30 |
RG | 0.003 bA | 0.002 aA | 0.120 aA | 0.067 aB |
CV | 0.021 aA | 0.011 aA | 0.104 aA | 0.045 aB |
Control-N0 | −0.034 cA | −0.022 cB | −0.030 bA | −0.044 bA |
Control-N100 | −0.009 bA | −0.015 cA | −0.100 cA | −0.093 bA |
Marketable Pepper Fruits | Pepper Fruit Size | Straw | ||||
---|---|---|---|---|---|---|
Number (n. m−2) | Fresh Yield (Mg ha−1 of FM) | Dry Yield (Mg ha−1 of DM) | Length (cm) | Diameter (cm) | Weight (Mg ha−1 of DM) | |
Growing period | ||||||
2004 | 35.71 a | 58.45 a | 4,12 a | 34.83 a | 12.74 a | 3.28 a |
2005 | 35.93 a | 59.77 a | 4,32 a | 34.33 a | 12.45 a | 3.50 a |
Intensification level | ||||||
RG | 33.68 b | 54.31 b | 3.88 b | 34.94 a | 12.59 a | 3.09 c |
CV | 39.31 a | 63.15 a | 4.67 a | 35.38 a | 12.87 a | 4.06 a |
Control-N0 | 31.59 b | 56.52 b | 3.87 b | 34.03 a | 12.40 a | 3.14 c |
Control-N100 | 38.71 a | 62.44 ab | 4.46 ab | 33.95 a | 12.50 a | 3.63 b |
Soil tillage | ||||||
ST-15 | 36.30 a | 58.29 a | 4.27 a | 34.43 a | 12.69 a | 3.58 a |
ST-30 | 35.34 a | 59.93 a | 4.17 a | 34.73 a | 12.49 a | 3.38 a |
Nitrogen Accumulation | |||
---|---|---|---|
Fruits (kg N ha−1) | Straw (kg N ha−1) | APE (kg kg−1) | |
Growing period | |||
2003/2004 | 81.74 a | 76.86 a | 2.58 a |
2004/2005 | 87.34 a | 79.49 a | 2.51 a |
Intensification level | |||
RG | 63.49 c | 66.08 b | −16.24 b |
CV | 111.65 a | 93.63 a | 11.03 a |
Control-N0 | 68.83 c | 66.35 b | - |
Control-N100 | 94.21 b | 86.65 a | 12.85 a |
Soil Tillage | |||
ST-15 | 82.34 a | 75.77 a | 2.63 a |
ST-30 | 86.74 a | 80.58 a | 2.46 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancinelli, R.; Muleo, R.; Marinari, S.; Radicetti, E. How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation. Agriculture 2019, 9, 145. https://doi.org/10.3390/agriculture9070145
Mancinelli R, Muleo R, Marinari S, Radicetti E. How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation. Agriculture. 2019; 9(7):145. https://doi.org/10.3390/agriculture9070145
Chicago/Turabian StyleMancinelli, Roberto, Rosario Muleo, Sara Marinari, and Emanuele Radicetti. 2019. "How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation" Agriculture 9, no. 7: 145. https://doi.org/10.3390/agriculture9070145
APA StyleMancinelli, R., Muleo, R., Marinari, S., & Radicetti, E. (2019). How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation. Agriculture, 9(7), 145. https://doi.org/10.3390/agriculture9070145