Numerical Simulation of the Flow around NACA0018 Airfoil at High Incidences by Using RANS and DES Methods
Abstract
:1. Introduction
2. Numerical Method
3. Case Description
3.1. Study Object and Working Condition
3.2. Computational Domain and Boundary Condition
3.3. Other Setups in the Numerical Solution
4. Convergence Study
5. Numerical Results
5.1. Lift and Drag Coefficients
5.2. Shedding Vortex Structures
5.3. Streamlines and Vorticity Distribution
5.4. Pressure Distribution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobs, E.N.; Sherman, A. Airfoil Section Characteristics as Affected by Variations of the Reynolds Number; Annual Report-National Advisory Committee for Aeronautics; Iowa State University: Ames, IA, USA, 1937; p. 586. [Google Scholar]
- Goett, H.J.; Bullivant, W.K. Tests of NACA 009, 0012 and 0018 Airfoils in the Full-Scale Tunnel; Annual Report-National Advisory Committee for Aeronautics; Iowa State University: Ames, IA, USA, 1938; p. 647. [Google Scholar]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Sandia National Laboratories Energy Report; Sandia National Labs.: Albuquerque, NM, USA, 1981. [Google Scholar]
- Nakano, T.; Fujisawa, N.; Oguma, Y.; Takagia, Y.; Leeb, S. Experimental study on flow and noise characteristics of NACA0018 airfoil. J. Wind Eng. Ind. Aerod. 2007, 95, 511–531. [Google Scholar] [CrossRef]
- Timmer, W.A. Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018. Wind Eng. 2008, 32, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Boutilier, M.S.H.; Yarusevych, S. Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 2012, 24, 084105. [Google Scholar] [CrossRef]
- Gim, O.S.; Lee, G.W. Flow characteristics and tip vortex formation around a NACA 0018 foil with anendplate. Ocean Eng. 2013, 60, 28–38. [Google Scholar] [CrossRef]
- Greenblatt, D.; Mueller-Vahl, H.; Strangfeld, C.; Medina, A.; Ol, M.; Granlund, K. High advance-ratio airfoil streamwise oscillations: Wind tunnel vs. water tunnel. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Hassan, G.E.; Hassan, A.; Youssef, M.E. Numerical investigation of medium range re number aerodynamics characteristics for NACA0018 airfoil. CFD Lett. 2014, 6, 175–187. [Google Scholar]
- Raj, J. CFD analysis of flow characteristics of NACA0012 airfoil using SU2. J. Mech. Aeronaut. Eng. Res. 2017, 1, 25–28. [Google Scholar]
- Suvanjumrat, C. Comparison of turbulence models for flow past NACA0015 airfoil using OpenFOAM. Eng. J. 2017, 21, 207–221. [Google Scholar] [CrossRef]
- Yilmaz, M.; Koten, H.; Çetinkaya, E.; Coşar, Z. A comparative CFD analysis of NACA0012 and NACA4412 airfoils. J. Energy Syst. 2018, 2, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, S.; Li, G.; Huang, D.; Zheng, Z. Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renew. Energ. 2018, 126, 801–818. [Google Scholar] [CrossRef]
- Aqilah, F.; Islam, M.; Juretic, F.; Guerrero, J.; Wood, D.; Nasir, F. Study of mesh quality improvement for CFD analysis of an airfoil. IIUM Eng. J. 2018, 19, 203–212. [Google Scholar] [CrossRef]
- Zidane, I.F.; Swadener, G.; Saqr, K.M.; Ma, X.; Shehade, M.F. CFD investigation of transitional separation bubble characteristics on NACA 63415 airfoil at low Reynolds numbers. In Proceedings of the 25th UKACM Conference on Computational Mechanics, Birmingham, UK, 12–13 April 2017. [Google Scholar]
- Li, C.; Wang, H.; Sun, P. Numerical investigation of a two-element wingsail for ship auxiliary propulsion. J. Mar. Sci. Eng. 2020, 8, 333. [Google Scholar] [CrossRef]
- Breuer, M.; Jovičić, N. An LES investigation of the separated flow past an airfoil at high angle of attack. In Direct and Large-Eddy Simulation IV; Springer: Dordrecht, The Netherlands, 2001; pp. 165–172. [Google Scholar]
- Mary, I.; Sagaut, P. Large eddy simulation of flow around an airfoil near stall. AIAA J. 2002, 40, 1139–1145. [Google Scholar] [CrossRef]
- Yuan, W.; Xu, H.; Khalid, M.; Radespiel, R. A parametric study of LES on laminar-turbulent transitional flows past an airfoil. Int. J. Comut. Fluid Dyn. 2006, 20, 45–54. [Google Scholar] [CrossRef]
- Li, C.; Zhu, S.; Xu, Y.; Xiao, Y. 2.5 D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renew. Energ. 2013, 51, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Breuer, M. Effect of inflow turbulence on an airfoil flow with laminar separation bubble: An LES study. Flow Turbul. Combust. 2018, 101, 433–456. [Google Scholar] [CrossRef]
- Spalart, P.R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Proceedings of the 1st AFOSR International Conference on DNS/LES, Ruston, LA, USA, 4–8 August 1997. [Google Scholar]
- Spalart, P.R.; Deck, S.; Shur, M.; Squires, K.D. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat. Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Schmidt, S.; Thiele, F. Detached eddy simulation of flow around A-airfoil. Flow Turbul. Combust. 2003, 71, 261–278. [Google Scholar] [CrossRef]
- Li, D.; Men’shov, I.; Nakamura, Y. Detached-eddy simulation of three airfoils with different stall onset mechanisms. J. Aircr. 2006, 43, 1014–1021. [Google Scholar] [CrossRef]
- Probst, A.; Wolf, C.; Radespiel, R.; Knopp, T.; Schwamborn, D. A comparison of detached-eddy simulation and Reynolds-stress modeling applied to the flow over a backward-facing step and an airfoil at stall. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar]
- Im, H.; Zha, G. Delayed detached eddy simulation of a stall flow over NACA0012 airfoil using high order schemes. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Grossi, F.; Braza, M.; Hoarau, Y. Delayed detached-eddy simulation of the transonic flow around a supercritical airfoil in the buffet regime. In Progress in Hybrid RANS-LES Modelling; Springer: Berlin/Heidelberg, Germany, 2012; pp. 369–378. [Google Scholar]
- Liang, Z.; Xue, L. Detached-eddy simulation of wing-tip vortex in the near field of NACA 0015 airfoil. J. Hydrodynam. B 2014, 26, 199–206. [Google Scholar] [CrossRef]
- Gan, J.; Im, H.S.; Chen, X.; Zha, G.C.; Pasiliao, C.L. Delayed detached eddy simulation of wing flutter boundary using high order schemes. J. Fluids. Struct. 2017, 71, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.Y.; Qiao, C.L.; Yang, H.Q.; Ye, Z.Y. Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees. Energy 2017, 118, 1090–1109. [Google Scholar] [CrossRef]
- Yalçın, Ö.; Cengiz, K.; Özyörük, Y. High-order detached eddy simulation of unsteady flow around NREL S826 airfoil. J. Wind. Eng. Ind. Aerodyn. 2018, 179, 125–134. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; Han, Z. Detached eddy simulation on the flow around NACA0021 airfoil beyond stall using OpenFOAM. In Proceedings of the Asia-Pacific International Symposium on Aerospace Technology, Chengdu, China, 16–18 October 2018. [Google Scholar]
- Patel, P.; Zha, G. Improved delayed detached eddy simulation of separated flow. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020. [Google Scholar]
- OpenFOAM. Available online: https://www.openfoam.com (accessed on 24 August 2021).
- Stern, F.; Wilson, R.; Shao, J. Quantitative V&V of CFD simulations and certification of CFD codes. Int. J. Numer. Methods Fluids. 2006, 50, 1335–1355. [Google Scholar]
- Muscari, R.; Di Mascio, A.; Verzicco, R. Modeling of vortex dynamics in the wake of a marine propeller. Comput. Fluids. 2013, 73, 65–79. [Google Scholar] [CrossRef]
2/3 | 0.1355 | 0.622 | 0.3 | 2.0 | 7.1 | 0.3 | 0.65 | 0.07 | 1.2 | 0.5 | 0.424 |
Terms | Values |
---|---|
Airfoil profile | NACA0018 |
Chord length (m) | 0.154 |
Spanwise length (m) | 0.1 |
Reynolds number | 1,000,000 |
Angle of attack (deg) | 5, 10, 15, 20, 25, 30, 35, 40 |
Terms | RANS | DES | |
---|---|---|---|
Time | Euler | Backward | |
Divergence | Gauss linearUpwind grad(U) | Gauss LUST unlimitedGrad(U) | |
Gauss limitedLinear 1 | Gauss limitedLinear 1 | ||
Gradient | Gauss linear | cellLimited Gauss linear 1 | |
Gauss linear | cellLimited Gauss linear 1 | ||
Laplacian | Gauss linear limited corrected 0.5 | Gauss linear limited corrected 0.33 | |
Interpolation | linear | linear |
Method | Fine Grid | Medium Grid | Coarse Grid | |
---|---|---|---|---|
Grid number | - | 3.98 × 106 | 2.07 × 106 | 1.06 × 106 |
Computational expense (h) | RANS | 50–55 | 25–30 | 5–10 |
DES | 60–65 | 40–45 | 15–20 |
1.334 | 1.318 | 1.349 | −1.210 | 2.303 | −0.525 | - | - | 1.152 | |
1.156 | 1.151 | 1.186 | −0.373 | 2.981 | −0.125 | - | - | 1.491 |
1.015 | 1.017 | 1.116 | 0.222 | 9.709 | 0.023 | 10.898 | 42.684 | 0.439 | |
0.802 | 0.819 | 0.886 | 2.095 | 8.468 | 0.247 | 4.030 | 3.042 | 3.501 |
(deg). | RANS | ERR% (Sheldahl) | ERR% (Timmer) | DES | ERR% (Sheldahl) | ERR% (Tmmer) |
---|---|---|---|---|---|---|
5 | 0.406 | 26.257 | 16.354 | 0.412 | 25.107 | 15.049 |
10 | 0.959 | 1.648 | 1.273 | 0.895 | 8.252 | 7.902 |
15 | 1.048 | 1.378 | 4.855 | 0.819 | 22.948 | 25.665 |
20 | 0.783 | 19.328 | 22.523 | 1.122 | −15.557 | −10.981 |
25 | 0.861 | 14.839 | 11.534 | 1.058 | −4.729 | −8.794 |
30 | 1.162 | −35.867 | - | 1.073 | −25.457 | - |
35 | 1.206 | −23.025 | - | 1.024 | −4.469 | - |
40 | 1.320 | −27.559 | - | 1.020 | 1.469 | - |
(deg). | RANS | ERR% (Sheldahl) | ERR% (Timmer) | DES | ERR% (Sheldahl) | ERR% (Tmmer) |
---|---|---|---|---|---|---|
5 | 0.016 | −73.263 | −63.781 | 0.015 | −60.580 | −51.792 |
10 | 0.024 | −56.362 | −14.068 | 0.023 | −46.694 | −7.015 |
15 | 0.061 | −142.182 | 4.196 | 0.079 | −213.138 | −23.873 |
20 | 0.249 | 11.695 | −72.966 | 0.313 | −11.055 | −117.528 |
25 | 0.464 | −14.461 | −93.758 | 0.412 | −1.829 | −72.376 |
30 | 0.752 | −31.855 | - | 0.536 | 5.973 | - |
35 | 0.914 | −22.661 | - | 0.668 | 10.357 | - |
40 | 1.157 | −25.798 | - | 0.817 | 11.179 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Li, G.; Zou, Z. Numerical Simulation of the Flow around NACA0018 Airfoil at High Incidences by Using RANS and DES Methods. J. Mar. Sci. Eng. 2022, 10, 847. https://doi.org/10.3390/jmse10070847
Guo H, Li G, Zou Z. Numerical Simulation of the Flow around NACA0018 Airfoil at High Incidences by Using RANS and DES Methods. Journal of Marine Science and Engineering. 2022; 10(7):847. https://doi.org/10.3390/jmse10070847
Chicago/Turabian StyleGuo, Haipeng, Guangnian Li, and Zaojian Zou. 2022. "Numerical Simulation of the Flow around NACA0018 Airfoil at High Incidences by Using RANS and DES Methods" Journal of Marine Science and Engineering 10, no. 7: 847. https://doi.org/10.3390/jmse10070847
APA StyleGuo, H., Li, G., & Zou, Z. (2022). Numerical Simulation of the Flow around NACA0018 Airfoil at High Incidences by Using RANS and DES Methods. Journal of Marine Science and Engineering, 10(7), 847. https://doi.org/10.3390/jmse10070847