The Effect of Ocean Acidification on Skeletal Structures
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carpenter, K.E.; Abrar, M.; Aeby, G.; Aronson, R.B.; Banks, S.; Bruckner, A.; Chiriboga, A.; Cortes, J.; Delbeek, J.C.; DeVantier, L.; et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 2008, 321, 560–563. [Google Scholar] [CrossRef] [Green Version]
- Uthicke, S.; Momigliano, P.; Fabricius, K. High risk of extinction of benthic foraminifera in this century due to ocean acidification. Sci. Rep. 2013, 3, 1769. [Google Scholar] [CrossRef] [Green Version]
- Fabricius, K.E.; Langdon, C.; Uthicke, S.; Humphrey, C.; Noonan, S.; De’Ath, G.; Okazaki, R.; Muehllehner, N.; Glas, M.S.; Lough, J.M. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 2011, 1, 165–169. [Google Scholar] [CrossRef]
- Johnson, V.R.; Russell, B.D.; Fabricius, K.E.; Brownlee, C.; Hall-Spencer, J.M. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Global Chang. Biol. 2012, 18, 2792–2803. [Google Scholar] [CrossRef] [Green Version]
- Ries, J.B.; Cohen, A.L.; McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 2009, 37, 1131–1134. [Google Scholar] [CrossRef]
- Ries, J.B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 2011, 75, 4053–4064. [Google Scholar] [CrossRef]
- Vogel, N.; Fabricius, K.E.; Strahl, J.; Noonan, S.H.C.; Wild, C.; Uthicke, S. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol. Oceanogr. 2015, 60, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Guillermic, M.; Cameron, L.P.; DeCorte, I.; Misra, S.; Bijma, J.; de Beer, D.; Reymond, C.E.; Westphal, H.; Ries, J.B.; Eagle, R.A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Sci. Adv. 2021, 7, eaba9958. [Google Scholar] [CrossRef] [PubMed]
- Kroeker, K.J.; Kordas, R.L.; Crim, R.; Hendriks, I.E.; Ramajo, L.; Singh, G.S.; Duarte, C.M.; Gattuso, J.-P. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 2013, 19, 1884–1896. [Google Scholar] [CrossRef] [Green Version]
- Kroeker, K.J.; Micheli, F.; Gambi, M.C. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat. Clim. Chang. 2013, 3, 156–159. [Google Scholar] [CrossRef]
- Kroeker, K.J.; Gambi, M.C.; Micheli, F. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc. Natl. Acad. Sci. USA 2013, 110, 12721–12726. [Google Scholar] [CrossRef] [Green Version]
- Stuhr, M.; Cameron, L.P.; Blank-Landeshammer, B.; Reymond, C.E.; Doo, S.S.; Westphal, H.; Sickmann, A.; Ries, R.B. Divergent proteomic responses offer insights into resistant physiological responses of a reef-foraminifera to climate change scenarios. Oceans 2021, 2, 281–314. [Google Scholar] [CrossRef]
- Stuhr, M.; Meyer, A.; Reymond, C.E.; Narayan, G.R.; Rieder, V.; Rahnenführer, J.; Kucera, M.; Westphal, H.; Muhando, C.A.; Hallock, P. Variable thermal stress tolerance of the reef-associated symbiont-bearing foraminifera Amphistegina linked to differences in symbiont type. Coral Reefs 2018, 37, 811–824. [Google Scholar] [CrossRef]
- Ninokawa, A.; Ries, J.B. Responses of freshwater calcifiers to carbon-dioxide-induced acidification. J. Mar. Sci. Eng. 2022. submitted. [Google Scholar]
- Dodd, L.F.; Grabowski, J.H.; Piehler, M.F.; Westfield, I.; Ries, J.B. Ocean acidification impairs crab foraging behaviour. Proc. R. Soc. Lond. B 2015, 282, 20150333. [Google Scholar] [CrossRef] [Green Version]
- Dodd, L.F.; Grabowski, J.H.; Piehler, M.F.; Westfield, I.; Ries, J.B. Juvenile Eastern Oysters more resilient to extreme ocean acidification than their mud crab predators. Geochem. Geophys. Geosyst. 2021, 22. [Google Scholar] [CrossRef]
- Ries, J.B.; Cameron, L.P.; Reymond, C.E.; Bijma, J.; Büscher, J.V.; de Beer, D.; Guillermic, M.; Eagle, R.A.; Gunnell, J.; Müller-Lundin, F.; et al. Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH. J. Mar. Sci. Eng. 2022. submitted. [Google Scholar]
- Eagle, R.A.; Guillermic, M.; De Corte, I.; Alvarez Caraveo, B.; Bove, C.B.; Misra, S.; Cameron, L.P.; Castillo, K.D.; Ries, J.B. Physicochemical control of Caribbean coral calcification linked to host and symbiont responses to varying pCO2 and temperature. J. Mar. Sci. Eng. 2022, in press. [Google Scholar]
- Khalil, M.; Doo, S.S.; Stuhr, M.; Westphal, H. Ocean warming amplifies effects of ocean acidification on skeletal mineralogy and microstructure in the asterinid starfish Aquilonastra yairi. J. Mar. Sci. Eng. 2022. submitted. [Google Scholar]
- George, M.N.; O’Donnell, M.J.; Concodello, M.; Carrington, E. Mussels repair shell damage despite limitations imposed by ocean acidification. J. Mar. Sci. Eng. 2022, 10, 359. [Google Scholar] [CrossRef]
- Scucchia, F.; Sauer, K.; Zaslansky, P.; Mass, T. Artificial intelligence reveals the 3D internal skeletal architecture in newly settled coral recruits: Insights into the effect of Ocean Acidification on coral biomineralization. J. Mar. Sci. Eng. 2022, 10, 391. [Google Scholar] [CrossRef]
- Horvath, K.M.; Ries, J.B.; Castillo, K.D.; Westfield, I.T.; Armstrong, P.; Courtney, T. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea. Sci. Rep. 2016, 6, 29613. [Google Scholar] [CrossRef]
- Cohen, A.L.; McCorkle, D.C.; de Putron, S.; Gaetani, G.A.; Rose, K.A. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochem. Geophys. Geosyst. 2009, 10, Q07005. [Google Scholar] [CrossRef] [Green Version]
- Tambutté, E.; Venn, A.A.; Holcomb, M.; Segonds, N.; Techer, N.; Zoccola, D.; Allemand, D.; Tambutté, S. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Comm. 2015, 6, 7368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hönisch, B.; Ridgwell, A.; Schmidt, D.; Thomas, E.; Gibbs, S.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.; Greene, S.; et al. The geologic record of ocean acidification. Science 2012, 335, 1058–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomar, L.; Hallock, P.; Mateu Vicens, G. Why do carbonates exist? J. Mar. Sci. Eng. 2022. in preparation. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westphal, H.; Ries, J.B.; Doo, S.S. The Effect of Ocean Acidification on Skeletal Structures. J. Mar. Sci. Eng. 2022, 10, 786. https://doi.org/10.3390/jmse10060786
Westphal H, Ries JB, Doo SS. The Effect of Ocean Acidification on Skeletal Structures. Journal of Marine Science and Engineering. 2022; 10(6):786. https://doi.org/10.3390/jmse10060786
Chicago/Turabian StyleWestphal, Hildegard, Justin B. Ries, and Steve S. Doo. 2022. "The Effect of Ocean Acidification on Skeletal Structures" Journal of Marine Science and Engineering 10, no. 6: 786. https://doi.org/10.3390/jmse10060786
APA StyleWestphal, H., Ries, J. B., & Doo, S. S. (2022). The Effect of Ocean Acidification on Skeletal Structures. Journal of Marine Science and Engineering, 10(6), 786. https://doi.org/10.3390/jmse10060786