Impact of a Cultivation System upon the Weed Seedbank Size and Composition in a Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Climate and Soil
2.2. Experimental Design and Management Practices
2.3. Seedbank Sampling and Analysis
2.4. Weed Flora Analysis
2.5. Statistical Analysis
3. Results
3.1. Weed Species Richness
3.2. Weed Seedbank Density and Distribution for the Main Botanical Families
3.3. Real Weed Flora
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruisi, P.; Frangipane, B.; Amato, G.; Badagliacca, G.; Di Miceli, G.; Plaia, A.; Giambalvo, D. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 2015, 55, 320–328. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Gallandt, E.R.; Mortensen, D.A.; Curran, W.S.; Shumway, D. Reducing the germinable weed seedbank with soil disturbance and cover crops. Weed Res. 2010, 50, 341–352. [Google Scholar] [CrossRef]
- Froud-Williams, R.J. Changes in weed flora with different tillage and agronomic management systems. In Weed Management in Agroecosystems: Ecological Approaches; Altieri, M.A., Liebman, M., Eds.; CRC Press: Boca Raton, FL, USA, 1988; pp. 213–236. [Google Scholar]
- Ball, D. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 1992, 40, 654–659. [Google Scholar] [CrossRef]
- Dorado, J.; Del Monte, J.P.; Lopez-Fando, C. Weed seed bank response to crop rotation and tillage in semiarid agro-ecosystems. Weed Sci. 1999, 47, 67–73. [Google Scholar] [CrossRef]
- Cardina, J.; Herm, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Worsham, A.D. Role of cover crops in weed management and water quality. In Proceedings of the International Conference of Soil and Water Conservation Society, Ankeny, IA, USA, 9–11 April 1991; pp. 141–145. [Google Scholar]
- Forcella, F.; Eradatoskoui, K.; Wagner, S.W. Application of weed seedbank ecology to low-input crop management. Ecol. Appl. 1993, 3, 74–83. [Google Scholar] [CrossRef]
- Schreiber, M.M. Influence of tillage crop rotation, and weed management on giant foxtail (Setaria faberii) population dynamics and corn yield. Weed Sci. 1992, 40, 645–653. [Google Scholar] [CrossRef]
- Ghersa, C.M.; Martìnez-Ghersa, M.A. Ecological correlates of weed seed size and persistence in the soil under different tilling systems: Implications for weed management. Field Crop Res. 2000, 67, 141–148. [Google Scholar] [CrossRef]
- Benvenuti, S.; Macchia, M. Seedbank reduction after different stale seedbed techniques in organic agricultural systems. Ital. J. Agron. 2006, 1, 11–21. [Google Scholar] [CrossRef]
- Cristaudo, A.; Restuccia, A.; Onofri, A.; Lo Giudice, V.; Gresta, F. Species–area relationships and minimum area in citrus grove weed communities. Plant Biosyst. 2013, 149, 337–345. [Google Scholar] [CrossRef]
- Bárberi, P.; Cozzani, A.; Macchia, M.; Bonari, E. Size and composition of the weed seedbank under different management systems for continuous maize cropping. Weed Res. 1998, 38, 319–334. [Google Scholar] [CrossRef]
- Frenda, A.S.; Ruisi, P.; Saia, S.; Frangipane, B.; Di Miceli, G.; Amato, G.; Giambalvo, D. The critical period of weed control in faba bean and chickpea in Mediterranean areas. Weed Sci. 2013, 61, 452–459. [Google Scholar] [CrossRef]
- USDA. Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. In Agricultural Handbook; U.S. Department of Agriculture, Ed.; U.S. Government Printing Office: Washington, DC, USA, 1975; p. 754. [Google Scholar]
- Brullo, S.; Scelsi, F.; Siracusa, G.; Spampinato, G. Caratteristiche bioclimatiche della Sicilia. Giornale Botanico Italiano 1996, 130, 177–185. [Google Scholar] [CrossRef]
- Vasileiadis, V.P.; Froud-Williams, R.J.; Eleftherohorinos, I.G. Vertical distribution, size and composition of the weed seed bank under various tillage and herbicide treatments in a sequence of industrial crops. Weed Res. 2007, 47, 222–230. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Abbate, C.; Mauromicale, G. Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agron. Sustain. Dev. 2019, 39, 41. [Google Scholar] [CrossRef]
- Raunkiaer, C. Life Forms of Plants and Statistical Plant Geography; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- Mauromicale, G.; Restuccia, G.; Marchese, M. Soil solarization, a non-chemical technique for controlling Orobanche crenata and improving yield of faba bean. Agronomie 2001, 21, 757–765. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie; Springer: Vienna, Austria, 1964. [Google Scholar]
- Fialho, C.M.T.; Dos Santos, J.B.; De Freitas, M.A.M.; França, A.C.; Da Silva, A.A.; Dos Santos, E.A. Fitossociologia da comunidade de plantas daninhas na cultura da soja transgênica sob dois sistemas de preparo do solo. Scientia Agraria 2011, 12, 9–17. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea, 2nd ed.; Cambridge University Press: Cambridge, UK, 1964. [Google Scholar]
- Conti, E.; Abbate, G.; Alessandrini, A.; Blasi, C. An Annotated Checklist of the Italian Vascular Flora; Palombi: Roma, Italy, 2005. [Google Scholar]
- Sharma, P.D. Ecology and Environment, 12th ed.; Rastogi Publications: Meerut, India, 2009. [Google Scholar]
- Stevenson, F.C.; Légere, A.; Simard, R.R.; Angers, D.A.; Pageau, D.; Lafond, J. Weed species diversity in spring barley varies with crop rotation and tillage, but not with nutrient source. Weed Sci. 1997, 45, 798–806. [Google Scholar] [CrossRef]
- Hyvönen, T.; Salonen, J. Biomass production of weeds in low-input and conventional cropping of cereals. Biol. Agric. Hortic. 2005, 23, 161–173. [Google Scholar] [CrossRef]
- Sher, H.; Al-Yemeni, M.N. Ecological investigation of the weed flora in arable and non arable lands of Al-kharj area, Saudi Arabia. Afr. J. Agric. Res. 2011, 6, 901–906. [Google Scholar]
- Milton, J.; Steven, H.; Fennimore, A. Evaluation of integrated practices for common purslane (Portulaca oleracea) management in lettuce (Lactuca sativa). Weed Technol. 2003, 17, 229–233. [Google Scholar]
- Gratani, L.; Catoni, R.; Varone, L. Evergreen species response to Mediterranean climate stress factors. iForest 2016, 9, 946–953. [Google Scholar] [CrossRef] [Green Version]
- Vengris, J.; Dunn, S.; Stacewicz-Sapuncakis, M. Life History Studies as Related to Weed Control in the Northeast. 7-Common Purslane; Technical Report No. 598; Agricultural Experimental Station, College of Food and Natural Resources, The University of Massachusetts: Amherst, MA, USA, 1972; pp. 1–45. [Google Scholar]
- Sellers, B.A.; Smeda, R.J.; Johnson, W.G.; Kendig, J.A.; Ellersieck, M.R. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 2003, 51, 329–333. [Google Scholar] [CrossRef]
- Cristaudo, A.; Gresta, F.; Luciani, F.; Restuccia, A. Effects of after-harvest period and seed dormancy of Amaranthus species. Weed Res. 2007, 47, 327–334. [Google Scholar] [CrossRef]
- Cristaudo, A.; Gresta, F.; Restuccia, A.; Catara, S.; Onofri, A. Germinative response of redroot pigweed (Amaranthus retroflexus L.) to environmental conditions: Is there a seasonal pattern? Plant Biosyst. 2016, 150, 583–591. [Google Scholar] [CrossRef]
- Holm, L.; Plucknett, D.; Pancho, J.; Herberger, J. The World’s Worst Weeds: Distribution and Biology; University of Hawaii Press: Honolulu, HI, USA, 1977. [Google Scholar]
- Chauhan, B.S.; Johnson, D.E. Seed germination ecology of Portulaca oleracea L.: An important weed of rice and upland crops. Ann. Appl. Biol. 2009, 155, 61–69. [Google Scholar] [CrossRef]
- Burniside, O.C.; Wilson, R.G.; Weisberg, S.; Hubbard, K.G. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 1996, 44, 74–86. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.; Boatman, N.; Lutman, P.; Squire, G. The Impact of Herbicides on Weed Abundance and Biodiversity; Technical Report No. PN0940; UK Pesticide Safety Directorate, Long Ashton Research Station IACR: Long Ashton, UK, 2001. [Google Scholar]
- Forcella, F.; Wilson, R.G.; Dekker, J.; Kremer, R.J.; Cardina, J.; Anderson, R.L.; Alm, D.; Renner, K.A.; Harvey, R.G.; Clay, S.; et al. Weed seed bank emergence across the corn belt. Weed Sci. 1997, 45, 67–76. [Google Scholar] [CrossRef]
- Benvenuti, S. Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol. Manag. 2007, 7, 141–157. [Google Scholar] [CrossRef]
- Moles, A.T.; Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 2006, 113, 91–105. [Google Scholar] [CrossRef]
- Pakeman, R.J.; Small, J.L.; Torvell, L. Edaphic factors influence the longevity of seeds in the soil. Plant Ecol. 2012, 213, 57–65. [Google Scholar] [CrossRef]
Biological Group 1 | Botanical Family | Cultivation System | CCS 2 | OCS | UCP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil Layer Depth (cm) | Soil Layer Depth (cm) | Soil Layer Depth (cm) | |||||||||
Species | 0–5 | 5–10 | 10–15 | 0–5 | 5–10 | 10–15 | 0–5 | 5–10 | 10–15 | ||
T | Amaranthaceae | Amaranthus retroflexus L. | 32.3 ± 2.9 | 27.4 ± 1.3 | 17.1 ± 1.2 | 27.8 ± 2.5 | 18.2 ± 1.4 | 15.7 ± 2.4 | 16.8 ± 1.3 | 21.6 ± 1.2 | 23.5 ± 1.1 |
T | Primulaceae | Anagallis arvensis L. | 5.2 ± 0.7 | 4.6 ± 0.7 | - | 6.8 ± 1.0 | 6.1 ± 0.8 | 4.1 ± 0.5 | 7.8 ± 0.9 | 9.9 ± 0.9 | 15.4 ± 1.0 |
H | Chenopodiaceae | Beta vulgaris L. | - | 2.3 ± 0.4 | - | - | - | - | 1.2 ± 0.2 | 0.6 ± 0.1 | 0.7 ± 0.1 |
T | Chenopodiaceae | Chenopodium album L. | 1.3 ± 0.2 | 0.9 ± 0.1 | - | 0.5 ± 0.1 | - | - | - | - | - |
T | Asteraceae | Conyza spp. | 0.9 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 1.5 ± 0.3 | - | - | - | - | - |
H | Asteraceae | Crepis vescicaria L. | 0.9 ± 0.2 | 0.5 ± 0.1 | - | 0.5 ± 0.1 | 1.7 ± 0.3 | 1.7 ± 0.3 | 1.2 ± 0.2 | - | - |
T | Euphorbiaceae | Euphorbia helioscopia L. | 0.9 ± 0.1 | - | 0.5 ± 0.1 | - | - | - | 1.8 ± 0.4 | 1.9 ± 0.2 | 2.9 ± 0.5 |
T | Polygonaceae | Fallopia convolvulus (L.) Á. Löve | 0.9 ± 0.1 | 0.9 ± 0.1 | - | - | 0.5 ± 0.1 | - | 2.4 ± 0.3 | 0.6 ± 0.1 | 1.5 ± 0.4 |
T | Papaveraceae | Fumaria officinalis L. | 0.9 ± 0.1 | 1.4 ± 0.2 | 1.1 ± 0.3 | 1.0 ± 0.2 | 3.5 ± 0.6 | 4.1 ± 0.3 | 4.8 ± 0.3 | 3.1 ± 0.5 | 2.9 ± 0.2 |
T | Papaveraceae | Fumaria parviflora Lam. | - | 1.4 ± 0.3 | 1.1 ± 0.4 | - | - | - | 6.0 ± 0.4 | 2.5 ± 0.4 | 7.4 ± 0.6 |
H | Asteraceae | Galactites elegans (All.) Soldano | 1.3± 0.2 | - | 0.5 ± 0.1 | - | - | - | 1.2 ± 0.2 | 3.1 ± 0.2 | 0.7 ± 0.1 |
T | Boraginaceae | Heliotropum europeum L. | 0.4 ± 0.1 | - | 0.5 ± 0.1 | - | - | 0.8 ± 0.1 | - | - | - |
T | Asteraceae | Helminthotheca echioides (L.) Holub | 1.3 ± 0.5 | 1.4 ± 0.2 | 1.6 ± 0.5 | 1.5 ± 0.3 | 5.6 ± 0.5 | 3.3 ± 0.4 | 0.6 ± 0.1 | 4.3 ± 0.3 | 2.2 ± 0.4 |
T | Lamiaceae | Lamium amplexicaule L. | - | - | - | - | 2.0 ± 0.1 | 0.8 ± 0.1 | 0.6 ± 0.1 | 3.1 ± 0.4 | 1.5 ± 0.1 |
T | Malvaceae | Lavatera trimestris L. | 0.4 ± 0.1 | 0.9 ± 0.2 | - | - | 0.5 ± 0.1 | - | - | - | - |
T | Poaceae | Lolium multiflorum Lam. | - | - | - | - | 0.5 ± 0.1 | - | - | - | - |
T | Fabaceae | Lotus ornithopodioides L. | 0.4 ± 0.1 | - | - | - | - | - | - | 0.6 ± 0.1 | - |
H | Malvaceae | Malva rotundifolia L. | - | - | 0.5 ± 0.1 | - | - | - | - | - | 0.7 ± 0.1 |
H | Orobanchaceae | Orobanche crenata Forsk. | 3.5 ± 0.3 | 4.1 ± 0.6 | 3.7 ± 0.6 | 4.9 ± 0.8 | 4.5 ± 0.3 | 4.1 ± 0.4 | - | - | - |
T | Papaveraceae | Papaver rhoeas L. | 0.9 ± 0.2 | - | 1.1 ± 0.5 | 1.0 ± 0.2 | - | - | 1.2 ± 0.1 | 4.9 ± 0.4 | - |
T | Poaceae | Polypogon monspeliensis (L.) Desf. | - | - | 0.5 ± 0.1 | 0.5 ± 0.1 | - | - | - | - | - |
T | Portulacaceae | Portulaca oleracea L. | 43.7 ± 1.5 | 45.2 ± 1.5 | 52.9 ± 2.8 | 46.3 ± 5.2 | 43.9 ± 1.7 | 51.2 ± 2.7 | 28.7 ± 2.8 | 24.1 ± 1.1 | 19.1 ± 1.6 |
H | Asteraceae | Reichardia picroides (L.) Roth | - | 0.5 ± 0.1 | 0.5 ± 0.1 | - | 0.5 ± 0.1 | - | - | - | - |
T | Rubiaceae | Galium aparine L. | - | 0.5 ± 0.1 | - | - | 0.5 ± 0.1 | - | - | - | - |
T | Solanaceae | Solanum nigrum L. | - | - | 0.5 ± 0.1 | - | - | - | 3.0 ± 0.5 | 1.9 ± 0.3 | 2.2 ± 0.3 |
T | Asteraceae | Sonchus asper (L.) Hill | 3.5 ± 0.9 | 4.6 ± 0.4 | 6.4 ± 0.8 | 2.4 ± 0.5 | 8.1 ± 0.8 | 8.3 ± 0.9 | 13.8 ± 1.0 | 13.0 ± 0.9 | 18.4 ± 1.1 |
T | Asteraceae | Sonchus oleraceus L. | - | - | 3.2 ± 0.7 | - | - | - | - | 4.3 ± 0.4 | - |
H | Verbenaceae | Verbena officinalis L. | - | - | 1.1 ± 0.3 | 0.5 ± 0.1 | 1.0 ± 0.1 | - | 0.6 ± 0.1 | - | - |
T | Scrophulariaceae | Veronica cymbalaria Bodard | - | - | 1.1 ± 0.3 | - | - | - | 5.4 ± 1.0 | - | 0.7 ± 0.1 |
T | Scrophulariaceae | Veronica hederifolia L. | 1.3 ± 0.4 | 3.2 ± 0.5 | 3.7 ± 0.3 | 3.9 ± 0.3 | 4.0 ± 0.7 | 4.1 ± 0.4 | - | - | - |
T | Scrophulariaceae | Veronica persica Poiret | - | 1.6 ± 0.3 | 1.0 ± 0.2 | - | 1.7 ± 0.2 | - | - | - | |
T | Scrophulariaceae | Veronica polita Fr. | - | - | - | - | - | - | 3.0 ± 0.4 | 0.6 ± 0.1 | - |
Cultivation System | |||
---|---|---|---|
Species | CCS | OCS | UCP |
Amaranthus blitoides S. Watson | I | ||
Amaranthus retroflexus L. | III | III | II |
Anagallis arvensis L. | IV | IV | IV |
Avena sterilis L. | V | IV | |
Capsella bursa-pastoris (L.) Medik. | I | ||
Chenopodium album L. | I | I | I |
Chenopodium murale L. | I | ||
Cynodon dactylon (L.) Pers. | II | ||
Daucus carota L. | III | ||
Digitaria sanguinalis (L.) Scop. | I | ||
Diplotaxis erucoides (L.) DC. | I | II | |
Euphorbia chamaesyce L. | I | ||
Euphorbia helioscopia L. | I | I | II |
Euphorbia sp. | I | I | I |
Fallopia convolvulus (L.) Á. Löve | IV | V | V |
Fumaria officinalis L. | I | II | I |
Fumaria parviflora Lam. | I | I | I |
Galactites elegans (All.) Soldano | V | V | V |
Galium aparine L. | III | IV | II |
Glebionis coronaria (L.) Cass. ex Spach | I | II | I |
Helminthotheca echioides (L.) Holub | IV | V | V |
Lamium amplexicaule L. | I | I | V |
Lavatera trimestris L. | I | I | |
Lolium rigidum Gaud. | V | IV | |
Malva rotundifolia L. | V | V | V |
Medicago arabica (L.) Huds. | I | I | |
Medicago polymorpha L. | V | V | V |
Orobanche crenata Forsk. | IV | IV | . |
Papaver hybridum L. | III | II | I |
Papaver rhoeas L. | V | V | V |
Phalaris sp. | I | ||
Polycarpon tetraphyllum (L.) L. | I | ||
Portulaca oleracea L. | II | II | II |
Raphanus raphanistrum ssp. landra (Moretti) Bonnier | IV | IV | IV |
Reichardia picroides (L.) Roth | I | ||
Sinapis arvensis L. | I | II | |
Sisymbrium officinale (L.) Scop. | II | ||
Solanum nigrum L. | IV | V | II |
Sonchus asper (L.) Hill | IV | V | V |
Sonchus oleraceus L. | V | IV | V |
Sonchus tenerrimus L. | III | II | I |
Torilis nodosa (L.) Gaertn. | I | ||
Trifolium subterraneum L. | I | I | |
Veronica cymbalaria Bodard | V | III | I |
Veronica polita Fr. | II | I | I |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restuccia, A.; Lombardo, S.; Mauromicale, G. Impact of a Cultivation System upon the Weed Seedbank Size and Composition in a Mediterranean Environment. Agriculture 2019, 9, 192. https://doi.org/10.3390/agriculture9090192
Restuccia A, Lombardo S, Mauromicale G. Impact of a Cultivation System upon the Weed Seedbank Size and Composition in a Mediterranean Environment. Agriculture. 2019; 9(9):192. https://doi.org/10.3390/agriculture9090192
Chicago/Turabian StyleRestuccia, Alessia, Sara Lombardo, and Giovanni Mauromicale. 2019. "Impact of a Cultivation System upon the Weed Seedbank Size and Composition in a Mediterranean Environment" Agriculture 9, no. 9: 192. https://doi.org/10.3390/agriculture9090192
APA StyleRestuccia, A., Lombardo, S., & Mauromicale, G. (2019). Impact of a Cultivation System upon the Weed Seedbank Size and Composition in a Mediterranean Environment. Agriculture, 9(9), 192. https://doi.org/10.3390/agriculture9090192