Pathways between Climate, Fish, Fisheries, and Management: A Conceptual Integrated Ecosystem Management Approach
Abstract
:1. Introduction
2. Conceptual Approach
3. Eastern Bering Sea
3.1. Driver Status and Trends
3.1.1. Proximate Drivers
3.1.2. Plankton Density
3.1.3. Sea Ice
3.1.4. Habitat
4. Case Studies
4.1. Case Study 1: Walleye Pollock
4.1.1. Habitat and Sea Ice
4.1.2. Predator–Prey Relationships
4.1.3. Summary of Relevant Effects of a Warming Bering Sea on Pollock
4.2. Case Study 2: Crab
4.2.1. Habitat and Sea Ice
4.2.2. Predator–Prey Relationships
4.2.3. Summary of Relevant Effects of a Warming Bering Sea on Crab
4.3. Case Study 3: Sockeye Salmon
4.3.1. Habitat
4.3.2. Predator–Prey Relationships
4.3.3. Summary of Relevant Effects of a Warming Bering Sea on Sockeye Salmon
5. Discussion and Conclusions
- (1)
- A managerial or decision-making pillar, based on classical risk-management systems that incorporates environmental considerations and objectives within a continuous improvement cycle of adaptive management;
- (2)
- An adaptive governance pillar that helps to ensure that planning and implementation activities adhere to modern environmental principles, but that also brings together different institutions with different and/or complementary jurisdictions over resources belonging to the same socio-ecological system. As such, this pillar should involve a systematic learning path and reflection of procedures and structures, while continuously developing new collaborations toward common goals (following the four key adaptive governance principles, [211]);
- (3)
- (4)
- A participation pillar that brings together communication and consultation requirements, as indicated by the principles of the ecosystem approach that combined the adaptive governance principles with traditional principles of good governance, including legitimacy, accountability, transparency, fairness, and inclusiveness [213].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Planque, B.; Fromentin, J.-M.; Cury, P.; Drinkwater, K.F.; Jennings, S.; Perry, R.I.; Kifani, S. How does fishing alter marine populations and ecosystems sensitivity to climate? J. Mar. Syst. 2010, 79, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Perry, I. Chapter 4: Dealing with uncertainty in fisheries management. In The Economics of Adapting Fisheries to Climate Change; OECD Publishing: Paris, France, 2010. [Google Scholar] [CrossRef]
- Szuwalski, C.S.; Punt, A.E. Can an aggregate assessment reflect the dynamics of a spatially structured stock? Snow crab in the eastern Bering Sea as a case study. Fish. Res. 2015, 164, 135–142. [Google Scholar] [CrossRef]
- Punt, A.E.; A’Mar, T.; Bond, N.A.; Butterworth, D.S.; De Moor, C.L.; De Oliveira, J.A.A.; Haltuch, M.A.; Hollowed, A.B.; Szuwalski, C.S. Fisheries management under climate and environmental uncertainty: Control rules and performance simulation. ICES J. Mar. Sci. 2014, 71, 2208–2220. [Google Scholar] [CrossRef] [Green Version]
- Link, J.; Gaichas, S.; Miller, T.; Essington, T.; Bundy, A.; Boldt, J.; Drinkwater, K.; Moksness, E.; Miller, T. Synthesizing lessons learned from comparing fisheries production in 13 northern hemisphere ecosystems: Emergent fundamental features. Mar. Ecol. Prog. Ser. 2012, 459, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.L.; Stabeno, P.J. Climate change and the control of energy flow in the southeastern Bering Sea. Prog. Oceanogr. 2002, 55, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Stabeno, P.J.; Hunt, G.L., Jr.; Napp, J.M.; Schumacher, J.D. Physical forcing of ecosystem dynamics on the Bering Sea Shelf. In The Sea; Robinson, A.R., Brink, K., Eds.; Harvard University Press: Cambridge, UK, 2005; Chapter 30; Volume 14, ISBN 0-674-01527-4. [Google Scholar]
- Ottersen, G.; Stenseth, N.C. Atlantic climate governs oceanographic and ecological variability in the Barents Sea. Limnol. Oceanogr. 2001, 46, 1774–1780. [Google Scholar] [CrossRef]
- Fromentin, J.; Planque, B. Calanus and environment in the eastern North Atlantic. II. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar. Ecol. Prog. Ser. 1996, 134, 111–118. [Google Scholar] [CrossRef]
- Brander, K. Impacts of climate change on fisheries. J. Mar. Syst. 2010, 79, 389–402. [Google Scholar] [CrossRef]
- Jennings, S.; Brander, K. Predicting the effects of climate change on marine communities and the consequences for fisheries. J. Mar. Syst. 2010, 79, 418–426. [Google Scholar] [CrossRef]
- Ottersen, G.; Kim, S.; Huse, G.; Polovina, J.J.; Stenseth, N.C. Major pathways by which climate may force marine fish populations. J. Mar. Syst. 2010, 79, 343–360. [Google Scholar] [CrossRef]
- Andrews, A.G.; Strasburger, W.W.; Farley, E.V.; Murphy, J.M.; Coyle, K.O. Effects of warm and cold climate conditions on capelin (Mallotus villosus) and Pacific herring (Clupea pallasii) in the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 235–246. [Google Scholar] [CrossRef]
- Levin, P.S.; Breslow, S.J.; Harvey, C.J.; Norman, K.C.; Poe, M.R.; Williams, G.D.; Plummer, M.L. Conceptualization of Social-Ecological Systems of the California Current: An Examination of Interdisciplinary Science Supporting Ecosystem-Based Management. Coast. Manag. 2016, 44, 397–408. [Google Scholar] [CrossRef]
- Harvey, C.J.; Reum, J.; Poe, M.R.; Williams, G.D.; Kim, S.J. Using Conceptual Models and Qualitative Network Models to Advance Integrative Assessments of Marine Ecosystems. Coast. Manag. 2016, 44, 486–503. [Google Scholar] [CrossRef] [Green Version]
- Barbeaux, S.J.; Horne, J.K.; Dorn, M.W. Characterizing walleye pollock (Theragra chalcogramma) winter distribution from opportunistic acoustic data. ICES J. Mar. Sci. 2013, 70, 1162–1173. [Google Scholar] [CrossRef] [Green Version]
- Haynie, A.C.; Pfeiffer, L. Why economics matters for understanding the effects of climate change on fisheries. ICES J. Mar. Sci. 2012, 69, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, I.; Aydin, K.; Hermann, A.J.; Gibson, G.A.; Punt, A.E.; Wiese, F.K.; Eisner, L.B.; Ferm, N.; Buckley, T.W.; Moffitt, E.A.; et al. Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 390–412. [Google Scholar] [CrossRef] [Green Version]
- Wiese, F.K.; Wiseman, W.J.; Van Pelt, T.I. Bering Sea linkages. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 2–5. [Google Scholar] [CrossRef]
- Ashjian, C.J.; Harvey, H.R.; Lomas, M.W.; Napp, J.M.; Sigler, M.F.; Stabeno, P.J.; Van Pelt, T.I. Understanding Ecosystem Processes in the Eastern Bering Sea. Deep-Sea Res. II 2012, 65–70, 1–316. [Google Scholar]
- Ashjian, C.J.; Harvey, H.R.; Lomas, M.W.; Napp, J.M.; Sigler, M.F.; Stabeno, P.J.; Van Pelt, T.I. Understanding Ecosystem Processes in the Eastern Bering Sea II. Deep-Sea Res II 2013, 94, 1–342. [Google Scholar]
- Ashjian, C.J.; Harvey, H.R.; Lomas, M.W.; Napp, J.M.; Sigler, M.F.; Stabeno, P.J.; Van Pelt, T.I. Understanding Ecosystem Processes in the Eastern Bering Sea III. Deep-Sea Res. II 2014, 109, 1–300. [Google Scholar]
- Ashjian, C.J.; Harvey, H.R.; Lomas, M.W.; Napp, J.M.; Sigler, M.F.; Stabeno, P.J.; Van Pelt, T.I. Understanding Ecosystem Processes in the Eastern Bering Sea IV. Deep-Sea Res. II 2016, 134, 1–426. [Google Scholar]
- North Pacific Fishery Management Council (NPFMC). Development of a Bering Sea Fishery Ecosystem Plan. Discussion Paper. 2015. Available online: http://npfmc.legistar.com/gateway.aspx?M=F&ID=8ef5f5d6-d709-4e10-acae-c412dc0bac62.pdf (accessed on 2 October 2019).
- Livingston, P.A.; Aydin, K.; Boldt, J.L.; Hollowed, A.E.; Napp, J.M. Alaska marine fisheries management: Advances and linkages to ecosystem research. In Ecosystem-Based Management for Marine Fisheries; Belgrado, A., Fowler, C.W., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 113–152. [Google Scholar]
- Fissel, B.; Dalton, M.; Felthoven, R.; Garber-Yonts, B.; Haynie, A.; Himes-Cornell, A.; Kasperski, S.; Lee, J.; Lew, D.; Seung, C. Economic status of the groundfish fisheries off Alaska, 2014. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions; North Pacific Fishery Management Council: Anchorage, AK, USA, 2015. [Google Scholar]
- Stabeno, P.J.; Kachel, N.B.; Moore, S.E.; Napp, J.M.; Sigler, M.; Yamaguchi, A.; Zerbini, A.N. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Res. II 2012, 65–70, 31–34. [Google Scholar] [CrossRef]
- Coachman, L. Circulation, water masses, and fluxes on the southeastern Bering Sea shelf. Cont. Shelf Res. 1986, 5, 23–108. [Google Scholar] [CrossRef]
- Kachel, N.B.; Hunt, G.L., Jr.; Salo, S.A.; Schumacher, J.D.; Stabeno, P.J.; Whitledge, T.E. Characteristics and variability of the inner front of the southeastern Bering Sea. Deep-Sea Res. Part II 2002, 49, 5889–5909. [Google Scholar] [CrossRef] [Green Version]
- Stabeno, P.; Napp, J.; Mordy, C.; Whitledge, T. Factors influencing physical structure and lower trophic levels of the eastern Bering Sea shelf in 2005: Sea ice, tides and winds. Prog. Oceanogr. 2010, 85, 180–196. [Google Scholar] [CrossRef]
- Whitledge, T.E.; Walsh, J.J. Biological processes associated with the thermocline and surface fronts in the southeastern Bering Sea. In Marine Interfaces Eco-Hydrodynamics, Proceedings of the 17th International Liege Colloquium on Ocean Hydrodynamics, Liege, Belgium, 13–17 May 1985; Nihoul, J.C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 665–670. [Google Scholar]
- Sullivan, M.; Kachel, N.; Mordy, C.; Stabeno, P. The Pribilof Islands: Temperature, salinity and nitrate during summer 2004. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1729–1737. [Google Scholar] [CrossRef]
- Cooney, R.T.; Coyle, K.O. Trophic implications of cross-shelf copepod distributions in the Southeastern Bering Sea. Mar. Biol. 1982, 70, 187–196. [Google Scholar] [CrossRef]
- Sambrotto, R.; Niebauer, H.; Goering, J.; Iverson, R. Relationships among vertical mixing, nitrate uptake, and phytoplankton growth during the spring bloom in the southeast Bering Sea middle shelf. Cont. Shelf Res. 1986, 5, 161–198. [Google Scholar] [CrossRef]
- Schneider, D.C.; Hunt, G.I., Jr.; Harrison, N.M. Mass and energy transfer to seabirds in the southeastern Bering Sea. Cont. Shelf Res. 1986, 5, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Vidal, J. Variations in the distribution, abundance, and development of copepods in the southeastern Bering Sea in 1980 and 1981. Cont. Shelf Res. 1986, 5, 215–239. [Google Scholar] [CrossRef]
- Coyle, K.O.; Chavtur, V.G.; Pinchuk, A.I. Zooplankton of the Bering Sea: A review of the Russian-language literature. In Ecology of the Bering Sea: A Review of the Russian Literature; Alaska Sea Grant College Program No. 96-01; Mathisen, O.A., Coyle, K.O., Eds.; University of Alaska: Fairbanks, AK, USA, 1996; pp. 97–133. [Google Scholar]
- Springer, A.M.; McROY, C.P.; Flint, M.V. The Bering Sea Green Belt: Shelf-edge processes and ecosystem production. Fish. Oceanogr. 1996, 5, 205–223. [Google Scholar] [CrossRef]
- Kinder, T.H.; Hunt, G.L., Jr.; Schneider, D.; Schumacher, J.D. Correlation between seabirds and oceanic fronts around the Pribilof Islands, Alaska. Estuar. Coast. Shelf Sci. 1983, 16, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.; Stabeno, P.J.; Strom, S.; Napp, J.M. Patterns of spatial and temporal variation in the marine ecosystem of the southeastern Bering Sea, with special reference to the Pribilof Domain. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1919–1944. [Google Scholar] [CrossRef]
- Stabeno, P.; Danielson, S.; Kachel, D.; Kachel, N.; Mordy, C. Currents and transport on the Eastern Bering Sea shelf: An integration of over 20 years of data. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 13–29. [Google Scholar] [CrossRef]
- Kinder, T.H.; Schumacher, J.D. Hydrographic structure over the continental shelf of the southeastern Bering Sea. In The Eastern Bering Sea Shelf: Oceanography and Resources; Hood, D.W., Calder, J.A., Eds.; University of Washington Press: Seattle, WA, USA, 1981; pp. 31–52. [Google Scholar]
- Reed, R.K. Water Properties over the Bering Sea Shelf: Climatology and Variations; NOAA Technical Report ERL 452-PMEL 42; National Oceanic and Atmospheric Administration (NOAA): Seattle, WA, USA, 1995; 15p.
- Stabeno, P.J.; Reed, R.K. Circulation in the Bering Sea basin observed by satellite tracked drifters: 1986–1993. J. Phys. Oceanogr. 1994, 24, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Ladd, C. Seasonal and interannual variability of the Bering Slope Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 5–13. [Google Scholar] [CrossRef]
- Petrik, C.M.; Duffy-Anderson, J.T.; Mueter, F.; Hedstrom, K.; Curchitser, E. Biophysical transport model suggests climate variability determines distribution of walleye pollock early life stages in the Eastern Bering Sea through effects on spawning. Prog. Oceanogr. 2015, 138 Pt B, 459–474. [Google Scholar] [CrossRef] [Green Version]
- Sohn, D.; Ciannelli, L.; Duffy-Anderson, J. Distribution of early life Pacific halibut and comparison with Greenland halibut in the eastern Bering Sea. J. Sea Res. 2016, 107, 31–42. [Google Scholar] [CrossRef]
- Duffy-Anderson, J.T.; Doyle, M.J.; Mier, K.L.; Stabeno, P.J.; Wilderbuer, T.K. Early life ecology of Alaska plaice (Pleuronectes quadrituberculatus) in the eastern Bering Sea: Seasonality, distribution, and dispersal. J. Sea Res. 2010, 64, 3–14. [Google Scholar] [CrossRef]
- Stabeno, P.J.; Van Meurs, P. Evidence of episodic on-shelf flow in the southeastern Bering Sea. J. Geophys. Res. Earth Surf. 1999, 104, 29715–29720. [Google Scholar] [CrossRef]
- Stabeno, P.; Kachel, N.; Mordy, C.; Righi, D.; Salo, S. An examination of the physical variability around the Pribilof Islands in 2004. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1701–1716. [Google Scholar] [CrossRef]
- Clement Kinney, J.; Maslowski, W.; Okkonen, S. On the processes controlling shelf–basin exchange and outer shelf dynamics in the Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1351–1362. [Google Scholar] [CrossRef]
- Vestfals, C.D.; Ciannelli, L.; Duffy-Anderson, J.T.; Ladd, C. Effects of seasonal and interannual variability in along-shelf and cross-shelf transport on groundfish recruitment in the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 190–203. [Google Scholar] [CrossRef]
- Eicken, E.; Lovecraft, A.L.; Druckenmiller, M.L. Sea-Ice System Services: A Framework to Help Identify and Meet Information Needs Relevant for Arctic Observing Networks. Arctic 2009, 62, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.; Coyle, K.O.; Eisner, L.B.; Farley, E.V.; Heintz, R.A.; Mueter, F.J.; Napp, J.M.; Overland, J.E.; Ressler, P.H.; Salo, S.A.; et al. Climate impacts on eastern Bering Sea foodwebs: A synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES J. Mar. Sci. 2011, 68, 1230–1243. [Google Scholar] [CrossRef] [Green Version]
- Cross, J.N.; Mathis, J.T.; Bates, N.R. Hydrographic controls on net community production and total organic carbon distributions in the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 98–109. [Google Scholar] [CrossRef]
- Ladd, C.; Stabeno, P.J. Stratification on the Eastern Bering Sea shelf revisited. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 72–83. [Google Scholar] [CrossRef]
- Walsh, J.J.; McRoy, C.P. Ecosystem analysis in the southeastern Bering sea. Cont. Shelf Res. 1986, 5, 259–288. [Google Scholar] [CrossRef]
- Grebmeier, J.M.; Overland, J.E.; Moore, S.E.; Farley, E.V.; Carmack, E.C.; Cooper, L.W.; Frey, K.E.; Helle, J.H.; McLaughlin, F.A.; McNutt, S.L. A Major Ecosystem Shift in the Northern Bering Sea. Science 2006, 311, 1461–1464. [Google Scholar] [CrossRef]
- Grebmeier, J.; Barry, J. Benthic Processes in Polynyas. In Polynyas: Windows to the World; Smith, W.O., Barber, D.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 74, pp. 363–390. [Google Scholar]
- Thompson, D.W.J.; Wallace, J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Wilderbuer, T.; Hollowed, A.; Ingraham, W.; Spencer, P.; Conners, M.; Bond, N.; Walters, G. Flatfish recruitment response to decadal climatic variability and ocean conditions in the eastern Bering Sea. Prog. Oceanogr. 2002, 55, 235–247. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- United States Global Change Research Program (USGCRP). Global Climate Change Impacts in the United States; Karl, T.R., Melillo, J.M., Peterson, T.C., Eds.; Cambridge University Press: New York, NY, USA, 2009.
- U.S. Environmental Protection Agency (EPA). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030; EPA 430-R-12-006; Office of Atmospheric Programs, Climate Change Division, U.S. Environmental Protection Agency: Washington, DC, USA, 2012. Available online: http://www.epa.gov/climatechange/EPAactivities/economics/nonco2projections.html (accessed on 15 September 2019).
- Overland, J.E.; Wang, M.; Walsh, J.E.; Stroeve, J.C. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2014, 2, 68–74. [Google Scholar] [CrossRef]
- Holthaus, E. El Niño Has Arrived, and It Could Produce the Warmest Year on Record. The Slatest. 2015. Available online: http://www.slate.com/blogs/the_slatest/2015/03/05/el_ni_o_it_s_here_and_it_will_boost_global_warming_to_record_highs.html (accessed on 23 September 2019).
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Smith, S.J.; Edmonds, J.A.; Hartin, C.; Mundra, A.; Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Chang. 2015, 5, 333–336. [Google Scholar] [CrossRef]
- Neal, E.G.; Hood, E.; Smikrud, K. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.E.; Gettelman, A. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. Earth Surf. 2009, 114, 18204. [Google Scholar] [CrossRef]
- Higgins, M.E.; Cassano, J.J. Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J. Geophys. Res. Earth Surf. 2009, 114, 16107. [Google Scholar] [CrossRef] [Green Version]
- Haufler, J.B.; Mehl, C.A.; Yeats, S. Climate Change: Anticipated Effects on Ecosystem Services and Potential Actions by the Alaska Region, U.S. Forest Service; Ecosystem Management Research Institute: Seeley Lake, MT, USA, 2010. [Google Scholar]
- Stewart, B.C.; Kunkel, K.E.; Stevens, L.E.; Sun, L.; Walsh, J.E. Regional Climate Trends and Scenarios for the U.S. National Climate Assessment: Part 7. Climate of Alaska; NOAA Technical Report NESDIS 142-7; National Oceanic and Atmospheric Administration (NOAA): Washington, DC, USA, 2013; 60p. Available online: http://www.nesdis.noaa.gov/technical_reports/NOAA_NESDIS_Tech_Report_142-7-Climate_of_Alaska.pdf (accessed on 19 September 2019).
- Derocher, A.E.; Lunn, N.J.; Stirling, I. Polar Bears in a Warming Climate. Integr. Comp. Biol. 2004, 44, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacozza, J.; Ferguson, S.H. Spatio-temporal variability of snow over sea ice in western Hudson Bay, with reference to ringed seal pup survival. Polar Biol. 2014, 37, 817–832. [Google Scholar] [CrossRef]
- Clement, J.P.; Bengtson, J.L.; Kelly, B.P. Managing for the Future in a Rapidly Changing Arctic. A Report to the President; Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska (D. J. Hayes, Chair): Washington, DC, USA, 2013; 59p.
- Bond, N.; Adams, J. Atmospheric forcing of the southeast Bering Sea Shelf during 1995–99 in the context of a 40-year historical record. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5869–5887. [Google Scholar] [CrossRef]
- Schumacher, J.D.; Bond, N.A.; Brodeur, R.D.; Livingston, P.A.; Napp, J.M.; Stabeno, P.J. Climate Change in the Southeastern Bering Sea and Some Consequences for Biota. In Large Marine Ecosystems of the World—Trends in Exploitation. Protection and Research; Hempel, G., Sherman, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; 33p. [Google Scholar]
- Napp, J.M.; Baier, C.T.; Brodeur, R.; Coyle, K.O.; Shiga, N.; Mier, K. Interannual and decadal variability in zooplankton communities of the southeast Bering Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5991–6008. [Google Scholar] [CrossRef]
- Lee, H.-C.; Delworth, T.; Rosati, A.; Zhang, R.; Anderson, W.G.; Zeng, F.; Stock, C.A.; Gnanadesikan, A.; Dixon, K.; Griffies, S. Impact of climate warming on upper layer of the Bering Sea. Clim. Dyn. 2012, 40, 327–340. [Google Scholar] [CrossRef]
- Danielson, S.L.; Hedstrom, K.S.; Aagaard, K.; Weingartner, T.J.; Curchitser, E.N. Wind-induced reorganization of the Bering shelf circulation. Geophys. Res. Lett. 2012, 39, L08601. [Google Scholar] [CrossRef]
- Mordy, C.W.; Cokelet, E.D.; Ladd, C.; Menzia, F.A.; Proctor, P.; Stabeno, P.J.; Wisegarver, E. Net community production on the middle shelf of the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 110–125. [Google Scholar] [CrossRef]
- Sullivan, M.; Kachel, N.B.; Mordy, C.W.; Salo, S.A.; Stabeno, P.J. Sea ice and water column structure on the eastern Bering Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 39–56. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Goes, J.I.; McKee, K.T.; Gomes, H.D.R.; Stabeno, P.J. Comparison of spring-time phytoplankton community composition in two cold years from the western Gulf of Alaska into the southeastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 57–70. [Google Scholar] [CrossRef]
- Wang, S.; Budge, S.; Iken, K.; Gradinger, R.; Springer, A.; Wooller, M. Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. Mar. Ecol. Prog. Ser. 2015, 518, 31–50. [Google Scholar] [CrossRef]
- Sigler, M.F.; Stabeno, P.J.; Eisner, L.B.; Napp, J.M.; Mueter, F.J. Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995–2011. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 71–83. [Google Scholar] [CrossRef]
- Eisner, L.B.; Napp, J.M.; Mier, K.L.; Pinchul, A.I.; Andrews, A.G., III. Climate-mediated changes in zooplankton community structure for the eastern Bering Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 157–171. [Google Scholar] [CrossRef]
- Niebauer, H.J.; Bond, N.A.; Yakunin, L.P.; Plotnikov, V.V. An update on the climatology and sea ice in the Bering Sea. In Dynamics of the Bering Sea; University of Alaska Sea Grant Program, AK-SG-03; Loughlin, T.R., Ohtani, K., Eds.; University of Alaska: Fairbanks, AK, USA, 1999; pp. 29–59. [Google Scholar]
- Wyllie-Echeverria, T.; Ohtani, K. Seasonal sea ice variability and the Bering Sea ecosystem. In Dynamics of the Bering Sea; AK-SG-03; Loughlin, T.R., Ohtani, K., Eds.; University of Alaska Sea Grant: Fairbanks, AK, USA, 1999; pp. 435–451. [Google Scholar]
- Stabeno, P.; Bond, N.; Salo, S. On the recent warming of the southeastern Bering Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2599–2618. [Google Scholar] [CrossRef]
- Cheng, W.; Curchitser, E.; Ladd, C.; Stabeno, P.; Wang, M. Influences of sea ice on the Eastern Bering Sea: NCAR CESM simulations and comparison with observations. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 27–38. [Google Scholar] [CrossRef]
- Wang, M.; Overland, J.E.; Stabeno, P. Future climate of the Bering and Chukchi Seas projected by global climate models. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 46–57. [Google Scholar] [CrossRef]
- Aguilar-Islas, A.M.; Rember, R.D.; Mordy, C.W.; Wu, J. Sea ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea. Geophys. Res. Lett. 2008, 35, 24601. [Google Scholar] [CrossRef]
- Mueter, F.J.; Litzow, M.A. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 2008, 18, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Hermann, A.J.; Gibson, G.A.; Bond, N.A.; Curchitser, E.N.; Hedstrom, K.; Cheng, W.; Wang, M.; Cokelet, E.D.; Stabeno, P.J.; Aydin, K. Projected future biophysical states of the Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 30–47. [Google Scholar] [CrossRef]
- Byrne, R.H.; Mecking, S.; Feely, R.A.; Liu, X. Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys. Res. Lett. 2010, 37, L02601. [Google Scholar] [CrossRef] [Green Version]
- Feely, R.; Doney, S.; Cooley, S. Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World. Oceanography 2009, 22, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Mathis, J.; Cooley, S.; Lucey, N.; Colt, S.; Ekstrom, J.; Hurst, T.; Hauri, C.; Evans, W.; Cross, J.; Feely, R. Ocean acidification risk assessment for Alaska’s fishery sector. Prog. Oceanogr. 2015, 136, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Mathis, J.T.; Cross, J.; Bates, N.R. Coupling primary production and terrestrial runoff to ocean acidification and carbonate mineral suppression in the eastern Bering Sea. J. Geophys. Res. Earth Surf. 2011, 116, C02030. [Google Scholar] [CrossRef]
- Cross, J.N.; Mathis, J.T.; Lomas, M.W.; Moran, S.B.; Baumann, M.S.; Shull, D.H.; Mordy, C.W.; Bates, N.R.; Stabeno, P.J. Integrated assessment of the carbon budget in the Southeastern Bering Sea: From the atmosphere to the sediments. Deep-Sea Res. II 2014, 109, 112–124. [Google Scholar] [CrossRef]
- Mathis, J.T.; Cross, J.; Monacci, N.; Feely, R.A.; Stabeno, P. Evidence of prolonged aragonite undersaturations in the bottom waters of the southern Bering Sea shelf from autonomous sensors. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 125–133. [Google Scholar] [CrossRef]
- Kaplan, I.C.; Levin, P.S.; Burden, M.; Fulton, E.A. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Can. J. Fish. Aquat. Sci. 2010, 67, 1968–1982. [Google Scholar] [CrossRef] [Green Version]
- Pinchuk, A.I.; Coyle, K.O.; Farley, E.V.; Renner, H.M. Emergence of the Arctic Themisto libellula (Amphipoda: Hyperiidae) on the southeastern Bering Sea shelf as a result of the recent cooling, and its potential impact on the pelagic food web. ICES J. Mar. Sci. 2013, 70, 1244–1254. [Google Scholar] [CrossRef]
- Gibson, G.; Coyle, K.; Hedstrom, K.; Curchitser, E.N. A modeling study to explore on-shelf transport of oceanic zooplankton in the Eastern Bering Sea. J. Mar. Syst. 2013, 121–122, 47–64. [Google Scholar] [CrossRef]
- Coyle, K.; Pinchuk, A. Climate-related differences in zooplankton density and growth on the inner shelf of the southeastern Bering Sea. Prog. Oceanogr. 2002, 55, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Siddon, E.; Duffy-Anderson, J.; Mueter, F. Community-level response of fish larvae to environmental variability in the southeastern Bering Sea. Mar. Ecol. Prog. Ser. 2011, 426, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Smart, T.I.; Duffy-Anderson, J.T.; Horne, J.K.; Farley, E.V.; Wilson, C.D.; Napp, J.M. Influence of environment on walleye pollock eggs, larvae, and juveniles in the southeastern Bering Sea. Deep-Sea Res. II 2012, 65–70, 196–207. [Google Scholar] [CrossRef]
- Coyle, K.O.; Eisner, L.B.; Mueter, F.J.; Pinchuk, A.I.; Janout MA Cieliel, K.D.; Farley, E.V.; Andrews, A.G. Climate change in the southeast Bering Sea: Impacts on pollock stocks and implications for the oscillating control hypothesis. Fish. Oceanogr. 2011, 20, 139–156. [Google Scholar] [CrossRef]
- Hollowed, A.B.; Barbeaux, S.J.; Cokelet, E.D.; Farley, E.; Kotwicki, S.; Ressler, P.H.; Spital, C.; Wilson, C.D. Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 230–250. [Google Scholar] [CrossRef]
- Baker, M.R.; Hollowed, A.B. Delineating ecological regions in marine systems: Integrating physical structure and community composition to inform spatial management in the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 109, 215–240. [Google Scholar] [CrossRef]
- Williams, E.H.; Quinn, T.J. Pacific herring, (Clupea pallasi), recruitment in the Bering Sea and north-east Pacific Ocean, I: Relationships among different populations. Fish. Oceanogr. 2000, 9, 285–299. [Google Scholar] [CrossRef]
- Parker-Stetter, S.L.; Horne, J.K.; Farley, E.V.; Barbee, D.H.; Andrews, A.G.; Eisner, L.B.; Nomura, J.M. Summer distributions of forage fish in the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 94, 211–230. [Google Scholar] [CrossRef]
- De Robertis, A.; Cokelet, E.D. Distribution of fish and macrozooplankton in ice-covered and open-water areas of the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 217–229. [Google Scholar] [CrossRef]
- Sigler, M.F.; Kuletz, K.J.; Ressler, P.H.; Friday, N.A.; Wilson, C.D.; Zerbini, A. Marine predators and persistent prey in the southeast Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 292–303. [Google Scholar] [CrossRef]
- Friday, N.A.; Waite, J.M.; Zerbini, A.N.; Moore, S.E. Cetacean distribution and abundance in relation to oceanographic domains on the eastern Bering Sea shelf: 1999–2004. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 260–272. [Google Scholar] [CrossRef]
- Kotwicki, S.; Lauth, R.R. Detecting temporal trends and environmentally-driven changes in the spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 94, 231–243. [Google Scholar] [CrossRef]
- Decker, M.B.; Cieciel, K.; Zavolokin, A.; Lauth, R.; Brodeur, R.D.; Coyle, K.O. Population Fluctuations of Jellyfish in the Bering Sea and Their Ecological Role in This Productive Shelf Ecosystem. In Jellyfish Blooms; Pitt, K.A., Lucas, C.H., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Strasburger, W.W.; Hillgruber, N.; Pinchuk, A.I.; Mueter, F.J. Feeding ecology of age-0 walleye Pollock (Gadus chalcogrammus) and Pacific cod (Gadus microcephalus) in the southeastern Bering Sea. Deep-Sea Res. Part II 2014, 109, 172–180. [Google Scholar] [CrossRef]
- Hurst, T.P.; Fernandez, E.R.; Mathis, J.T. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 2013, 70, 812–822. [Google Scholar] [CrossRef] [Green Version]
- Hurst, T.; Fernandez, E.; Mathis, J.; Miller, J.; Stinson, C.; Ahgeak, E. Resiliency of juvenile walleye pollock to projected levels of ocean acidification. Aquat. Biol. 2012, 17, 247–259. [Google Scholar] [CrossRef]
- Melzner, F.; Gutowska, M.A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M.C.; Bleich, M.; Pörtner, H.-O. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences 2009, 6, 2313–2331. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.-O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser. 2008, 373, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Buckley, T.W.; Ortiz, I.; Kotwicki, S.; Aydin, K. Summer diet composition of walleye pollock and predator–prey relationships with copepods and euphausiids in the eastern Bering Sea, 1987–2011. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 302–311. [Google Scholar] [CrossRef]
- Fabry, V.J.; Seibel, B.A.; Feely, R.A.; Orr, J. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65, 414–432. [Google Scholar] [CrossRef]
- Cooper, H.L.; Potts, D.C.; Paytan, A. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES J. Mar. Sci. 2017, 74, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Sigler, M.F.; Napp, J.M.; Stabeno, P.J.; Heintz, R.A.; Lomas, M.; Hunt, G. Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Holsman, K.; Aydin, K. Comparative methods for evaluating climate change impacts on the foraging ecology of Alaskan groundfish. Mar. Ecol. Prog. Ser. 2015, 521, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Ressler, P.H.; De Robertis, A.; Warren, J.D.; Smith, J.N.; Kotwicki, S. Developing an acoustic survey of euphausiids to understand trophic interactions in the Bering Sea ecosystem. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 184–195. [Google Scholar] [CrossRef]
- Heintz, R.A.; Vollenweider, J.J. Influence of size on the sources of energy consumed by overwintering walleye pollock (Theragra chalcogramma). J. Exp. Mar. Biol. Ecol. 2010, 393, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Mueter, F.J.; Bond, N.A.; Ianelli, J.N.; Hollowed, A.B. Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES J. Mar. Sci. 2011, 68, 1284–1296. [Google Scholar] [CrossRef] [Green Version]
- Heintz, R.A.; Siddon, E.C.; Farley, E.V., Jr.; Napp, J.M. Correlation between recruitment and fall condition of age-0 pollock (Theragra chalcogramma) from the eastern Bering Sea under varying climate conditions. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2013, 94, 150–156. [Google Scholar] [CrossRef]
- Boldt, J.L.; Buckley, T.W.; Rooper, C.N.; Aydin, K. Factors influencing cannibalism and abundance of walleye pollock (Theragra chalcogramma) on the eastern Bering Sea shelf, 1982–2006. Fish. Bull. 2012, 110, 293–306. [Google Scholar]
- Hunsicker, M.E.; Ciannelli, L.; Bailey, K.M.; Zador, S.; Stige, L.C. Climate and Demography Dictate the Strength of Predator-Prey Overlap in a Subarctic Marine Ecosystem. PLoS ONE 2013, 8, e66025. [Google Scholar] [CrossRef]
- Farley, E.V.; Murphy, J.; Moss, J.; Feldman, A.; Eisner, L. Marine ecology of western Alaska juvenile salmon. Am. Fish. Soc. Symp. 2009, 70, 307–329. [Google Scholar]
- Aydin, K.; Gaichas, S.; Ortiz, I.; Kinzey, D.; Friday, N. A Comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands Large Marine Ecosystems through Food Web Modeling; NOAA Technical Memorandum NMFS-AFSC-178; National Oceanic and Atmospheric Administration (NOAA): Washington, DC, USA, 2007; 298p.
- Zerbini, A.N.; Friday, N.A.; Palacios, D.M.; Waite, J.M.; Ressler, P.H.; Rone, B.K.; Moore, S.E.; Clapham, P.J. Baleen whale abundance and distribution in relation to environmental variables and prey density in the Eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 312–330. [Google Scholar] [CrossRef]
- Suryan, R.; Kuletz, K.; Parker-Stetter, S.; Ressler, P.; Renner, M.; Horne, J.; Farley, E.; Labunski, E. Temporal shifts in seabird populations and spatial coherence with prey in the southeastern Bering Sea. Mar. Ecol. Prog. Ser. 2016, 549, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Swiney, K.M.; Long, W.C.; Foy, R.J. Effects of high pCO2 on Tanner crab reproduction and early life history—Part I: Long-term exposure reduces hatching success and female calcification, and alters embryonic development. ICES J. Mar. Sci. 2016, 73, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Long, W.C.; Swiney, K.M.; Foy, R.J. Effects of high pCO2 on Tanner crab reproduction and early life history, Part II: Carryover effects on larvae from oogenesis and embryogenesis are stronger than direct effects. ICES J. Mar. Sci. 2016, 73, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Sigler, M.F.; Foy, R.J.; Short, J.W.; Dalton, M.; Eisner, L.B.; Hurst, T.P.; Morado, J.F.; Stone, R.P. Forecast Fish, Shellfish and Coral Population Responses to Ocean Acidification in the North Pacific Ocean and Bering Sea: An Ocean Acidification Research Plan for the Alaska Fisheries Science Center; AFSC Processed Rep. 2008-07; Alaska Fisheries Science Center; NOAA-National Marine Fisheries Service: Silver Spring, MD, USA, 2008; 35p.
- Long, W.C.; Swiney, K.; Harris, C.; Page, H.N.; Foy, R.J. Effects of Ocean Acidification on Juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) Growth, Condition, Calcification, and Survival. PLoS ONE 2013, 8, e60959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punt, A.E.; Poljak, D.; Dalton, M.G.; Foy, R.J. Evaluating the impact of ocean acidification on fishery yields and profits: The example of red king crab in Bristol Bay. Ecol. Model. 2014, 285, 39–53. [Google Scholar] [CrossRef]
- Ernst, B.; Orensanz, J.; Armstrong, D.A. Spatial dynamics of female snow crab (Chionoecetes opilio) in the eastern Bering Sea. Can. J. Fish. Aquat. Sci. 2005, 62, 250–268. [Google Scholar] [CrossRef]
- Ryer, C.H.; Ottmar, M.; Spencer, M.; Anderson, J.D.; Cooper, D. Temperature-Dependent Growth of Early Juvenile Southern Tanner Crab Chionoecetes bairdi: Implications for Cold Pool Effects and Climate Change in the Southeastern Bering Sea. J. Shellfish Res. 2016, 35, 259–267. [Google Scholar] [CrossRef]
- Stoner, A.W.; Copeman, L.A.; Ottmar, M.L. Molting, growth, and energetics of newly-settled blue king crab: Effects of temperature and comparisons with red king crab. J. Exp. Mar. Biol. Ecol. 2013, 442, 10–21. [Google Scholar] [CrossRef]
- Ryer, C.H.; Long, W.C.; Spencer, M.L.; Iseri, P. Shallow-water habitat use by newly settled southern Tanner crab (Chionoecetes bairdi): Depth distribution, habitat associations, and differential growth in embayments around Kodiak Island, Alaska. Fish Bull. 2015, 113, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Coyle, K.O.; Pinchuk, A.I.; Eisner, L.B.; Napp, J.M. Zooplankton species composition, abundance and biomass on the eastern Bering Sea shelf during summer: The potential role of water-column stability and nutrients in structuring the zooplankton community. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1775–1791. [Google Scholar] [CrossRef]
- Bright, D. Life Histories of the King Crab, Paralithodes Camtschatica, and Tanner Crab, Chionoecetes Bairdi, in Cook Inlet, Alaska. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 1967; 265p. [Google Scholar]
- Paul, A.J.; Paul, J.M.; Shoemaker, P.A.; Feder, H.M. Prey Concentrations and Feeding Response in Laboratory-Reared Stage-One Zoeae of King Crab, Snow Crab, and Pink Shrimp. Trans. Am. Fish. Soc. 1979, 108, 440–443. [Google Scholar] [CrossRef]
- Holladay, B.A.; Norcross, B.L. Diet diversity as a mechanism for partitioning nursery grounds of Pleuronectids. In Proceedings of the International Symposium of North Pacific Flatfish, Anchorage, AK, USA, 26–28 October 1994; Alaska Sea Grant College Program AK-SG-95-04. pp. 177–203. [Google Scholar]
- Yang, M.-S. Food Habits of the Important Groundfishes in the Aleutian Islands in 1994 and 1997; NOAA Technical Memorandum 2003-07; US Department of Commerce National Marine Fisheries Service: Washington, DC, USA, 2003; 233p.
- Zheng, J.; Kruse, G.H. Recruitment patterns of Alaskan crabs and relationships to decadal shifts in climate and physical oceanography. ICES J. Mar. Sci. 2000, 57, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Kruse, G.H. Recruitment variation of eastern Bering Sea crabs: Climate-forcing or top-down effects? Prog. Oceanogr. 2006, 68, 184–204. [Google Scholar] [CrossRef]
- Lang, G.M.; Livingston, P.A.; Dodd, K.A. Groundfish Food Habits and Predation on Commercially Important Prey Species in the Eastern Bering Sea from 1997 through 2001; NOAA Technical Memorandum NMFS-AFSC-158; US Department of Commerce National Marine Fisheries Service: Washington, DC, USA, 2005; 230p. Available online: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-158.pdf (accessed on 2 October 2019).
- Marcello, L.; Mueter, F.; Dawe, E.; Moriyasu, M. Effects of temperature and gadid predation on snow crab recruitment: Comparisons between the Bering Sea and Atlantic Canada. Mar. Ecol. Prog. Ser. 2012, 469, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Livingston, P.A. Interannual trends in Pacific cod, Gadus macrocephalus, predation on three commercially important crab species in the eastern Bering Sea. Fish. Bull. 1989, 87, 807–827. [Google Scholar]
- Martins, E.G.; Hinch, S.G.; Cooke, S.J.; Patterson, D.A. Climate effects on growth, phenology, and survival of sockeye salmon (Oncorhynchus nerka): A synthesis of the current state of knowledge and future research directions. Rev. Fish Biol. Fish. 2012, 22, 887–914. [Google Scholar] [CrossRef]
- Aydin, K.Y.; McFarlane, G.A.; King, J.R.; Megrey, B.A.; Myer, K.W. Linking oceanic foodwebs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales. Deep Sea Res. II 2005, 52, 757–780. [Google Scholar] [CrossRef]
- Karpenko, V.I.; Koval, M.V. Feeding strategies and trends of pink and chum salmon growth in the marine waters of Kamchatka. In International Workshop on Explanations for the High Abundance of Pink and Chum Salmon and Future Trends; Tech. Rep. 8; North Pacific Anadromous Fish Commission (NPAFC): Vancouver, BC, Canada, 2012; pp. 82–86. [Google Scholar]
- Mackas, D.L.; Galbraith, M.D. Pteropod time-series from the NE Pacific. ICES J. Mar. Sci. 2012, 69, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Bednaršek, N.; Tarling, G.A.; Bakker, D.; Fielding, S.; Jones, E.M.; Venables, H.J.; Ward, P.; Kuzirian, A.; Lézé, B.; Feely, R.A.; et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 2012, 5, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Busch, D.S.; Maher, M.; Thibodeau, P.; McELHANY, P. Shell Condition and Survival of Puget Sound Pteropods Are Impaired by Ocean Acidification Conditions. PLoS ONE 2014, 9, e105884. [Google Scholar] [CrossRef]
- Farley, E.V.; Starovoytov, A.; Naydenko, S.; Heintz, R.; Trudel, M.; Guthrie, C.; Eisner, L.; Guyon, J.R. Implications of a warming eastern Bering Sea for Bristol Bay sockeye salmon. ICES J. Mar. Sci. 2011, 68, 1138–1146. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.E.; Ruggerone, G.T. Factors affecting marine growth of Bristol Bay sockeye salmon. Fish. Res. 1993, 18, 89–103. [Google Scholar] [CrossRef]
- Pyper, B.J.; Peterman, R.M. Relationship among adult body length, abundance, and ocean temperature for British Columbia and Alaska sockeye salmon (Oncorhynchus nerka), 1967–1997. Can. J. Fish. Aquat. Sci. 1999, 56, 1716–1720. [Google Scholar]
- Martinson, E.; Helle, J.; Scarnecchia, D.; Stokes, H. Density-dependent growth of Alaska sockeye salmon in relation to climate–oceanic regimes, population abundance, and body size, 1925 to 1998. Mar. Ecol. Prog. Ser. 2008, 370, 1–18. [Google Scholar] [CrossRef]
- Downton, M.W.; Miller, K.A. Relationships between Alaskan salmon catch and North Pacific climate on interannual and interdecadal time scales. Can. J. Fish. Aquat. Sci. 1998, 55, 2255–2265. [Google Scholar] [CrossRef]
- Brett, J.R. Life Energetics of Sockeye Samon. In Behavioral Energetics: The Cost of Survival in Vertebrates. Proceedings from Ohio State University Biosciences Colloquia; Aspey, W.P., Lustick, S.I., Eds.; Ohio State University Press: Columbus, OH, USA, 1983; pp. 29–66. [Google Scholar]
- Cox, S.P.; Hinch, S.G. Changes in size at maturity of Fraser River sockeye salmon (Oncorhynchus nerka) (1952–1993) and associations with temperature. Can. J. Fish. Aquat. Sci. 1997, 54, 1159–1165. [Google Scholar] [CrossRef]
- Hinch, S.G.; Healey, M.C.; Diewert, R.E.; Henderson, M.A.; Thomson, K.A.; Hourston, R.; Juanes, F. Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can. J. Fish. Aquat. Sci. 1995, 52, 2651–2659. [Google Scholar] [CrossRef] [Green Version]
- Mackas, D.L.; Batten, S.; Trudel, M. Effects on zooplankton of a warmer ocean: Recent evidence from the Northeast Pacific. Prog. Oceanogr. 2007, 75, 223–252. [Google Scholar] [CrossRef]
- Richardson, A.J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 2008, 65, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Mueter, F.J.; Peterman, R.M.; Pyper, B.J. Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Can. J. Fish. Aquat. Sci. 2002, 59, 456–463. [Google Scholar] [CrossRef]
- Parker, R.R. Marine Mortality Schedules of Pink Salmon of the Bella Coola River, Central British Columbia. J. Fish. Res. Board Can. 1968, 25, 757–794. [Google Scholar] [CrossRef]
- Willette, T.M.; Cooney, R.T.; Hyer, K. Predator foraging mode shifts affecting mortality of juvenile fishes during the subartic spring bloom. Can. J. Fish. Aquat. Sci. 1999, 56, 364–376. [Google Scholar] [CrossRef]
- Beamish, R.J.; Mahnken, C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Prog. Oceanogr. 2001, 49, 423–437. [Google Scholar] [CrossRef]
- Abdul-Aziz, O.I.; Mantua, N.; Myers, K.W. Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Can. J. Fish. Aquat. Sci. 2011, 68, 1660–1680. [Google Scholar] [CrossRef]
- Mather, M.E. The role of context-specific predation in understanding patterns exhibited by anadromous salmon. Can. J. Fish. Aquat. Sci. 1998, 55, 232–246. [Google Scholar] [CrossRef]
- Ackley, D.; Blackburn, C.; Brix, K.; Clausen, D.; DiCosimo, J.; Ferrero, R.; Fritz, L.; Grossman, A.; Heifetz, J.; Livingston, P.; et al. Ecosystem Considerations; The Plan Teams for the Groundfish Fisheries of the Bering Sea, Aleutian Islands, and Gulf of Alaska; North Pacific Fisheries Management Council: Anchorage, AK, USA, 1995; 88p. [Google Scholar]
- Sviridov, V.V.; Glebov, I.I.; Starovoytov, A.N.; Sviridova, A.V.; Zuev, M.A.; Kulik, V.V.; Ocheretyanny, M.A. Wounding of Pacific salmon in relation to the spatio-temporal variation in distribution patterns of important predatory fishes in the Russian economic zone. North Pac. Anadromous Fish Comm. Bull. 2007, 4, 133–144. [Google Scholar]
- Christensen, V.; Trites, A.W. Predation of Fraser River Sockeye Salmon; Cohen Commission Tech. Rep. 8; Cohen Commission: Vancouver, BC, Canada, 2011. Available online: https://mmru.ubc.ca/wp-content/pdfs/Christensen%20and%20Trites%202011.pdf (accessed on 20 October 2019).
- Okey, T.A.; Wright, B.A.; Brubaker, M.Y. Salmon shark connections: North Pacific climate change, indirect fisheries effects, or just variability? Fish Fish. 2007, 8, 359–366. [Google Scholar] [CrossRef]
- Ruggerone, G.T.; Peterman, R.M.; Dorner, B.; Myers, K.W. Magnitude and Trends in Abundance of Hatchery and Wild Pink Salmon, Chum Salmon, and Sockeye Salmon in the North Pacific Ocean. Mar. Coast. Fish. 2010, 2, 306–328. [Google Scholar] [CrossRef]
- Springer, A.M.; van Vliet, G.B. Climate change, pink salmon, and the nexus between bottom-up and top-down forcing in the subarctic Pacific Ocean and Bering Sea. Proc. Natl. Acad. Sci. USA 2014, 111, E1880–E1888. [Google Scholar] [CrossRef] [Green Version]
- Ruggerone, G.T.; Connors, B.M. Productivity and life history of sockeye salmon in relation to competition with pink and sockeye salmon in the North Pacific Ocean. Can. J. Fish. Aquat. Sci. 2015, 72, 818–833. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.D.; Jeffries, K.M.; Hinch, S.G.; Farrell, A.P. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate. J. Exp. Biol. 2011, 214, 3074–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farley, E.V.; Trudel, M. Growth Rate Potential of Juvenile Sockeye Salmon in Warmer and Cooler Years on the Eastern Bering Sea Shelf. J. Mar. Biol. 2009, 2009, 640215. [Google Scholar] [CrossRef] [Green Version]
- Stachura, M.M.; Mantua, N.; Scheuerell, M.D. Oceanographic influences on patterns in North Pacific salmon abundance. Can. J. Fish. Aquat. Sci. 2014, 71, 226–235. [Google Scholar] [CrossRef]
- Jones, M.C.; Cheung, W.W.L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 2015, 72, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Perry, R.I.; Cury, P.; Brander, K.; Jennings, S.; Möllmann, C.; Planque, B. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses. J. Mar. Syst. 2010, 79, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Laugen, A.T.; Engelhard, G.H.; Whitlock, R.; Arlinghaus, R.; Dankel, D.J.; Dunlop, E.S.; Eikeset, A.M.; Enberg, K.; Jørgensen, C.; Matsumura, S.; et al. Evolutionary impact assessment: Accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Fish Fish. 2014, 15, 65–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, S.; Zerbi, A.; Aliaume, C.; Do Chi, T.; Lasserre, G. The Ecosystem Approach to Fisheries. Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2003. [Google Scholar]
- Sardà, R.; O’Higgins, T.; Cormier, R.; Diedrich, A.; Tintoré, J. A proposed ecosystem-based management system for marine waters: Linking the theory of environmental policy to the practice of environmental management. Ecol. Soc. 2014, 19, 51. [Google Scholar] [CrossRef] [Green Version]
- Belgrano, A.; Fowler, C.W. Ecosystem Based Management for Marine Fisheries: An Evolving Perspective; Cambridge University Press: New York, NY, USA, 2011; 38p. [Google Scholar]
- Hilborn, R.; Ovando, D. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 2014, 71, 1040–1046. [Google Scholar] [CrossRef]
- King, J.R.; McFarlane, G.A.; Punt, A.E. Shifts in fisheries management: Adapting to regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130277. [Google Scholar] [CrossRef] [Green Version]
- Borja, A.; Elliott, M.; Andersen, J.H.; Eberg, T.; Ecarstensen, J.; Halpern, B.S.; Heiskanen, A.-S.; Ekorpinen, S.; Lowndes, J.S.S.; Emartin, G.; et al. Overview of Integrative Assessment of Marine Systems: The Ecosystem Approach in Practice. Front. Mar. Sci. 2016, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Worm, B.; Hilborn, R.; Baum, J.K.; Branch, T.A.; Collie, J.S.; Costello, C.; Fogarty, M.J.; Fulton, E.A.; Hutchings, J.A.; Jennings, S.; et al. Rebuilding Global Fisheries. Science 2009, 325, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture (SOFIA) Report 2010; FAO: Rome, Italy, 2010. [Google Scholar]
- Ricard, D.; Minto, C.; Jensen, O.P.; Baum, J.K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 2012, 13, 380–398. [Google Scholar] [CrossRef]
- Pitcher, T.J.; Cheung, W.W. Fisheries: Hope or despair? Mar. Pollut. Bull. 2013, 74, 506–516. [Google Scholar] [CrossRef]
- Winemiller, K. Life history strategies, population regulation, and implications for fisheries management. Can. J. Fish. Aquat. Sci. 2005, 62, 872–885. [Google Scholar] [CrossRef]
- Auad, G.; Blythe, J.; Coffman, K.; Fath, B.D. A dynamic management framework for socio-ecological system stewardship: A case study for the United States Bureau of Ocean Energy Management. J. Environ. Manag. 2018, 225, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Kuparinen, A.; Hutchings, J.A. Consequences of fisheries-induced evolution for population productivity and recovery potential. Proc. R. Soc. B Boil. Sci. 2012, 279, 2571–2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skern-Mauritzen, M.; Ottersen, G.; Handegard, N.O.; Huse, G.; Dingsør, G.E.; Stenseth, N.C.; Kjesbu, O.S. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 2016, 17, 165–175. [Google Scholar] [CrossRef]
- Crain, C.M.; Kroeker, K.; Halpern, B.S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 2008, 11, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Crowder, L.; Norse, E. Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar. Policy 2008, 32, 772–778. [Google Scholar] [CrossRef]
- Garmestani, A.S.; Benson, M.H. A Framework for Resilience-based Governance of Social-Ecological Systems. Ecol. Soc. 2013, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J.; et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl. Acad. Sci. USA 2015, 112, 7390–7395. [Google Scholar] [CrossRef] [Green Version]
- Rice, J. Managing fisheries well: Delivering the promises of an ecosystem approach. Fish Fish. 2011, 12, 209–231. [Google Scholar] [CrossRef]
- Serrao-Neumann, S.; JDavidson, L.; Baldwin, C.L.; Dedekorkut-Howes, A.; Ellison, J.C.; Holbrook, N.J.; Howes, M.; Jacobson, C.; Morgan, E.A. Marine governance to avoid tipping points: Can we adapt the adaptability envelope? Mar. Policy 2016, 65, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.C.; Rochet, M.-J. A framework for selecting a suite of indicators for fisheries management. ICES J. Mar. Sci. 2005, 62, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Governance Principles for Natural Resource Management. Soc. Nat. Resour. 2010, 23, 986–1001. [Google Scholar] [CrossRef]
- Levin, P.S.; Möllmann, C. Marine ecosystem regime shifts: Challenges and opportunities for ecosystem-based management. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130275. [Google Scholar] [CrossRef] [Green Version]
Factor | Attributes |
---|---|
Climate Policy | Emissions, Mitigations, Carbon Tax |
Atmosphere | Solar radiation, Cloud cover, Precipitation, Wind, Carbon dioxide levels |
Bottom-up | Physical/Chemical: Water temperature, Sea-Ice, pH, Freshwater runoff, Nutrients, Biological *: Ice algae, Phytoplankton, Zooplankton, Ichthyoplankton, Forage fishes |
Species Interactions | Distribution, Abundance, and Health of non-target Fishes, Seabirds and Marine Mammals |
Non-Fish Species Management | Harvest Rules and Protection Measures of seals, walrus, whales, and seabirds |
Fishes | Distribution, Abundance, Survival, Health, Reproduction, and Physiology of target Fishes |
Fisheries | Fleet size and composition, Distribution, Seasons, Quotas |
Fisheries Management | Harvest control rules, Gear restrictions, Area closures, EBAFM, Fishery Ecosystem Plan (FEP) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiese, F.K.; Nelson, R.J. Pathways between Climate, Fish, Fisheries, and Management: A Conceptual Integrated Ecosystem Management Approach. J. Mar. Sci. Eng. 2022, 10, 338. https://doi.org/10.3390/jmse10030338
Wiese FK, Nelson RJ. Pathways between Climate, Fish, Fisheries, and Management: A Conceptual Integrated Ecosystem Management Approach. Journal of Marine Science and Engineering. 2022; 10(3):338. https://doi.org/10.3390/jmse10030338
Chicago/Turabian StyleWiese, Francis K., and R. John Nelson. 2022. "Pathways between Climate, Fish, Fisheries, and Management: A Conceptual Integrated Ecosystem Management Approach" Journal of Marine Science and Engineering 10, no. 3: 338. https://doi.org/10.3390/jmse10030338
APA StyleWiese, F. K., & Nelson, R. J. (2022). Pathways between Climate, Fish, Fisheries, and Management: A Conceptual Integrated Ecosystem Management Approach. Journal of Marine Science and Engineering, 10(3), 338. https://doi.org/10.3390/jmse10030338