Two New Species of Free-Living Marine Nematode of the Genus Anticyathus Cobb, 1920 (Linhomoeidae) from Mangroves Sediment of Shenzhen and Shantou, China †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Meiofauna Exraction, and Nematode Identification
2.2. DNA Extraction, PCR Amplification, and Sequencing
2.3. Terminology and Abbreviations
3. Results
3.1. Description of Anticyathus Shenzhensis sp. nov.
3.1.1. Type Material
3.1.2. Etymology
3.1.3. Type Locality and Habitat
3.1.4. Morphological Description
3.1.5. Differential Diagnosis
3.1.6. DNA Sequence Results
3.2. Description of Anticyathus communis sp. nov.
3.2.1. Type Material
3.2.2. Etymology
3.2.3. Type Locality and Habitat
3.2.4. Morphological Description
3.2.5. Differential and Diagnosis
4. Discussion
4.1. List of Valid Anticyathus Species
4.2. Identification Key to Species of the Genus Anticyathus (emended after Gerlach, 1963) [9]
4.3. Discussion and Notes on the Molecular Research of Anticyathus
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giere, O. Meiobenthology. In The Microscopic Motile Fauna of Aquatic Sediments, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Soetaert, K.; Franco, M.; Lampadariou, N.; Muthumbi, A.; Steyaert, M.; Vandepitte, L.; Berghe, E.V.; Vanaverbeke, J.J.M.E.P. Factors affecting nematode biomass, length and width from the shelf to the deep sea. Mar. Ecol. Prog. Ser. 2009, 392, 123–132. [Google Scholar] [CrossRef]
- Ridall, A.; Ingels, J. Suitability of Free-Living Marine Nematodes as Bioindicators: Status and Future Considerations. Front. Ecol. Evol. 2021, 8, 685327. [Google Scholar] [CrossRef]
- Appeltans, W.; Ahyong, S.; Anderson, G.; Angel, M.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; et al. The Magnitude of Global Marine Species Diversity. Curr. Biol. 2012, 22, 2189–2202. [Google Scholar] [CrossRef]
- Tchesunov, A.V.; Yushin, V.V. The Fine Structure of the Cephalic End of Two New Species of Nematodes of the Family Linhomoeidae from the Sea of Japan. Sov. J. Mar. Biol. 1991, 17, 88–94. [Google Scholar]
- Filipjev, I.N. The classification of the free-living nematodes and their relation to the parasitic nematodes. Smithson. Misc. Collect. 1934, 89, 1–63. [Google Scholar]
- Chitwood, B.G. North American marine nematodes. Tex. J. Sci. 1951, 4, 617–672. [Google Scholar]
- Wieser, W. Free-living marine nematodes III. Axonolaimoidea and Mohysteroidea. Acta Univ. Lund 1956, 52, 1–115. [Google Scholar]
- Gerlach, S.A. Über freilebende Meeresnematoden. Revision der Linhomoeidae. Zool. Jahrbücher Syst. Band 1963, 90, 599–658. [Google Scholar]
- Cobb, N.A. One hundred new nemas (Type species of 100 new genera). Contrib. Sci. Nematol. 1920, 9, 217–343. [Google Scholar]
- Fonseca, G.; Bezerra, T.N. Order Monhysterida Filipjev, 1929. In Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera, volume 2 Nematoda; Schmidt-Rhaesa, A., Ed.; De Gruyter: Berlin, Germany, 2014; Volume 2, pp. 435–465. [Google Scholar]
- Chen, Y.Z.; Guo, Y.Q. Three new and two known free-living marine nematode species of the family Ironidae from the East China Sea. Zootaxa 2015, 4018, 151. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Chen, Y.-Z.; Guo, Y.-Q. A New Species of Free-living Marine Nematode (Ptycholaimellus: Chromadoridae: Chromadorida: Nematoda) from Mangrove Wetlands in China. Zool. Stud. 2022, 61, 20. [Google Scholar] [CrossRef]
- Bhadury, P.; Austen, M.C.; Bilton, D.T.; Lambshead, P.J.D.; Rogers, A.D.; Smerdon, G.R. Evaluation of combined morphological and molecular techniques for marine nematode (Terschellingia spp.) identification. Mar. Biol. 2008, 154, 509–518. [Google Scholar] [CrossRef]
- Bhadury, P.; Austen, M.C.; Bilton, D.T.; Lambshead, P.J.D.; Rogers, A.D.; Smerdon, G.R. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar. Ecol. Prog. Ser. 2006, 320, 1–9. [Google Scholar] [CrossRef]
- Holterman, M.; van der Wurff, A.; van der Elsen, S.; van Megen, H.; Bongers, T.; Holovachov, O.; Bakker, J.; Helder, J. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 2006, 23, 1792–1800. [Google Scholar] [CrossRef]
- Cobb, N.A. Antarctic marine free-living nematodes of the Shackleton expedition. Contrib. Sci. Nematol. 1914, 1, 1–33. [Google Scholar]
- Timm, R.W. Redescription of the marine nematodes of Shackleton’s British Antarctic Expedition of 1907–1909. Am. Geophys. Union Antarct. Res. Ser. 1978, 26, 237–255. [Google Scholar]
- Tchesunov, A.V. Free-living nematodes of the family Linhomoeidae from the Caspian Sea. Zool. Zhurnal 1978, 57, 1623–1631. [Google Scholar]
- Gerlach, S.A. Marine Nematoden aus dem Mangrove-Gebiet von Cananéia (Brasilianische Meeres-Nematoden III). Abh. Math. Nat. Kl. 1957, 5, 129–176. [Google Scholar]
- Allgén, C.A. Freilebende Nematoden aus dem Trondhjemsfjord. Capita Zool. 1933, 4, 1–162. [Google Scholar]
- Derycke, S.; Fonseca, G.; Vierstraete, A.; Vanfleteren, J.; Vincx, M.; Moens, T. Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morhological tools. Zool. J. Linn. Soc. 2008, 152, 1–15. [Google Scholar] [CrossRef]
- Fonseca, G.; Derycke, S.; Moens, T. Integrative taxonomy in two free-living nematode species complexes. Biol. J. Linn. Soc. 2008, 94, 737–753. [Google Scholar] [CrossRef]
- Avó, A.P.; Daniell, T.J.; Roy, N.; Solange, O.; Jordana, B.; Helena, A. DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: Advances in molecular tools for biodiversity assessment. Front. Mar. Sci. 2017, 4, 66. [Google Scholar] [CrossRef]
Station | Temperature (°C) | pH | Salinity (‰) | Total Nitrogen (mg·g−1) | Total Organic Carbon (%) |
---|---|---|---|---|---|
SZFT 2L | 27.0 | 6.1 | 2.5 | 2.14 | 13.93 |
SZFT 3L | 28.5 | 6.3 | 3.1 | 1.50 | 14.90 |
SZFT 2M | 26.5 | 6.2 | 4.8 | 4.34 | 11.69 |
SZFT 3M | 27.5 | 6.3 | 3.3 | 1.75 | 16.66 |
Characters | Holotype | Paratypes | |||||
---|---|---|---|---|---|---|---|
♂1 | ♂2 | ♂3 | ♂4 | ♀1 | ♀2 | ♀3 | |
Body length | 2232 | 2422 | 2172 | 2399 | 2486 | 2042 | 2255 |
Head diameter | 17 | 18 | 19 | 18 | 18 | 17 | 18 |
Length of cephalic setae | 2–3 | 2–3 | 2–3 | 4 | 2–3 | 2–3 | 2-3 |
Buccal cavity length | 8 | 10 | 6 | 8 | 6 | 7 | 5 |
Buccal cavity diameter | 5 | 7 | 8 | 7 | 9 | 6 | 7 |
Amphids from the anterior end | 2 | 3 | 3 | 2 | 2 | 3 | 2 |
Amphid length | 6 | 5 | 6 | 7 | 5 | 5 | 5 |
Amphid width | 5 | 7 | 5 | 7 | 5 | 6 | 6 |
Amphid cbd | 23 | 23 | 23 | 24 | 25 | 25 | 22 |
Amphid width/Amphid cbd | 0.20 | 0.29 | 0.22 | 0.28 | 0.22 | 0.22 | 0.27 |
Excretory pore from the anterior end | 84 | 89 | 74 | 98 | 69 | 79 | 84 |
Excretory pore cbd | 52 | 63 | 54 | 69 | 58 | 51 | 63 |
Nerve ring from the anterior end | 108 | 117 | 98 | 120 | 94 | 106 | 99 |
Nerve ring cbd | 57 | 69 | 59 | 74 | 67 | 55 | 66 |
Pharynx length | 198 | 211 | 191 | 203 | 184 | 205 | 191 |
Pharynx cbd | 65 | 77 | 72 | 88 | 78 | 63 | 74 |
Maximum body diameter | 73 | 84 | 79 | 98 | 99 | 72 | 88 |
abd | 57 | 65 | 62 | 76 | 54 | 52 | 61 |
Tail length | 193 | 189 | 156 | 196 | 253 | 209 | 208 |
c′ | 3.4 | 2.9 | 2.5 | 2.6 | 4.7 | 4.0 | 3.4 |
Spicule length as chord | 48 | 41 | 42 | 49 | - | - | - |
Spicule length as arc | 59 | 54 | 51 | 54 | - | - | - |
Spicule length as arc/abd | 1.04 | 0.83 | 0.82 | 0.71 | - | - | - |
Gubernaculum | 14 | 11 | 10 | 13 | - | - | - |
Length of apophysis | 19 | 18 | 19 | 19 | - | - | - |
V′ | - | - | - | - | 1296 | 1118 | 1263 |
vbd | - | - | - | - | 99 | 72 | 88 |
V% | - | - | - | - | 52 | 55 | 56 |
a | 30.58 | 28.83 | 27.49 | 24.48 | 25.11 | 28.36 | 25.63 |
b | 11.27 | 11.48 | 11.37 | 11.83 | 13.51 | 9.96 | 11.81 |
c | 11.56 | 12.81 | 13.92 | 12.22 | 9.83 | 9.77 | 10.84 |
Characters | Holotype | Paratypes | |||||
---|---|---|---|---|---|---|---|
♂1 | ♂2 | ♂3 | ♂4 | ♂5 | ♀1 | ♀2 | |
Body length | 2462 | 2447 | 2373 | 2266 | 1892 | 2176 | 2242 |
Head diameter | 18 | 19 | 21 | 19 | 17 | 18 | 19 |
Length of cephalic setae | 4 | 4 | 4 | 4 | 3 | 5 | 4 |
Buccal cavity length | 11 | 11 | 11 | 12 | 9 | 10 | 11 |
Buccal cavity diameter | 7 | 8 | 8 | 8 | 8 | 9 | 7 |
Amphids from the anterior end | 1 | 2 | 2 | 1 | 2 | 2 | 2 |
Amphid length | 6 | 7 | 6 | 6 | 6 | 6 | 7 |
Amphid width | 6 | 6 | 6 | 6 | 6 | 5 | 6 |
Amphid cbd | 22 | 20 | 25 | 25 | 22 | 25 | 23 |
Amphidwidth/Amphid cbd | 0.26 | 0.32 | 0.25 | 0.23 | 0.27 | 0.20 | 0.25 |
Excretory pore from the anterior end | 96 | 96 | 93 | 78 | 88 | 89 | 86 |
Excretory pore cbd | 49 | 51 | 53 | 50 | 43 | 49 | 46 |
Nerve ring from the anterior end | 112 | 111 | 113 | 101 | 105 | 117 | 113 |
Nerve ring cbd | 50 | 51 | 54 | 53 | 49 | 53 | 49 |
Pharynx length | 221 | 210 | 217 | 205 | 201 | 194 | 209 |
Pharynx cbd | 53 | 57 | 60 | 60 | 51 | 57 | 56 |
Maximum body diameter | 55 | 58 | 65 | 65 | 53 | 66 | 59 |
abd | 49 | 52 | 60 | 54 | 46 | 42 | 40 |
Tail length | 220 | 220 | 219 | 205 | 176 | 227 | 215 |
c′ | 4.5 | 4.3 | 3.6 | 3.8 | 3.9 | 5.5 | 5.3 |
Spicule length as chord | 36 | 34 | 34 | 37 | 31 | - | - |
Spicule length as arc | 46 | 43 | 44 | 49 | 44 | - | - |
Spicule length as arc/abd | 0.95 | 0.84 | 0.74 | 0.90 | 0.96 | - | - |
Gubernaculum | 12 | 12 | 11 | 12 | 12 | - | - |
Length of apophysis | 21 | 13 | 13 | 17 | 17 | - | - |
V′ | - | - | - | - | - | 1142 | 1177 |
vbd | - | - | - | - | - | 65 | 57 |
V% | - | - | - | - | - | 52 | 52 |
a | 44.99 | 42.54 | 36.47 | 34.95 | 35.64 | 33.04 | 38.30 |
b | 11.16 | 11.65 | 10.93 | 11.03 | 9.42 | 11.21 | 10.73 |
c | 11.22 | 11.12 | 10.86 | 11.03 | 10.78 | 9.57 | 10.43 |
Species | A. boreicaspius | A. plicibucca | A. primitivus | A. septentrionalis | A. tenuicaudatus | A. trochus | A. communis sp. nov. | A. shenzhensis sp. nov. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
References | [19] | [5] | [9] | [21] | [17] | [18] | [10] | [20] | This Article | This Article | ||||||||
Sex | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ |
Body length | 2480 | 2160 | 2140–3050 | 2550 | 2172 | 1725 | 2000 | 1800 | 2150–2870 | 2040–2990 | 5200 | 6500 | 875 | 1044 | 1892–2462 | 2176–2242 | 2172–2422 | 2042–2486 |
Amphids from the anterior end | 5 | 6.3 | 11.9 | 15 | 7 | 6 | - | - | - | - | - | - | - | - | 1–2 | 2 | 2–3 | 2–3 |
Amphid width | 6.9–7 | 8.5 | 6.8 | 9 | 6 | - | - | - | - | - | - | - | - | 6 | 5–6 | 5–7 | 5–6 | |
Maximum body diameter | 75 | 50 | 61 | 67.5 | 55 | 45 | 38 * | 37.8 * | - | - | - | - | 30 | - | 53–65 | 59–66 | 73–98 | 72–88 |
abd | 50 | 43.7 | 51 | 41 | 52 | 30 * | 34 * | 23.4 * | - | - | 88.4 * | 84.5 * | 26 | 24 | 46–60 | 40–42 | 57–76 | 52–61 |
Tail length | 150 * | 140 * | - | - | 147 | 130 | 108 * | 84.6 * | - | - | 728 * | 975 * | - | - | 176–220 | 215–227 | 156–196 | 208–253 |
c′ | 3 | 3.2 | 3.8–4.1 | 4 | 3–4 | 4.3 * | 3.18 * | 3.62 * | 3.1–4 | 2.6–4 | 11.5 * | 8.24 * | 3 | 4 | 3.6–4.5 | 5.3–5.5 | 2.5–3.4 | 3.4–4.7 |
Spicule length as arc | 43.7/47.5 | - | 40 | - | 45 | - | 51 * | - | 40 | - | 88 * | - | 23 | - | 43–49 | - | 51–59 | - |
Spicule length as arc/abd | 0.87/0.95 * | - | 0.78 | - | 0.87 | - | 1.50 | - | 1.00 | - | 0.88 | - | 0.74–0.96 | - | 0.71–1.04 | - | ||
Length of apophysis | - | - | 15 | - | - | - | 17 * | - | 23 | - | 22 * | - | - | - | 13–21 | - | 18–19 | - |
V% | - | - | - | 62.6% | - | 71.01% | - | 64.00% | - | 51.4–58.6% | - | 50% * | - | 54% | - | 52% | - | 52–56% |
a | 33 | 43.2 | 50 | 37.7 | 40 | 38.3 | 53 * | 48 * | 50–64 | 41–49 | 47 * | 37 * | 29 | 29 | 35.0–45.0 | 33.0–38.3 | 24.5–30.6 | 25.6–28.4 |
b | 6.5 | 5.9 | 15.4–18.2 | 15.6 | 8.5 | 7.36 | 12.8 * | 13.2 * | 10.5–18.8 | 10.2–13.0 | 13.3 * | 20 * | 5.4 | 6 | 9.4–11.7 | 10.7–11.2 | 11.3–11.8 | 10.0–13.5 |
c | 15.5 | 15.9 | 18.2–23.3 | 22.6 | 15 | 13.27 | 18.5 * | 21.3 * | 13.7–19.4 | 15.7–26.8 | 7.14 * | 6.67 * | 11.1 | 9.2 | 10.8–11.2 | 9.6–10.4 | 11.6–13.9 | 9.8–10.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhou, R.; Zhu, H.; Guo, Y. Two New Species of Free-Living Marine Nematode of the Genus Anticyathus Cobb, 1920 (Linhomoeidae) from Mangroves Sediment of Shenzhen and Shantou, China. J. Mar. Sci. Eng. 2022, 10, 1107. https://doi.org/10.3390/jmse10081107
Chen Y, Zhou R, Zhu H, Guo Y. Two New Species of Free-Living Marine Nematode of the Genus Anticyathus Cobb, 1920 (Linhomoeidae) from Mangroves Sediment of Shenzhen and Shantou, China. Journal of Marine Science and Engineering. 2022; 10(8):1107. https://doi.org/10.3390/jmse10081107
Chicago/Turabian StyleChen, Yuzhen, Rengui Zhou, Huilan Zhu, and Yuqing Guo. 2022. "Two New Species of Free-Living Marine Nematode of the Genus Anticyathus Cobb, 1920 (Linhomoeidae) from Mangroves Sediment of Shenzhen and Shantou, China" Journal of Marine Science and Engineering 10, no. 8: 1107. https://doi.org/10.3390/jmse10081107
APA StyleChen, Y., Zhou, R., Zhu, H., & Guo, Y. (2022). Two New Species of Free-Living Marine Nematode of the Genus Anticyathus Cobb, 1920 (Linhomoeidae) from Mangroves Sediment of Shenzhen and Shantou, China. Journal of Marine Science and Engineering, 10(8), 1107. https://doi.org/10.3390/jmse10081107