Influence of Sea Surface Temperature in the Tropics on the Antarctic Sea Ice during Global Warming
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, Z. Preconditioning of Antarctic Maximum Sea Ice Extent by Upper Ocean Stratification on a Seasonal Timescale. Geophys. Res. Lett. 2017, 44, 6307–6315. [Google Scholar] [CrossRef] [Green Version]
- Treshnikov, A.F.; Alekseyev, G.V.; Sarukhanyan, E.I.; Smirnov, N.P. Water Circulation in the Southern Ocean. Polar Geogr. Geol. 1980, 4, 21–35. [Google Scholar] [CrossRef]
- Holland, P.R. The Seasonality of Antarctic Sea Ice Trends. Geophys. Res. Lett. 2014, 41, 4230–4237. [Google Scholar] [CrossRef] [Green Version]
- Stammerjohn, S.; Massom, R.; Rind, D.; Martinson, D. Regions of Rapid Sea Ice Change: An Inter-Hemispheric Seasonal Comparison. Geophys. Res. Lett. 2012, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Bracegirdle, T.J.; Phillips, T.; Marshall, G.J.; Hosking, J.S. An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. J. Clim. 2013, 26, 1473–1484. [Google Scholar] [CrossRef]
- Haumann, F.A.; Notz, D.; Schmidt, H. Anthropogenic Influence on Recent Circulation-Driven Antarctic Sea Ice Changes. Geophys. Res. Lett. 2014, 41, 8429–8437. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C. Climate Modes in Southern High Latitudes and Their Impacts on Antarctic Sea Ice. J. Geophys. Res. Ocean. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from Observations and Reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic Sea Ice Variability and Trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Comiso, J.C.; Lee, T.; Holland, P.R. Linked Trends in the South Pacific Sea Ice Edge and Southern Oscillation Index. Geophys. Res. Lett. 2016, 43, 10295–10302. [Google Scholar] [CrossRef]
- Latif, M.; Martin, T.; Park, W. Southern Ocean Sector Centennial Climate Variability and Recent Decadal Trends. J. Clim. 2013, 26, 7767–7782. [Google Scholar] [CrossRef] [Green Version]
- Armour, K.C.; Marshall, J.; Scott, J.R.; Donohoe, A.; Newsom, E.R. Southern Ocean Warming Delayed by Circumpolar Upwelling and Equatorward Transport. Nat. Geosci. 2016, 9, 549–554. [Google Scholar] [CrossRef]
- Li, X.; Holland, D.M.; Gerber, E.P.; Yoo, C. Impacts of the North and Tropical Atlantic Ocean on the Antarctic Peninsula and Sea Ice. Nature 2014, 505, 538–542. [Google Scholar] [CrossRef]
- Bintanja, R.; Van Oldenborgh, G.J.; Drijfhout, S.S.; Wouters, B.; Katsman, C.A. Important Role for Ocean Warming and Increased Ice-Shelf Melt in Antarctic Sea-Ice Expansion. Nat. Geosci. 2013, 6, 376–379. [Google Scholar] [CrossRef]
- Zhang, J. Increasing Antarctic Sea Ice under Warming Atmospheric and Oceanic Conditions. J. Clim. 2007, 20, 2515–2529. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 1 February 2022).
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analysis of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, G.V.; Glok, N.I.; Vyazilova, A.E.; Kharlanenkova, N.E.; Kulakov, M.Y. Influence of SST in Low Latitudes on the Arctic Warming and Sea Ice. J. Mar. Sci. Eng. 2021, 9, 1145. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T. Tropical Origins for Recent North Atlantic Climate Change. Science 2001, 292, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Lin, H. Tropical Atmospheric Forcing of the Wintertime North Atlantic Oscillation. J. Clim. 2016, 29, 1755–1772. [Google Scholar] [CrossRef]
- Nguyen, H.; Evans, A.; Lucas, C.; Smith, I.; Timbal, B. The Hadley Circulation in Reanalyses: Climatology, Variability, and Change. J. Clim. 2013, 26, 3357–3376. [Google Scholar] [CrossRef]
- Song, H.; Zhang, M. Changes of the Boreal Winter Hadley Circulation in the NCEP–NCAR and ECMWF Reanalyses: A Comparative Study. J. Clim. 2007, 20, 5191–5200. [Google Scholar] [CrossRef]
- Quan, X.; Diaz, H.F.; Hoerling, M.P. Change in the Tropical Hadley Cell Since 1950. In The Hadley Circulation: Present, Past and Future; Diaz, H.F., Bradley, R.S., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 85–120. [Google Scholar] [CrossRef]
- Yan, Y.Y. Intertropical Convergence Zone (ITCZ). In Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 429–432. [Google Scholar] [CrossRef]
- Weninger, B.; Clare, L.; Gerritsen, F.; Horejs, B.; Krauß, R.; Linstädter, J.; Özbal, R.; Rohling, E.J. Neolithisation of the Aegean and Southeast Europe during the 6600–6000 CalBC Period of Rapid Climate Change. Doc. Praehist. 2014, 41, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Sinha, A.; Wang, X.; Cruz, F.W.; Edwards, R.L. The Global Paleomonsoon as Seen through Speleothem Records from Asia and the Americas. Clim. Dyn. 2012, 39, 1045–1062. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Glok, N.I.; Vyazilova, A.E.; Kharlanenkova, N.E. Climate Change in the Arctic: Causes and Mechanisms. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012002. [Google Scholar] [CrossRef]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | 0.016 | 0.017 | 0.019 | 0.017 | 0.017 | 0.018 | 0.019 | 0.019 | 0.021 | 0.02 | 0.019 | 0.018 |
Lat | 0.016 | 0.006 | 0.004 | 0.012 | 0.03 | 0.011 | −0.024 | −0.017 | −0.014 | −0.013 | 0.01 | 0.03 |
Mean Lat, ° N | −2.84 | −2.3 | −0.69 | 2.59 | 7.15 | 10.29 | 11.38 | 11.76 | 10.47 | 7.01 | 2.72 | −1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseev, G.; Vyazilova, A.; Smirnov, A. Influence of Sea Surface Temperature in the Tropics on the Antarctic Sea Ice during Global Warming. J. Mar. Sci. Eng. 2022, 10, 1859. https://doi.org/10.3390/jmse10121859
Alekseev G, Vyazilova A, Smirnov A. Influence of Sea Surface Temperature in the Tropics on the Antarctic Sea Ice during Global Warming. Journal of Marine Science and Engineering. 2022; 10(12):1859. https://doi.org/10.3390/jmse10121859
Chicago/Turabian StyleAlekseev, Genrikh, Anastasiia Vyazilova, and Alexander Smirnov. 2022. "Influence of Sea Surface Temperature in the Tropics on the Antarctic Sea Ice during Global Warming" Journal of Marine Science and Engineering 10, no. 12: 1859. https://doi.org/10.3390/jmse10121859
APA StyleAlekseev, G., Vyazilova, A., & Smirnov, A. (2022). Influence of Sea Surface Temperature in the Tropics on the Antarctic Sea Ice during Global Warming. Journal of Marine Science and Engineering, 10(12), 1859. https://doi.org/10.3390/jmse10121859